Descent and its derivation

Let
$$
\Gamma(\xi)
$$
 be an adjoint invariant polynomial function
\nof $\xi \in \mathbb{S}$ of degree $n+1$.
\nFor a G-gauge potential A, $\Gamma(F_A)$ is a $2n+2$ form
\nwhich is
\n. gauge invariant $\delta \in I(F_A) = o$ and
\n. closed d $I(F_A) = o$.
\nMoreover, there are sequence of differential forms
\n $\Gamma_{2n+1}^o(A), \Gamma_{2n}^1(\epsilon, A), \Gamma_{2n-1}^2(\epsilon, \epsilon, A),$ obeying
\n $\Gamma(F_A) = d \Gamma_{2n+1}^o(A),$
\n $\delta \epsilon \Gamma_{2n+1}^o(A) = d \Gamma_{2n}^1(\epsilon, A),$
\n $d \epsilon_1 \Gamma_{2n}^1(\epsilon, A) - d \epsilon_2 \Gamma_{2n}^1(\epsilon_1, A) - \Gamma_{2n}^1[\epsilon_0, \epsilon_1, A]$
\n $= d \Gamma_{2n-1}^2[\epsilon, \epsilon, A],$
\n \vdots

Called the descent equations.

For
$$
Q=0,1,..,2n+1
$$
, Γ_{2n-q+1}^q ($E_{1,1}^q, E_{2,1}^q, A$) is a 2n-q+1 form
\ndepending linearly on infinitesimal gauge transformations
\n $E_{1,1}^q, E_{2,1}^q$ The descent equation for a general q if
\n
$$
\frac{q+1}{\sum_{i=1}^q} (1)^{i-1} \delta_{E_i} \Gamma_{2n+1}^q [E_{1,1}^q, E_{1,1}^q, E_{1,1}^q, A]
$$
\n
$$
+ \sum_{i \leq j} (-1)^{i+j} \Gamma_{2n+1}^q [(E_i, E_j] - E_i, E_{j,1}^q, A]
$$
\n
$$
= d \Gamma_{2n-1}^q [E_{1,1}^q, E_{1,1}^q, E_{1,1}^q, E_{1,1}^q, B_{1,1}^q, B_{1,1}
$$

For a family
$$
A_E = t \cdot A
$$
, $te[0, 1]$,
\n
$$
\Gamma(F_A) = \Gamma(F_{A_1}) - \Gamma(F_{A_2}) = \int_0^1 dt \frac{1}{2} \Gamma(F_{A_2}) d\Gamma(F_{A_3})
$$
\n
$$
= d \int_0^1 dt \Gamma(F_{A_1}, A) =: \Gamma_{2n-1}^0
$$
\nIn what follows, we shall find Γ_{2n-1}^1 , for $0 \ge 1$.
\nNotation: For a manifold X
\n
$$
\mathfrak{A}(X) = the space of G-gauge potentials on X
$$
\n
$$
\cong \Gamma^1(X, \mathfrak{P})
$$
\n
$$
\mathfrak{I} \cup \
$$

. Any $A \in \mathcal{A}(X)$ determines a gauge potential on \hat{X} $\hat{A} = \iota_X^* A \in \mathcal{A}(\hat{X})$. e_v can be regarded as a gauge transformation on $\hat{\times}$ $e_v \in G(\hat{X})$ A differential form on $\hat{\chi}$ is said to be a $\binom{9}{p}$ -form when it is a section of $\Lambda^e T^k X \otimes \Lambda^q T^k \mathcal{G}(x)$ $Q'(\hat{x}) = \bigoplus_{p+q=j} Q'_p(\hat{x})$ the space of $\binom{q}{p}$ -forms on X . The exterior derivative on \hat{X} is denoted by $\widehat{d} = d + \delta$: $d : \Omega_{p}^{q} \rightarrow \Omega_{p+1}^{q}$, $d : \Omega_{p}^{q} \rightarrow \Omega_{p}^{q+1}$ Note: $\hat{A} = P_X^* A \in \Omega_1^{\circ}(\hat{X}; g) \subset \Omega^1(\hat{X}; g)$ While $\hat{A}^{ev} = ev^{T} \hat{A} ev + ev^{T} dev + ev^{T} \hat{e}$ $\sin \Omega_1^o$ in Ω_2^1

 $\mathrm{T}_{2n+1}^{\circ}(\hat{A}^{\circ\prime})\in\Omega^{2n+1}(\hat{X})$ has all components = $\hat{L}_{2n+1}^{\circ}(A) + \hat{L}_{2n}^{\circ}(A) + \hat{L}_{2n-1}^{\circ}(A) + \cdots + \hat{L}_{\circ}^{\circ(n+1)}(A)$ $\frac{1}{10}\int_{2041}^{0}$ in \int_{20}^{1} in \int_{20}^{2} in \int_{20}^{201} As $d\, \Sigma_{2n+1}^{o}(A) = \overline{I}(F_A)$ holds on any space, We have $\hat{d} \underline{\Gamma}^{\circ}_{2n+1}(\hat{A}^{\mathsf{ev}}) = \underline{\Gamma}(\mathsf{F}_{\hat{A}^{\mathsf{ev}}}).$ LHS = $(d+ \delta)(\hat{T}_{2n+1}^{\circ}(A) + \hat{T}_{2n}^{\prime}(A) + \hat{T}_{2n-1}^{\prime}(A) + \cdots + \hat{T}_{\circ}^{n+1}(A))$ = $d\hat{I}_{2n+1}^{\circ}(A) + \delta \hat{I}_{2n+1}^{\circ}(A) + d\hat{I}_{2n}^{\circ}(A)$ Ω_{2n+2}^o + $\int_{0}^{2} \tilde{L}_{2n}^{1}(A) + d\tilde{L}_{2n-1}^{2}(A) + \cdots + \int_{0}^{2} \tilde{L}_{0}^{2n+1}(A)$ Ω_{2n}^2 \int_{0}^{2N+2} RHS = $I(F_{\hat{A}}) = I(R_{\hat{X}}^*F_{A}) = R_{\hat{X}}^* I(F_{A}) \in \Omega_{2n+2}^{\circ}$

The eqn splits to
\n
$$
\begin{aligned}\n\oint_{\Omega_{n+1}}^{\Omega} (A) &= P_{X}^{*} [F_{A}) \qquad \textcircled{3} \\
\oint_{n+1}^{\Omega} [A] + d \hat{T}_{2n}^{*} [A] &= o & \textcircled{7} \\
\oint_{\Omega_{2n}}^{\Omega} [A] + d \hat{T}_{2n+1}^{2} [A] &= o & \textcircled{7} \\
\vdots \\
\oint_{\Omega_{n+2}}^{\Omega_{n+1}} (A) &= o & \textcircled{7} \\
\text{For a differential form } \hat{\omega} \circ \hat{X}, \text{ we denote by } \hat{\omega}|_{1} \\
\text{the pull back of } \hat{\omega} \circ \hat{X} \text{, we denote by } \hat{\omega}|_{1} \\
\text{the pull back of } \hat{\omega} \circ \hat{X} \text{ from the right, } S: (x, 0) \mapsto (x, g_{1}) \\
\downarrow \Omega_{n+1} \in \mathbb{C} \times \mathbb{C} \times \mathbb{C} \\
\text{We have that } \hat{\epsilon} \circ \hat{X}. \\
\text{Put } \Sigma_{2n} \{ \epsilon, A \} := \hat{T}_{2n}^{*} [A] (\hat{\epsilon}) \Big|_{1} \\
\downarrow \Gamma_{2n+1}^{*} [\epsilon, \epsilon_{n}, A] := -\hat{T}_{2n+1}^{*} [A] (\hat{\epsilon}_{n}, \hat{\epsilon}_{n}) \Big|_{1} \\
\vdots\n\end{aligned}
$$

Then,
$$
\widehat{\mathbb{Q}}|_{1}
$$
, $\widehat{\mathbb{Q}}(\widehat{\mathcal{E}})|_{1}$, $\widehat{\mathbb{Q}}(\widehat{\mathcal{E}}_{i},\widehat{\mathcal{E}})|_{1}$ are nothing but
\nthe descent equations
\n $d\Gamma_{2011}^{o}[A] = \Gamma(F_{A}),$
\n $\oint_{\widehat{\mathcal{E}}}\Gamma_{2011}^{o}[A] = d\Gamma_{20}^{1}[\mathcal{E},A],$
\n $\oint_{\widehat{\mathcal{E}}_{1}}\Gamma_{201}^{i}(\mathcal{E}_{2},A) - \oint_{\widehat{\mathcal{E}}_{2}}\Gamma_{201}^{i}(\mathcal{E}_{1},A) - \int_{2n}^{i}[f\mathcal{E}_{1},\mathcal{E}_{2}]$, A]
\n $= d\Gamma_{2011}^{2}[\mathcal{E}_{1},\mathcal{E}_{2},A],$
\n \vdots
\nThis can be shown as follows.
\n $0\text{byionsy}(y, \delta(\omega_{7}))|_{1} = 0.$
\n $0\text{byionsy}(A) = \frac{2}{3} \int_{1}^{0} \int_{$

To show the rest, some preparation is needed. A useful tool is the left action by $g \in G(x)$ on \hat{x} , $L_q: (x, 9') \in \hat{X} \mapsto (x, 99') \in \hat{X}$. · It satisfies $\sqrt{\alpha} \cdot L_{\mathcal{G}} = \sqrt{\alpha} \cdot \overleftrightarrow{X} \rightarrow X$ and $L_5^*e_v = P_x^*g \cdot e_v$ in $G(\hat{X})$. Using these, we find $L_{g}^{x} \widehat{A}^{e_{v}} = (L_{g}^{*} \widehat{A})^{L_{g}^{*}e_{v}} = (L_{g}^{*} P_{x}^{*} A)^{P_{x}^{*} g_{s}^{*} e_{v}}$ $(P_x \circ L_9)^\ast A = P_x^\ast A$ = $(p_{x}^{*}A)^{p_{x}^{*}g \cdot e_{v}} = (p_{x}^{*}A^{p_{x}^{*}g})^{e_{v}} = (p_{x}^{*}A^{g})^{e_{v}}$ $=$ A^9 e_V \therefore $\begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} x^{\text{ev}} \\ x^{\text{ev}} \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 1.e. L_9^* \hat{T}_{2n-9+1}^9 $[$ A $]$ = \hat{T}_{2n-9+1}^9 $[$ A^9 $]$ $-(b)$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{t\xi} 1
$$
\n
$$
\int_{0}^{\infty} \int_{0}^{\infty} |(x,t)|^{2} = \frac{1}{4t} \int_{0}^{1} (x_{1} \cdot e^{t\xi})|_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} e^{t\xi} 1 \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} e^{t\xi} 1 \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} e^{t\xi} 1 \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} \int_{0}^{\infty} (e^{t\xi} \cdot e^{t\xi}) \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} \int_{0}^{\infty} (e^{t\xi} \cdot e^{t\xi}) \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} \int_{0}^{\infty} (e^{t\xi} \cdot e^{t\xi}) \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} \int_{0}^{\infty} (e^{t\xi} \cdot e^{t\xi}) \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} \int_{0}^{\infty} (e^{t\xi} \cdot e^{t\xi}) \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} \int_{0}^{\infty} (e^{t\xi} \cdot e^{t\xi}) \right]_{0}^{2} = \frac{1}{4t} \left[\int_{0}^{\infty} e^{t\xi} \cdot e^{t\xi} \cdot e^{t\xi} \right]_{0}
$$

(e) derivation of the above formula (d). · Also, we shall use $d \circ i_{\hat{\epsilon}} + i_{\hat{\epsilon}} \circ d = 0$ on $\Omega_{\rho}^{\tau}(\hat{x})$. This is becase $\hat{\epsilon}(x, 9)$ is the tangent vector of the curve (a, ge^{te}) at $t = o$ and is invariant under variation of ^C. · A side remark If $\check{\epsilon}$ is the vector field on $\hat{\times}$ induced from $\epsilon \in Map(X, \mathfrak{D})$ Via the <u>left</u> action of $\mathcal{G}(x)$ on $\hat{\times}$, the <u>left</u> action of $G(x)$ on \hat{x} , we also have
do iz + iz $d = 0$. Thes $\int_0^{\infty} \tilde{L} \xi + \tilde{L} \xi \circ \tilde{L} = \int_0^{\infty} \tilde{L} \xi$ (the Lie derivative by \tilde{E}). Together with the commutativity of the left and the right logether with the commutativity of the lett and the right
actions (which implies $(\check{\epsilon}, \hat{\epsilon}^2] = o)$ and $\check{\epsilon} = \hat{\epsilon}$ at (x, t) , this can be used to give an alternative and mechanical Together with the commutativity of the
actions (which implies [E, E^]=0) a
this can be used to give an alter
derivation of the above formula (d).

Now, we are ready.
\n
$$
\cdot \left(\int_{1}^{R} (\hat{\epsilon}) \Big|_{1}^{R} is \left\{ \int_{2m+1}^{D} [A] (\hat{\epsilon}) \Big|_{1} + \int_{1}^{L} \int_{2n}^{L} [A] (\hat{\epsilon}) \Big|_{1} = 0 \right\}
$$
\n
$$
= \hat{\epsilon} \int_{2m+1}^{D} [A] \Big|_{1}
$$
\n
$$
= \hat{\epsilon} \int_{2m+1}^{D} [A] \Big|_{1}
$$
\n
$$
= \frac{1}{4t} \int_{e^{t\hat{\epsilon}}}^{e^{t\hat{\epsilon}}} \int_{2m+1}^{2D} [A] \Big|_{1, t=0}
$$
\n
$$
= \frac{1}{4t} \int_{2m+1}^{2D} [A e^{t\hat{\epsilon}}] \Big|_{1, t=0} = \frac{1}{4t} \int_{2m+1}^{2D} [A e^{t\hat{\epsilon}}] \Big|_{t=0}
$$
\n
$$
= \int_{\hat{\epsilon}} \int_{2m+1}^{D} [A] \Big|_{1}
$$
\n
$$
= \int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1}
$$
\n
$$
= \int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1}
$$
\n
$$
= -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1} = -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1}
$$
\n
$$
= -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1} = -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1}
$$
\n
$$
= -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1} = -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1}
$$
\n
$$
= -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1} = -\int_{\hat{\epsilon}} \int_{2m}^{1} [A] \Big|_{1}
$$
\n
$$
= -\int_{\hat{\epsilon}} \int_{2m+1}^{1} [A] \Big|_{1} = -\int_{\hat{\epsilon}} \int_{2m}^{1} [A]
$$

 \cdot (2) ($\hat{\epsilon}_{1}$, $\hat{\epsilon}_{2}$)| is $\delta \hat{T}_{2n}^{\prime}$ (A] $(\hat{\epsilon}_{1}, \hat{\epsilon}_{2})$ | + $d \hat{T}_{2n-2}^{2}$ (A] ($\hat{\epsilon}_{1}$, $\hat{\epsilon}_{2}$)| = \circ Note that $\delta \hat{\mathbb{1}}'_{2n}(A)(\hat{\epsilon}_{1},\hat{\epsilon}_{2}) = \hat{\epsilon}_{1} \hat{\mathbb{1}}'_{2n}(A)(\hat{\epsilon}_{2}) - \hat{\epsilon}_{2} \hat{\mathbb{1}}'_{2n}(A)(\hat{\epsilon}_{1})$ $-\hat{\mathrm{T}}_{2n}^{\prime}$ (A) ($[\hat{\epsilon}_{1}, \hat{\epsilon}_{2}]$) $\frac{11}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ and $\left|\hat{\epsilon}_{1}\right|_{2n}^{1}[A](\hat{\epsilon}_{2})\Big|_{1} \stackrel{(d)}{=} \frac{1}{dt}(\mathcal{L}_{e}^{\star}\epsilon_{1}\hat{L}_{2n}^{1}(A))(\hat{\epsilon}_{2})\Big|_{1,t=0}$ $\left(\begin{matrix} 1 \\ 0 \\ 0 \\ 0 \end{matrix}\right) = \frac{1}{4\pi} \int_{2n}^{1} [A^{e^{te}}] \left(\widehat{\epsilon}_{2}\right)_{1,1}^{1}$ $\stackrel{\text{def}}{=} \frac{d}{dt} \left[\int_{2n}^{1} \left[\epsilon_{2} A e^{\tau \epsilon_{1}} \right] \right]_{t=0}$ $=$ S_{ϵ} , I_{∞}^{1} [ϵ_{i} , A]. Thus, the first term $\int \hat{I}_{2n}^{1}(A)(\hat{\epsilon}_{1},\hat{\epsilon}_{2})$ = $\int_{\epsilon_1} \int_{2n}^{1} [\epsilon_{\nu} A] - \int_{\epsilon_2} \int_{2n}^{1} [\epsilon_{\nu} A] - \int_{2n}^{1} [[\epsilon_{\nu} \epsilon_{\nu}] A].$

The second term $d\widehat{\mathcal{I}}_{2n-1}^{2}(A)(\widehat{\epsilon}_{1},\widehat{\epsilon}_{2})|_{2}$

= $i\hat{\epsilon}_{2}$ $i\hat{\epsilon}_{1}$ d \hat{T}_{2n-1}^{2} (A) $\Big|_{1}$ = d $i\hat{\epsilon}_{2}$ $i\hat{\epsilon}_{1}$ \hat{T}_{2n-1}^{2} (A) $\Big|_{1}$ = $d\left(\hat{L}_{2n-1}^{2}(A)(\epsilon_{1},\epsilon_{2})\right)$ $\stackrel{\text{def}}{=} \frac{1}{2} \sum_{n=1}^{2} [G_{1,1}, G_{2,1}, A_{n}]$ \therefore 2 ($\hat{\epsilon}$, $\hat{\epsilon}$), reads δ_{ϵ} , T_{2n}^{1} $(\epsilon_{2}, A] - \delta_{\epsilon_{2}} T_{2n}^{1}$ $(\epsilon_{1}, A] - T_{2n}^{1}$ $(\epsilon_{1}, \epsilon_{2})$, A = $d\sum_{n=1}^{2} [E_i, E_i, A]$, which is (2) . · For $0 \le \theta \le 2n+1$, if we put $I_{2n-q+1}^{q}[\epsilon_{i,\cdot\cdot\cdot}\epsilon_{i},A] := (-1)^{\frac{q+q-1}{2}}\tilde{I}_{2n-q+1}^{q}[A](\hat{\epsilon}_{i,\cdot\cdot\cdot}\hat{\epsilon}_{i})|_{1}$ $\widehat{(\mathfrak{q}t)}(\widehat{\epsilon},\widehat{\ldots},\widehat{\epsilon}_{\mathfrak{f}^{t}})|$ reads $\sum_{i=1}^{q+1}$ (+) δ_{ϵ_i} T_{2n+1}^q $[\epsilon_i, \epsilon_i, \epsilon_{i+1}, \Delta]$ $+ \sum_{i \leq j}$ $(-1)^{i+j}$ \int_{2n-q+1}^{q} $[(e_i,e_j] - e_i-e_j - A]$ = $d\int_{2n-9}^{9+1} [\epsilon_{1},\epsilon_{1},\epsilon_{2},A].$