More on integrality

Suppose $A \rightarrow g^{-1}dg$ as $|x| \rightarrow \infty$, so that $F_A \rightarrow 0$ at ∞ and Sym (A) is finite. $(For d > 2, F_A = 0 \text{ near as implies } A \rightarrow 9'd9) \longrightarrow_{\text{proved below}}$ In Lecture 12, it was shown that there is some Ky st. $\int_{\mathbb{R}^{d}} \operatorname{ch}_{d, \cup} [A] \in \mathcal{K}_{\vee} \mathbb{Z}.$ In facr, it can be shown that $\int_{\mathbb{R}^d} ch_{d,v} [A] \in \mathbb{Z}.$ A -> g dg as 1x1-> 00 means that the gauge potential defines a connection on a principal G-bundle on Sª. Indeed, a principal G bundle P is given by an open cover $\{U_o, U_\infty\}$ of S^d with a map $g_{\infty o} : U_\infty \cap U_o \to G$, and a connection on P is given by gauge potenticly As on Us and As on Us related on the overlap Uson Us by the gauge transformation by 2000, Ao = Aa

Ja Uo $\bigcup_{a} \bigcup_{a} \bigcup_{a}$ In the present case, $S^d = \mathbb{R}^d \cup \{\infty\}$, $U_0 = \mathbb{R}^4$, $A_0 = A$ (\ddagger) $U_{\infty} = a$ neighborhood of ∞ , $A_{\infty} = 0$ $g_{\infty 0} = g$ defines a G-bundle with a connection on Sd. It also defines a vector bundle E = PXV with fiber V. Then $ch(E)|_{U_{\alpha}} = ch_{\nu}(A),$ $ch(E)|_{U_{\infty}} = o,$ and $\int_{\mathbb{R}^{d}} \operatorname{ch}(\overline{E}) = \int_{\mathbb{R}^{d}} \operatorname{ch}_{V}[A] = \int_{\mathbb{R}^{d}} \operatorname{ch}_{d,V}[A].$

At this point, we use the Atiyah-Singer formula for the index of Dirac operator (which can be derived by Fujikawa's method or SQM path-integral): $index(\mathcal{D}: S^{R}(E) \rightarrow S^{L}(E)) = \int ch(E) \hat{A}(TS^{4}).$ $\underline{\text{Claim}} \quad \widehat{A}(\mathsf{TS}^d) = 1$ proof If we realize S as the unit sphere in IR", the tangent bundle of Rd+1 restricted on Sd has decomposition $TR^{d+1}|_{S^d} \cong TS^d \oplus N$ where N is the normal bundle of S^d in IR^{d+1}. Note: TIR^{d+1} | rd and N are both topologically trivial. (The former is trivial as TIR^{del} is, and the unit normal) Vector field provides a trivialization of the latter. On the other hand, A can be expressed in terms of Pontrjagin classer es $\hat{A} = \left[-\frac{1}{24} P_1 + \frac{1}{5760} \left(-4 P_2 + P_1^2 \right) + \cdots \right]$

The total Pontgiagin class
$$P = 1 + P_1 + P_2 + \cdots$$
 satisfies
 $P(3 \oplus N) = P(3)P(N)$.
Applying this to $S = TS^4$, $N = N$ and using triviality
of $TS^d \oplus N \ (\cong TR^{4m} |_{S^4})$ and N , we find
 $P(TR^{4m} |_{S^4}) = P(TS^4)P(N)$,
1
1
i. $P(TS^4) = 1$, that is $P_S(TS^4) = 0$ $\forall j \ge 1$.
This proves $\widehat{A}(TS^4) = 1$. \parallel
Thus the index formula says
index $(\not D : S^R(E) \rightarrow S^L(E)) = \int_{S^4} Ch(E)$.
Since the index is an integer,
 $\int_{S^4} Ch(E) = \int_{R^4} Ch_{A,V}(A)$ is an integer.
(#T)

Remark In Lecture 12, it was shown

$$\int_{\mathbb{R}^{d}} ch_{1,V}[A] = \lim_{R \to \infty} \int_{S^{d-1}} \mathcal{O}_{h_{1,V}}[3^{d} D].$$
This is for the configuration (#) in which $A_{\infty} \equiv 0$
is assumed in particular. The same can be derived
without such an assumption:
To construct a general G-bundle on S^{d} we can take
Uo & U_{\infty} to be neighboorhoods of balls $D_{0}^{d} \approx D_{\infty}^{d}$
which divides S^{d} along a $(d-1)$ -sphere, $D_{0}^{d} \cap D_{\infty}^{d} \cong S^{d-1}$.

$$\int_{S^{d}} ch(E) = \int_{0}^{d} \frac{ch_{d,V}[A_{0}] + \int_{0}^{d} ch_{d,V}[A_{\infty}]}{D_{0}^{d} \prod_{i=1}^{H} D_{i}^{d}} \frac{H}{D_{0}^{d} \prod_{i=1}^{H} D_{0}^{d}} \frac{H}{D_{0}^{d}} \frac{d\omega_{d-1,V}[A_{0}] + \int_{0}^{d} Ch_{d,V}[A_{0}]}{d\omega_{d-1,V}[A_{0}]} \frac{d\omega_{d-1,V}[A_{0}]}{d\omega_{d-1,V}[A_{0}]}$$

Proof of
$$\mathbf{x}$$
: $F_A = 0$ near as implies $A \to \widehat{9}^{\dagger}d\widehat{9}$ if $d > 2$.
Suppose $F_A = 0$ near as, i.e. on $O_R = \{x \in \mathbb{R}^d \mid |x| > R\}$
for some large R . Pick & fix any point $x_0 \in O_R$.
For $\forall x \in O_R$, draw any path Υ_t from $\Upsilon_0 = x_0$ to $\Upsilon_1 = x$,
and solve $ODE = \widehat{9_t}^{-1} \frac{d9_t}{dt} = \widehat{\Upsilon}_t^{-1} A_r(\Upsilon_t)$ with the
initial condition $\widehat{9}_0 = 1$.

(e.g. If G is a matrix group like SU(n), SO(n), USp(n),
the solution is

$$g_t = Pexp\left(-\int_0^t dt' \dot{\gamma}_{t'}^{\mu} A_{\mu}(\gamma_{t'})\right)^{-1}$$

where Pexp is the path-ordered exponential.

Since
$$O_R \cong S^{d+} \times |R|$$
 is simply connected if $d > 2$,
as $F_A \equiv 0$ on O_R , g_1 does not depend on the choice of
path Y_t . And we can define $g(x) := g_1$. This defines
a map $g: O_R \rightarrow G$ s.t. $g^{-1}dg = A |O_R|$.