More on integrality

 $($ For $d > 2$, $F_A = o$ near co implies $A \rightarrow 9^{\degree}d9$. \rightarrow \clubsuit proved below S uppose $A \rightarrow \tilde{g}^{-1} A g$ as $|\alpha| \rightarrow \infty$, so that $F_A \rightarrow 0$ at ∞ and Syn [A] is finite. In Lecture 12, it was shown that there is some Ky st. $S_{R^{d}}$ Ch_{d,U} [A] \in K_V Z. In fact, it can be shown that $\int_{\mathbb{R}^{d}}$ Ch_{d,V} [A] $\in \mathbb{Z}$. $A \rightarrow 9^{-1}$ d 9 as $|x| \rightarrow \infty$ means that the gauge potential defines $A \rightarrow 9$ dg as $x \rightarrow \infty$ means that the gauge potential of A as $[x \rightarrow \infty]$ mately ^a principal ^G bundle P is given by an open cover $\{U_{o},U_{\infty}\}$ of S^{d} with a map $g_{\infty o}:U_{\infty}\cap U_{o}\to G$ $\frac{\delta V}{\delta}$ and a connection on \bigcirc is given by gauge potentials Ao on U_0 and A_{∞} on U_{∞} related on the overlap $U_{\infty} \cap U_0$ by the gauge transformation by ∂_{∞} , $A_{o} = A_{\infty}^{g_{\infty}o}$

 $\bigcup_{\mathcal{O}}$ $\int_{\mathcal{A}}$ $\bigcup_{\sigma} \bigcup_{\infty}$ In the present case, $S^d = \mathbb{R}^{d} \cup \{ \infty \}$, $U_0 = IR^4$, $A_0 = A$ (\nexists) U_{∞} = a neighborhood of ∞ , A_{∞} = 0 $g_{\omega_0} = g$ defines a G-bundle with a connection on S^d . It also defines a vector bundle $E = P \times V$ with fiber V. Then $ch(E)|_{U_2} = ch_v(A),$ $Ch(E)|_{U_{\infty}} = D,$ and $\int_{S^d} ch(E) = \int_{R^d} ch_V(A) = \int_{R^d} ch_{d,V}(A).$

At this point, we use the Atiyah-Singer formula for the index of Dirac operator (which can be devived by Fujikawa's method or S&M path-integral) : $index(D: S^{R}(E) \rightarrow S^{L}(E)) = \int Ch(E) \widehat{A}(TS^{A}),$ S^{λ} $Claim$ $\widehat{A}(TS^4) = 1$ proof If we realize S^d as the unit sphere in \mathbb{R}^{d+t} , the tangent bundle of \mathbb{R}^{4+1} restricted on S^4 has decomposition T R^{dtl} $|S^d \cong TS^d \oplus N$ where N is the normal bundle of S^d in \mathbb{R}^{d+1} Note: $TR^{d+1}|_{C^{d}}$ and N are both topologically thirtal. the normal bundle of S^d in \mathbb{R}^{d+1} .
Is and N are both topologically trivial. $\big\backslash$ The former is trivial as TIR^{d+1} The former is trivial as TIR^{ati} is, and the unit normal)
Vector field provides a trivialization of the latter. On the Other hand, \widehat{A} can be expressed in terms of Pontr_fagin classer as $\angle 4$ s = 1 - $\frac{1}{24}P_1 + \frac{1}{5360}$ (- $4 \ell_2 + \ell_1^2$ + ...

The total Pontyagin class
$$
P = t + P_{i+1}e^{t}x
$$
 matrix fies
\n
$$
P(\overline{3} \oplus P_{i}) = P(\overline{3})P(P_{i})
$$
\n
$$
A_{PP}y_{i}n_{\overline{3}} + n_{i5} \oplus \overline{3} = TS^{d}, \quad P = N \text{ and using Trivially}
$$
\n
$$
P(T|R^{4n}|_{S^{d}}) = P(TS^{d})P(N),
$$
\n
$$
P(T|R^{4n}|_{S^{d}}) = P(TS^{d})P(N),
$$
\n
$$
P(TS^{d}) = I, \quad P(TS^{d})P(N) = P(TS^{d})P(N)
$$
\n
$$
P(TS^{d}) = I, \quad P(TS^{d}) = P(TS^{d})P(N) = P(TS^{d})P(N)
$$
\n
$$
P(TS^{d}) = I, \quad P(TS^{d}) = P(TS^{d})P(N) = P
$$

Remark In lecture 12, it was shown
\n
$$
\int_{\mathbb{R}^d} Ch_{1,V}[A] = \lim_{R \to \infty} \int_{S_R^{d-1}} O_{H,V}[g^d \cdot 2],
$$
\nThis is for the configuration (ff) in which $A_{\infty} \equiv 0$
\nis assumed in particular. The same can be derived
\n*without such* an assumption:
\nTo construct a general G-bundle on S^d we can take
\n
$$
U_0 \in U_{\infty}
$$
 to be neighborhoods of balls $D_0^d \in D_{\infty}^d$
\nwhich divides S^d along a (d-1)-sphere, $D_0^d \cap D_{\infty}^d \subseteq S^{d-1}$.
\n
$$
\int_{S^d} ch(E) = \int_{O_0^d} ch_{d,V}[A_0] + \int_{O_{\infty}^d} ch_{d,V}[A_{\infty}]
$$
\n
$$
dO_{d+IV}[A_0] = dO_{d+IV}[A_{\infty}]
$$
\n
$$
= \int_{\partial D_0^d} O_{d+IV}[A_0] + \int_{\partial D_{\infty}^d} O_{d+IV}[A_{\infty}]
$$
\n
$$
= \int_{\partial D_0^d} O_{d+IV}[A_0] + \int_{\partial D_{\infty}^d} O_{d+IV}[A_{\infty}]
$$
\n
$$
= \int_{S^{d-1}} (O_{d+IV}[A_0] - O_{d+IV}[A_{\infty}])
$$

Here we recall
$$
A_{0} = A_{00}^{500}
$$
 and the change of
\nCS form under gauge transformations:
\n
$$
\omega_{d+1} [A^{5}] - \omega_{d+1} [A]
$$
\n
$$
= \omega_{d+1} [5^{d}b] + d\omega_{d+2,0} [3, A]
$$
\nThen we find that the weight hand side is
\n
$$
\int_{S^{d-1}} (\omega_{d+1} [9^{\text{min}} d) a_{00}] + (d\omega_{d+2,0} [9^{\text{max}}, A_{01}])
$$
\nThus,
\n
$$
\int_{S^{d-1}} ch(E) = \int_{S^{d-1}} \omega_{d+1,0} [3^{\text{min}} d) a_{01}]
$$
\n
$$
\int_{S^{d}} ch(E) = \int_{S^{d-1}} \omega_{d+1,0} [3^{\text{min}} d) a_{01}]
$$
\nWe can achieve that by taking the limit where D_{∞}^{d} and
\n
$$
\int_{\omega_{0}} \omega_{0} = \text{vanishingly small neighborhood of } \omega \in S^{d}
$$

Proof of	\star	: $F_A = o$ near ∞ implies $A \rightarrow 5^{\circ}43$ if $d>2$.
Suppose	$F_A = o$ near ∞ , i.e. on $O_R = \{x \in R^d \mid x > R\}$	
for some large	R. Pick a fix any point $x_0 \in O_R$.	
For	$V_x \in O_R$, draw any path Y_t from $Y_s = x$, to $Y_t = x$,	
and solve ODE	$9_t^{-1} \frac{d_1^2 x}{dt^2} = r_t^{r_1} A_r(r_t)$ with the initial condition $9_o = 1$.	
Eq. If G is a matrix group (the SU(n), SO(n), U ₂ (n), the solution is	$9_t = P \exp\left(-\int_0^t dt^r r_t^{r_1} A_r(r_t)\right)^{-1}$	
where	$P \exp$ is the path-ordered exponential.	
Since	$O_R \approx S^{d_1} \times R$ is simply connected if $d > 2$,	

as $F_A \equiv o$ on O_R , 9_1 does not depend on the choice of

path γ_t . And we can define $g(x) = 9$ 1. This defines

a map $g: O_R \to G$ it. $g^{\neg} d g = A |_{O_R}$.