Regularization and Renormalization
Divergences

$$
\begin{aligned}
& \mathcal{L}_{E}=\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \quad \text { in } d=4 \\
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle_{1 P[}=\square+\square+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \square=-\frac{\lambda}{2} \int d^{4} y \quad \phi\left(x_{1}\right) \phi(y) \phi(y) \phi(y) \phi(y) \phi\left(x_{2}\right) \\
& (2 \pi)^{4} \delta^{4}\left(p_{1}-p_{2}\right)^{4} \quad \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{e^{-i p_{1}\left(x x_{1}-y\right)}}{p_{1}^{2}+m^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i h(y-y)}}{k^{2}+m^{2}} \int \frac{d^{4} p_{2}}{(2 \pi)^{4}} \frac{e^{-i P_{2}\left(y-x_{2}\right)}}{p_{2}^{2}+m^{2}} \\
& =\int \frac{d^{4} p}{(2 \pi)^{2}} \frac{e^{-i p x_{1}}}{p^{2}+m^{2}}(-\frac{\lambda}{2} \underbrace{\int \frac{d^{4} k}{(2 \pi)^{4}} \overbrace{}^{\frac{1}{k^{2}+m^{2}}}) \frac{e^{i p x_{2}}}{p^{2}+m^{2}}}_{\text {quadratically divergent }}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lambda^{2}}{6} \int d^{4} y_{1} d^{4} y_{2} \phi\left(x_{1}\right) \phi\left(y_{1}\right){\stackrel{\phi\left(y_{1}\right) \phi}{ }}^{3} \sqrt{\left.y_{2}\right)}{\stackrel{\phi}{\left.y_{2}\right) \phi}\left(x_{2}\right)}^{=\int \frac{d^{4} p}{\left(2 \pi_{1}\right)^{2}} \frac{e^{-i p x_{1}}}{p^{2}+m^{2}}\left(\frac{\lambda^{2}}{6} \int \frac{d^{4} h}{(2 \pi)^{4}} \frac{d^{4} l}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \frac{1}{l^{2}+m^{2}} \frac{1}{(k+l-p)^{2}+m^{2}}\right) \frac{e^{i p x_{2}}}{p^{2}+m^{2}}}
\end{aligned}
$$

quadratically divergent

$$
\left.\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{1 P I}=\right\rangle_{2}^{1}
$$

$$
\begin{aligned}
= & \int \prod_{a=1}^{4} \frac{d^{4} p_{a}}{(2 \pi)^{4}} \frac{e^{-i p_{a} x_{a}}}{p_{a}^{2}+m^{2}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right) \times\{-\lambda \\
& \left.+\frac{\lambda^{2}}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \frac{1}{\left(h-p_{1}-p_{2}\right)^{2}+m^{2}}+(2 \leftrightarrow 3)+(2 \leftrightarrow 4)+\cdots\right\}
\end{aligned}
$$

logarithmically divergent

The integral over the loop momenta's can be divergent at $|k| \rightarrow \infty$
ultra-violet (= short distance) divergence
$:=$ power of momenta k of the integral
$=$ (power in numerator) - (power in denominator)
c.). from $\uparrow d^{4} l \mathrm{l}$, vertex... from propagator
$E=\#$ external lines, $I=\#$ internal lines, $V=\#$ vertices, $L=\# \operatorname{loo}_{\text {ps }}=[-V+1=$ net \# of momentum integrals
Theory of scalar ϕ in d-dimensouns: $D=\underbrace{d L-2 I} \frac{1}{d^{d} k} \frac{1}{k^{2}+m^{2}}$
If $\mathcal{L}_{\text {int }} \propto \phi^{4} ; \quad 2 I+E=4 \mathrm{~V}$

$$
\begin{aligned}
D & =d([-V+1)-2 I \\
& \phi^{4} \\
& =d(-V+1)+(d-2) \frac{4 V-E}{2} \stackrel{d=4}{=} 4-E
\end{aligned}
$$

id ϕ^{4} theory
$E=0$: $D=4$ quartic divergence
$E=2$: $D=2$ quadratic divergence
$E=4$: $D=0$ logarithmic divergence
$E \geqslant 6$ = $D<0$ (superficially) convergent

For $E=0,2,4$, the divergence occurs for any number V of vertices, ie. at all orders in perturbative expansion
ϕ^{4} theory in other $d: D=d+(d-4) V-\frac{d-2}{2} E$
$d<4 \quad D<0$ for large enough V.
Only a finite number of Feynman diagrams are (superficially) divergent.
$d>4$ For each $E, D>0$ for large enough V.
Any Correlator is (Superficial) divergent at sufficiently high orders in perturbative expansion.

How do we deal with such divergences?

- At least, we need a
regularization:
a systematic change of the theory so that the loop integrals are all finite.

Regularization
(1) change of propagator $\frac{1}{p^{2}+m^{2}} \leadsto \frac{K\left(p^{2} / n^{2}\right)}{\rho^{2}+m^{2}}$

$$
K(x)=\{\begin{array}{ll}
1 & x \ll 1 \\
0 & x \gg 1
\end{array} \underbrace{K(x)}_{1}
$$

The propagator remains the same as the original at low $|p|$ compared to Λ, but is significantly modified at $|p| \gtrsim \Lambda$.
^: ultra-violet cut-off (UV cut-off)
e.g. $\frac{1}{p^{2}+m^{2}} \rightarrow\left\{\begin{array}{cl}\frac{1}{p^{2}+m^{2}} & p^{2}<\Lambda^{2} \\ 0 & p^{2}>0\end{array} \quad\right.$ sharp cut-off
e.g. $\frac{1}{p^{2}+m^{2}}=\int_{0}^{\infty} d \alpha e^{-\alpha\left(p^{2}+m^{2}\right)}$

$$
\rightarrow \int_{\left(1 / \Lambda^{2}\right)}^{\infty} d \alpha e^{-\alpha\left(p+p^{2}+m^{2}\right)}=\frac{e^{-\frac{p^{2}+m^{2}}{\Lambda^{2}}}}{p^{2}+m^{2}}
$$

\longleftrightarrow change of Lagrangian:

$$
\mathcal{L}_{E, \wedge}=\frac{1}{2} \phi\left(-\partial^{2}+m^{2}\right) e^{\frac{-\partial^{2}+m^{2}}{\Lambda^{2}}} \phi+\frac{\lambda}{4!} \phi^{4}
$$

$K\left(-\partial^{2} / n^{2}\right)^{-1}$ more generally
(I)' Pauli-Villars regularization (C(1))

$$
\begin{aligned}
& \frac{1}{p^{2}+m^{2}} \rightarrow \frac{1}{p^{2}+m^{2}}-\frac{1}{p^{2}+\Lambda^{2}}=\frac{\Lambda^{2}-m^{2}}{\left(p^{2}+m^{2}\right)\left(p^{2}+\Lambda^{2}\right)} \text {, or } \\
& \frac{1}{p^{2}+m^{2}} \rightarrow \frac{1}{p^{2}+m^{2}}-\frac{\alpha_{1}}{p^{2}+\Lambda_{1}^{2}}-\frac{\alpha_{2}}{p^{2}+\Lambda_{2}^{2}}-\cdots=\frac{\text { Const }}{\left(p^{2}\right)^{N}+\text { lower }}
\end{aligned}
$$

One can choose $\Lambda_{1}, \alpha_{1}, \Lambda_{2}, \alpha_{2}, \cdots$, to make the power 2 N of denominator as large as possible.
\leftrightarrow introduce new field variables $\phi_{1}, \phi_{2}, \cdots$ (regulators) and consider the system with Lagrangian

$$
\begin{aligned}
\mathcal{L} e, \text { veg }= & \left.\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\sum_{i=1,2,--} \frac{1}{2}\left(\partial \phi_{i}\right)^{2}+\frac{\Lambda_{i}^{2}}{2} \phi_{i}^{2}\right] \text { free part } \\
& \left.+\frac{\lambda}{4!}\left(\phi+\sum_{i=1,2,-} \sqrt{-\alpha_{i}} \phi_{i}\right)^{4}\right] \text { interaction }
\end{aligned}
$$

The internal propagators are only for $\Phi=\phi+\sum_{i} \sqrt{-a_{i}} \phi_{i}$:

$$
\begin{aligned}
\overline{\Phi(x) \Phi}(y) & =\widehat{\phi(x) \phi}(y)+\sum_{i}\left(-\alpha_{i}\right) \phi_{i}(x) \phi_{i}(y) \\
& =\int \frac{d^{d} k}{(L \pi)^{2}} e^{-i k(x-y)}\left(\frac{1}{k^{2}+m^{2}}-\sum_{i} \frac{\alpha_{i}}{k^{2}+\Lambda_{i}^{2}}\right)
\end{aligned}
$$

(2) Lattice

$$
x \in \mathbb{R}^{d} \mapsto \phi(x) \quad \leadsto n \in \mathbb{Z}^{d} \mapsto \phi_{n}
$$

$$
S_{E, r e g}=\sum_{n} a^{d}\left(\frac{1}{2} \sum_{\mu}\left(\frac{\phi_{n+e_{r}}-\phi_{n}}{a}\right)^{2}+\frac{m^{2}}{2} \phi_{n}^{2}+\frac{\lambda}{4!} \phi_{n}^{4}\right)
$$

Advantage: momentum integral is over compact space

$$
\begin{aligned}
& \phi_{n}=\int_{0}^{2 \pi / a} \cdots \int_{0}^{2 \pi / a} \frac{d^{d} p}{(2 \pi)^{d}} e^{-i p n a} \phi(p) \\
& \phi_{n} \phi_{n^{\prime}}=\int_{0}^{2 / a} \cdots \int_{0}^{2 \pi / a} \frac{d^{d} p}{(2 \pi)^{d}} \frac{e^{-i p\left(n a-n^{\prime} a\right)}}{\sum_{\mu}\left(\frac{e^{-i p_{m} a}-1}{a}\right)\left(\frac{e^{i p_{n} a}-1}{a}\right)+m^{2}}
\end{aligned}
$$

(3) Dimensional regularization
dimension $d \in \mathbb{Z}$ sa j $4 \omega d \in \mathbb{C}$

$$
\int_{\mathbb{R}^{4}} \frac{d^{4} k}{(2 \pi)^{4}} f\left(h^{2}\right) \leadsto \mu_{D R}^{4-4} \int_{\mathbb{R}^{2}} \frac{d^{2} k}{(2 \pi)^{4}} f\left(k^{2}\right)
$$

$\mu_{D R}$: a parameter of mass dimension 1

$$
=\mu_{D R}^{4-1} \frac{V_{0} l\left(S^{d-1}\right)}{(2 \pi)^{2}} \int_{0}^{\infty} k^{d-1} k f\left(k^{2}\right)=\frac{1}{2} \int_{0}^{\infty}\left(k^{2}\right)^{\frac{d}{2}-1} d k^{2} f\left(k^{2}\right)
$$

$$
\begin{aligned}
& (\underbrace{}_{\mathbb{R}} \frac{d x}{2 \pi} e^{-x^{2}})^{d}=\int_{\mathbb{R}^{d}} \frac{d^{d} x}{(2 \pi)^{d}} e^{-\|x\|^{2}}=\frac{V_{0} l\left(S^{d-1}\right)}{(2 \pi)^{d}} \underbrace{\int_{0}^{\infty} r^{d-1} d r e^{-r^{2}}} \\
& \left(\frac{1}{2 \pi} \sqrt{\pi}\right)^{d}=\frac{1}{(4 \pi)^{d / 2}} \\
& \therefore \frac{1}{2} \int_{0}^{\infty}\left(r^{2}\right)^{\frac{d}{2}-1} d r^{2} e^{-r^{2}} \\
& \therefore \frac{V_{0} l\left(S^{d-1}\right)}{2(2 \pi)^{2}}=\frac{1}{2}\left[\left(\frac{d}{2}\right)\right. \\
& =\frac{M_{D R}^{d-d}}{(4 \pi)^{d / 2} \Gamma(d / 2)}
\end{aligned}
$$

This makes sense also for $d \in \mathbb{C}$
e.g. $I=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} k V=\int \frac{d^{4} h}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \frac{1}{(k-p)^{2}+m^{2}}$

Via (1) $\frac{1}{p^{2}+m^{2}} \leadsto \int_{y / n^{2}}^{\infty} d d e^{-\alpha\left(p^{2}+m^{2}\right)} h$ (3) dim veg: $4 \rightarrow d=4-\epsilon$

$$
\begin{array}{r}
I_{(O)}=\frac{1}{(4 \pi)^{2}}\left[\Lambda^{2}-m^{2}\left(\log \left(\frac{\Lambda^{2}}{m^{2}}\right)+1-\gamma\right)+m^{2} O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right] \\
\gamma:=\lim _{n \rightarrow \infty}\left(\sum_{n=1}^{n} \frac{1}{h}-\log n\right)=0.57721 \text {. Euler's constant }
\end{array}
$$

$I_{(3)}=\frac{\mu_{D R}^{4-d} m^{d-2}}{(4 \pi)^{d / 2}} \Gamma\left(1-\frac{d}{2}\right) \quad \cdots$ divergent for $d=4$, but for $d=4-\epsilon$:

$$
\begin{aligned}
& =-\frac{m^{2}}{(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)+1-\gamma+O(\epsilon)\right] \\
V_{(1)} & =\frac{1}{(4 \pi)^{2}}\left[\log \left(\frac{\Lambda^{2}}{2 m^{2}}\right)-\gamma-1-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p^{2}}{m^{2}}\right)+O\left(\frac{m^{2}}{\Lambda^{2}}, \frac{\rho^{2}}{\Lambda^{2}}\right)\right] \\
V_{(3)} & =\frac{\mu_{D R}^{4-d} \Gamma\left(2-\frac{d}{2}\right)}{(4 \pi)^{d / 2}} \int_{0}^{1} d x\left(x(1-x) p^{2}+m^{2}\right)^{\frac{d}{2}-2}
\end{aligned}
$$

\cdots divergent for $d=4$, but for $d=4-\epsilon$:

$$
=\frac{1}{(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-r-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p^{2}}{m^{2}}\right)+O(\epsilon)\right]
$$

(i) Exercise.

Renormalization
After regularization, we let the couplings to depend on the cutoff (Λ in (1), a in (2), $\left(\epsilon, \mu_{P R}\right)$ in (3)) so that the correlation function of properly normalized fields are finite, as we remove the cutoff

$$
\left.\left.\begin{array}{c}
\left(\Lambda \rightarrow \infty ; \alpha_{0} ; \in \rightarrow 0\right) \\
S_{\Lambda}=\left[\int d^{4} x\left(\frac{1}{2}\left(\partial \phi_{0}\right)^{2}+\frac{m_{0}(\Lambda)^{2}}{2} \phi_{0}^{2}+\frac{\lambda_{0}(\Lambda)}{4!} \phi_{0}^{4}\right)\right]_{\Lambda}^{\Lambda_{\Lambda}}{ }_{\text {regularization }} \\
\phi_{0}=\sqrt{Z_{0}(\Lambda)} \phi \\
=
\end{array}\right]\left[\int d^{4} x\left(\frac{1}{2} Z_{0}(\Lambda) \partial \phi\right)^{2}+\frac{m_{0}(\Lambda)^{2}}{2} Z_{0}(\Lambda) \phi^{2}+\frac{\lambda_{0}(\Lambda)}{4!} Z_{0}(\Lambda)^{2} \phi^{4}\right)\right]_{\Lambda} .
$$

Choose $z_{0}(\Lambda), m_{0}(\Lambda), \lambda_{0}(\Lambda)$ so that
$\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{s}\right)\right\rangle$ are all finite as Λ is removed

We do this order by order in perturbation theory.

$$
\begin{aligned}
& Z_{0}(\Lambda)=1+\lambda a_{1}(\Lambda)+\lambda^{2} a_{2}(\Lambda)+\cdots \\
& Z_{0}(\Lambda) m_{0}(\Lambda)^{2}=m^{2}+\lambda b_{1}(\Lambda)+\lambda^{2} b_{2}(\Lambda)+\cdots \\
& Z_{0}(\Lambda)^{2} \lambda_{0}(\Lambda)=\lambda+\lambda^{2} c_{1}(\Lambda)+\lambda^{3} c_{2}(\Lambda)+\cdots \\
& \mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}+\mathcal{L}_{2}+\cdots \\
& \mathcal{L}_{0}=\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \\
& \left.\mathcal{L}_{1}=\frac{1}{2} \lambda a_{1}(\Lambda)(\partial \phi)^{2}+\frac{1}{2} \lambda b_{1}(\Lambda) \phi^{2}+\frac{\lambda^{2}}{4!} c_{1}(\Lambda) \phi^{4}\right] \\
& \mathcal{L}_{L}=\frac{1}{2} \lambda^{2} a_{2}(\Lambda)(\partial \phi)^{2}+\frac{1}{2} \lambda^{2} b_{2}(\Lambda) \phi^{2}+\frac{\lambda^{3}}{4!} c_{2}(\Lambda) \phi^{4}
\end{aligned}
$$

called the counter terms
Do perturbation theory with

$$
\mathcal{L}_{\text {true }}=\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2} ; \mathcal{L}_{\text {int }}=\frac{\lambda}{4!} \phi^{4}+\mathcal{L}_{1}+L_{2}+\cdots
$$

$\mathcal{L}_{0} \leftrightarrow$ tree Find $a_{n}(\Lambda), b_{n}(\Lambda), C_{n}(\Lambda)$ recursively $\mathcal{L}_{1} \leftrightarrow 1$-loop So that the correlation function of ϕ^{\prime} s $\mathcal{L}_{2} \leftrightarrow$ 2-loop are finite at each order.
(a) 1-100p

$$
\begin{aligned}
& Q \\
= & -\frac{\lambda}{2} \frac{1}{(4 \pi)^{2}}\left(n^{2}-m^{2} \log \left(\frac{\Lambda^{2}}{m^{2}}\right)+f_{i m_{1} x}\right]-\lambda a_{1}(n) p^{2}-\lambda b_{1}(\Lambda)
\end{aligned}
$$

$$
\frac{\lambda}{2} \frac{1}{\left(4 \pi \pi^{2}\right)^{2}} \log \left(\frac{n^{2}}{2 m^{2}}\right) \times 3+f_{n_{1}} c e-\lambda^{2} c_{1}(\Lambda)
$$

Can these be made frise?
Yes,

$$
\begin{aligned}
& a_{1}(\Lambda)=f \text { mite }^{\prime} \\
& b_{1}(\Lambda)=-\frac{1}{2(4 \pi)^{2}}\left(\Lambda^{2}-m^{2} \log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right)+f_{n_{i} i t e} \\
& C_{1}(\Lambda)=\frac{3}{(4 \pi)^{2}} \log \left(\frac{n^{2}}{2 m^{2}}\right)+\text { finite }
\end{aligned}
$$

will do the job!

Claim For each $n \geqslant 1$, it is possible to find $a_{n}(\Lambda), b_{n}(\Lambda), c_{n}(\Lambda)$ so that $L \leqslant n$ loop contributions to all the correlation functions of ϕ are finite.

Such a theory is said to be renormalizable.
$\phi_{0} / m_{0}(\Lambda) / \lambda_{0}(\Lambda)$: bare field/muss/Coupling
$\phi / m / \lambda$: renormulized field/muss/coupling

Claim A theory is renormalizanle when the superficial degree of divergence D is $\geqslant 0$ only for a finite number of correlation functions.

Eg. ϕ^{4} theory

$$
d \leqslant 4: \text { Yes } \Rightarrow \text { renormalizable }
$$

$\binom{d<4:$ No divergence at high enough loops }{\Rightarrow Juperrenormalizuble }
$d>4:$ No \Rightarrow not renormalizable.

Criterion: mass dimension of couplings

$$
S=\int d^{4} x \mathcal{L}=\int d^{4} x\left(\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right)
$$

mass-dimension of $S=0$ so that e^{-S} makes sense.

$$
\begin{array}{r}
{[S]=0 . \quad\left[d^{d} x\right]=-d \quad \therefore[L]=d} \\
{\left[\partial_{\mu}\right]=1 \quad \Rightarrow \quad[\phi]=\frac{d-2}{2}} \\
{\left[m^{2}\right]=2} \\
{[\lambda]=d-4\left(\frac{d-2}{2}\right)=4-d}
\end{array}
$$

The theory is
renormalizable $\Leftrightarrow[$ coupling $] \geqslant 0$
ruperrenormalizuble \Leftrightarrow [coupling $]>0$
not renormalizable $\Leftrightarrow[$ coupling $]<0$.

Recall: any diagram is a tree diagram with $1 P I$ vertices.
So, to carry out renormalization, it is enough to make the $\mathcal{L P I ~ e f f e c t i v e ~ a c t i o n ~ f i n i t e ~}$ as a function of renormalized fields/musses/couplings as the cut-off is removed.
e.g. $\Gamma_{0}\left(\phi_{0}, m_{0}(\Lambda), \lambda_{0}(\Lambda) ; \Lambda\right)=\Gamma(\phi, m, \lambda ; \Lambda)$
is finite as a function of ϕ, m, λ as $\Lambda \rightarrow \infty$.

Now, an important point:
Even when this is possible, there is an ambiguity in the choice of renormalized fields/musses/couplings.
eng. $\quad G_{1}(\Lambda)=$ finite

$$
\begin{aligned}
& b_{1}(\Lambda)=\cdots+\text { finite } \\
& c_{1}(\Lambda)=\cdots+\text { finite }
\end{aligned}
$$

To fix the ambiguity, impose renormalization condition:
For example

$$
\begin{aligned}
& \Gamma(\phi)=\Gamma(\phi, m, \lambda ; \Lambda) \\
& =\sum_{\substack{n=0 \\
\text { even }}}^{\infty} \frac{1}{n!} \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \cdots \frac{d^{4} p_{n}}{(2 \pi)^{4}}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+\cdots+p_{n}\right) \\
& \Gamma\left(p_{1}, \cdots, p_{n}\right) \tilde{\phi}\left(p_{1}\right) \ldots \tilde{\phi}\left(p_{n}\right) \\
& \left\{\begin{array}{l}
\left.\Gamma(-p, p)\right|_{p^{2}=-m^{2}}=0 \\
\left.\frac{d}{d p^{2}} \Gamma(-p, p)\right|_{p^{2}=-m^{2}}=1 \\
\left.\Gamma\left(p_{1}, \cdots, p_{4}\right)\right|_{p_{1} \cdot p_{j}}=\left\{\begin{array}{cc}
-m^{2} & i=j \\
m^{2} / 3 & i \neq j
\end{array}\right.
\end{array} \quad 0 n\right.
\end{aligned}
$$

or

$$
\left\{\begin{array}{l}
\left.\Gamma(-p, p)\right|_{p^{2}=0}=m^{2} \\
\left.\frac{d}{d p^{2}} P(-p, p)\right|_{p^{2}=0}=1 \\
\left.\Gamma\left(p_{1},-, p_{4}\right)\right|_{p_{i} \cdot p_{j}=0}=\lambda
\end{array}\right.
$$

or $(\mu=$ some mass rale $)$

$$
\left\{\begin{array}{l}
\left.\Gamma(-p, p)\right|_{p^{2}=\mu^{2}}=\mu^{2}+m^{2} \\
\left.\frac{d}{d p^{2}} \Gamma(-p, p)\right|_{p^{2}=\mu^{2}}=1 \\
\left.\Gamma\left(p_{1}, \cdots, p_{4}\right)\right|_{p_{i}, p_{j}}=\left\{\begin{array}{l}
\mu^{2} \quad i=j \\
-\mu^{2} / 3 \\
\text { i }
\end{array} \quad \text { "another } R, C\right.
\end{array}\right.
$$

When the renormalization condition is imposed, the ambiguity is completely fixed.

Let us confirm this at 1-loop

$$
\begin{aligned}
& \Gamma_{1}(-p, 1)=p^{2}+m^{2}-(\Omega+-\infty+\infty+\infty, \\
& \Gamma_{1}\left(p_{1}, \cdots, p_{4}\right)=-(X+\infty
\end{aligned}
$$

For (1) momentum cutoff $\frac{1}{p^{2}+m^{2}} \rightarrow \frac{e^{-\frac{p^{2}+m^{2}}{\Lambda^{2}}}}{p^{2}+m^{2}}$

$$
\begin{aligned}
\Gamma_{1}(-p, p)=p^{2}+m^{2} & +\frac{\lambda m^{2}}{2(4 \pi)^{2}}\left(\frac{\Lambda^{2}}{m^{2}}-\left(\log \left(\frac{\Lambda^{2}}{m^{2}}\right)+1-\gamma\right)+O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \\
& +\lambda a_{1}(\Lambda) p^{2}+\lambda b_{1}(\Lambda)
\end{aligned}
$$

$$
\begin{aligned}
\Gamma_{1}\left(p_{1}, \cdots, p_{4}\right)=\lambda-\frac{\lambda^{2}}{2(4 \pi)^{2}}[& \log \left(\frac{n^{2}}{2 m^{2}}\right)-r-1-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p_{12}^{2}}{m^{2}}\right) \\
& \left.+O\left(\frac{p_{12}^{2}}{n^{2}}, \frac{m^{2}}{\Lambda^{2}}\right)\right] \quad p_{12}=p_{1}+p_{2} \text { etc } \\
& -(2 \leftrightarrow 3)-(2 \leftrightarrow 4) \\
& +\lambda^{2} C_{1}(\Lambda)
\end{aligned}
$$

Solution to the renormalization condition:

$$
\begin{aligned}
& a_{1}(\Lambda)=0, b_{1}(\Lambda)=\frac{m^{2}}{2(4 \pi)^{2}}\left[-\frac{\Lambda^{2}}{m^{2}}+\log \left(\frac{n^{2}}{m^{2}}\right)+1-r+O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right] \\
& C_{1}(\Lambda)=\frac{3}{2(4 \pi)^{2}}\left[\log \left(\frac{n^{2}}{2 m^{2}}\right)-\gamma-1-x+O\left(\frac{m^{2}}{n^{2}}\right)\right] \\
& K=\left\{\begin{array}{l}
\int_{0}^{1} d x \log \left(1-\frac{4}{3} x(1-x)\right)=2 \sqrt{2} \operatorname{Arg}_{g}(\sqrt{2}+i)-2 \quad \text { On shell R.C. } \\
0 \\
\int_{0}^{1} d x \log \left(1+x(1-x) \frac{4 \mu^{2}}{3 m^{2}}\right)
\end{array} \quad\right. \text { "another" R.C. }
\end{aligned}
$$

For (3) dimensional regularization

$$
\begin{aligned}
& \Gamma_{1}(-p, p)=p^{2}+m^{2}-\frac{\lambda m^{2}}{2(4 \pi)^{2}}\left(\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)+1-\gamma+O(\epsilon)\right) \\
&+\lambda a_{1}(\epsilon) p^{2}+\lambda b_{1}(\epsilon) \\
& \begin{aligned}
\Gamma_{1}\left(p_{1}, \cdots, p_{4}\right)=\lambda- & \frac{\lambda^{2}}{2(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-\gamma-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p_{12}^{2}}{m^{2}}\right)\right] \\
& +O(\epsilon)] \\
& -(2 \leftrightarrow 3)-(2 \leftrightarrow 4) \\
& +\lambda^{2} C_{1}(\epsilon)
\end{aligned}
\end{aligned}
$$

Solution to the renormalization condition:

$$
\begin{aligned}
& a_{1}(\epsilon)=0, \quad b_{1}(\epsilon)=\frac{m^{2}}{2(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{0 n}^{2}}{m^{2}}\right)+1-\gamma+O(\epsilon)\right] \\
& C_{1}(\epsilon)=\frac{3}{2(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{0 n}^{2}}{m^{2}}\right)-\gamma-k+O(\epsilon)\right]
\end{aligned}
$$

$K=$ same as in (1)

