
Regularization and Renormalization

Divergences
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ultra-violet ( = short distance) divergence
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superficial degree of divergence D

= power of momentale of the integral

= (power in numerator) - (power in denominator
↑

? g . from &th
,
Vertex... from propagator

E = # external lines
,
[ = # internal lines

,

V = #vertices ,

↳ # loops = [ - V + 1 = net # of momentum integrals
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Theory of Scalar & in d-dimensions : D = dL-2 I
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E = 0 B : D = 4 quartic divergence

E=2- : D = 2 quadratic divergence

>E = 4 /D : D = 0 logarithmic divergence-L/X
/E2) = /E : DSO (superficially) convergentD!



How do we deal with such divergences?

regularization:
a systematic change of the theory
so that the loop integrals are all finite.

At least, we need a

For E= 0 , 2 , 4
,
the divergence occurs for any number V of vertices,

i.e, at all orders in perturbative expansion

9)↑ theory in other d : D = d + (d-4)V- E
&> P DO for large enough V .

Only a finite number of Feynman diagrams are

(superficially) divergent.

d) P For each E
,
D30 for large enough V.

AnyCorrelator is (Superficially) divergent
at sufficiently high orders in perturbative expansion .



Regularizations

ultra-violet cut-off  (UV cut-off)

↳ k(PY)
D change of propagator Ph m2
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The propagator remains the same as the original at low/p/

compared to 1, but is significantly modified at 1P11.
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Pauli-Villars regularizationD (Cd)

# re
,
or

# - ...

= lower

One can choose 11 , 91 , Maide, - , to make the

power IN of denominator as large as possible.

E introduce new field variables &% ... (regulators (

and consider the system with Lagrangian

&E
, reg =(++ .. :) J free part

+ (P + 2
...

F :
P : )
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J interaction

The internal propagators are only for E = P+ E:::

M - M
& (x) E(y) = P(y)b(3) + [7d : )Pi(m0: (3)
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Dimensional regularization③
dimension deX say 4 m

de D

Shi m Mif(h)
MDm : a parameter of mass dimension 1
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eg . I = Sim a V =
- im

Via Dpd dim reg : 4+ d= 4 -

ED = im (12 -mi(log() + - r) + m 0()]
U :=-lyn) = 0. 57721 - Euler's constanta

uddI
=& Co

P(1-2) --- divergent for d=p
,
but for d= P-E :

=- /z + 1g)) + 1 -V + 0()]

Vo = clog()-v-1-Jjamlog(1 +x() +O(*)
Vo = MinY (up -

-- divergent for d=P ,
but for d= P-E :

=/ + log(n) - U-Jarlog() +x(t)) +O())
⑪ Exercise



Renormalization

After regularization , we let the couplings to depend on

the cut-off (1 in D
,
a in &, (E, MpR) in&

so that the correlation function of properly normalized

fields are finite
,

as we remove the cutoff

(1+ 0 ; avo ; E+ o) .

regularization

Sn = [Sa (200+m+-cutot
P = Ena

= (Jdx) + zo(n) (05 + MoMz0(1)p2+ zop4)]n
Choose Zo(M)

,
Mo(1) , Xo(1) so that

(P(X) ---d(X) are all finite as 1 is removed

We do this order by order in perturbation theory.



counter terms

z(n) = 1 + Xa , (1) + x a - (1) + ....

zoU)Mo(1)" = m 2+ Xb, (1) + x b(1) + ---

zo(1[X() = X + 44(1) + x G(l) + ...

G = Co + G
,
+ 2. +...

2 = [(p)+ -+

2
,
= Exa . (1)(64) + +xbm)p+ d

&G = tranl(095 +

table;
called the

Do perturbation theory with

Gre = Elops :Lin + G+L + -

Go - tree FindAn (1) , ba(M) , Cu(M) recursively
2 , 5+ 1-loop So that the correlation functions of P's

22 + 2-loop are finite at each order.
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& I-loop

-
+ - G-

=- (12- m2 log( fin) - Xa .Mp2- Xb, (1)

(a + + +
log)x3 + finize - ↑C , (1)

Can these be made finite ?

Yes,

G . (1) = finite

b, (1) =- (1mil) + finite

(1)= log) + finite

will do the job !



Claim For each n21
,
it is possible to find

An(1) , bu(M , Cn(1) So that LaM loop contributions

to all the correlation functions of t are finite.

Such a theory is said to be renormalizable.

Po/mols/Xo(1) : bare field/mass/coupling

#/ m/X : renormalized field/muss/coupling

Claim A theory is renormalizable when the Superficial

degree of divergence D is 20 only for a finite

number of correlation functions.

E.g. &"theory

d4 : Yes => renormalizable

(
& 4 : No divergence at high enough loops

&=> supervenormalizable

d > 4 : No - not renormalizable.



mass dimensionCriterion : of couplings

S = Sand = Jax ( + (b)+-+ 4)

mass-dimension of So so that S makes sense.

(S) = 0
·

(in) = - 1 : (2] = d.

(0) = 1 = (p) = a

(m2j = 2

(xy = d - P(t) = 4- d
.

The theory is

renormalizable ) (coupling] 10

supervenormalizable #) (coupling > 0

not renormalizable # (coupling) < 0 .



Recall : any diagram is a tree diagram With1PI vertices.

So
, to carry out renormalization , it is enough

to make the 1P] effective action finite

as a function of renormalized fields/musses/couplings
as the cut-off is removed.

e.g. To 160
,
Mo(1)

,
Xo(1) ; 1) = T(p

,
m

,
x = 1)

is finite as a function of b , m, X as 1-0.

Now
,
an important point :

Even when this is possible , there is an ambiguity
-

in the choice of renormalized fields/masses/couplings.

e.g. G , (1) = finite
mu

b
. (1) = . .. + finite
-

P(1) = ... - finite
mu



renormalization conditionTo fix the ambiguity , impose :

For example

P(p) = T(P , m , x = 1)

=
PCP : -- , in) (P . ) -- TCP)

S
T( P , 4) (pE -m = o

"On shell renormalization
"

+ (- P , +)(pE-m = 1

↑ (i ... pp)/pip =Sim
Or

P( , p)(p0 = m2

& +(p)(p= 0
= 1

"intermediate renormalization"

P(p-P4)(pp
,
= 0

= X



Or (M = some mass scale (

I
T (p . 1)/ per = Mm

"another R
.
C

.

"

at( . 1)/pn = 1

↑(P-P4)(pip= [Mi-
When the renormalization condition is imposed,

the ambiguity is completely fixed.

Let usConfirm this at Hoop

Tit . 1) = pm -(f +- )

T = - (X +30 + +Q
-+& (



For D momentum cut-off me
2

T , 4) = p+ m+ = (lg) + 1-r) + 0()
M

I m2-

+ Xa , (1)p2 + Xb , (1)

Tilp-,P4) = - (log() -V - 1 - Sjaxlog(1 +x(-x)
+O, )( Piz= P

,
+ P2 etc

- (2773) - (244)

+ (4(1)

Solution to the renormalization condition :

a, (1) = 0
,

b
, (1)= (- + 1))+ 1-v +0()

2 (1)= (log() - V - 1 - x +0()

x = (jaxlog)1 --(1) = 25 Arg(+ i) - 2 On shell R
.

C

O intermediate R
.

C
.S Sjar log (1 + x(1-x)[M) "another" R . C.



For dimensional regularization

↑ (p . p) = pm2 - Am log() + 1 - u +0()
+ Xa(t)p + Xb

, (t)

↑ (PPP) = 1- = + log() -V-Sjaxlog(1+x))
+ O()]

- (253) - (774)

+ XG(t)

Solution to the renormalization condition :

a
,
(t) = 0

,
b
,
()= /E + log(M) + 1 -v +O(t)]

P(t) = / + log)) - V - k + 0())

= same as in D


