Renormalization and linear symmetry
Consider a classical system with a linear symmetry

$$
\delta S[\phi]=0 \quad ; \quad \delta \phi_{i}=\sum_{j} M_{i j} \phi_{j}
$$

Suppose we have a regularization that respects this:

$$
\delta\left(D_{\wedge} \phi e^{-S[\phi ; \wedge]}\right)=0
$$

Then, we have Slaunov - Taylor identity

$$
\delta \Gamma[\phi ; \Lambda]=0
$$

and this holds at each order in loop expansion.
In particular, divergent terms are also symmetric.
So, we can choose counter terms that are also symmetric. That is, we can renormalize the system while respecting the symmetry. Ie.
$\underline{\text { a linear symmetry is protected from renormalization. }}$

What about gauge symmetry?

Renormalization of gauge theories
Consider a $4 d$ gauge theory with gunge group G, a Dirac fermion ψ in a representation V, and Lagrangian

$$
\mathcal{L} E=\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu v}-i \bar{\psi} \varnothing_{A} \psi+\bar{\psi}_{m} \psi
$$

Dimensions: $[e]=0,[m]=1$. So the theory is renormalizable from the viewpoint of power counting. The question is whether it is possible to renormalize the system while preserving gauge symmetry.

Ie whether we do not need to introduce gauge symmetry violating counter terms.

Answer: Yes, as long as $\begin{aligned} & \text { regularization that }\end{aligned}$ respects the gauge symmetry.

Remark The same can be done for theories with - Charged scalar fields

- chiral fermions

Gauge fixed Lagrangian:

$$
\widetilde{C}_{E}=\mathcal{C}_{E}+\frac{3}{2} B^{2}-i B \cdot \partial^{m} A_{r}+\bar{c} \partial^{m} D_{\mu} C .
$$

It has BRST symmetry δ_{B}

$$
\left\{\begin{array}{l}
\delta_{B} A_{\mu}=D_{\mu} C, \quad \delta_{B} \psi=-c \psi \\
\delta_{B} C=-\frac{1}{2}[C, C], \quad \delta_{B} \bar{C}=i B, \quad \delta_{B} B=0
\end{array}\right.
$$

Assumption \exists a regularization that respects the BRST symmetry.
Λ : the cut-off.
Claim The 1PI effective action is finite as $\Lambda \rightarrow \infty$, as a functional of properly defined fields/couplings.

$$
\begin{aligned}
& \Gamma\left(A_{0}, \psi_{0}, c_{0}, \bar{c}_{0}, B_{0} ; e_{0}, m_{0}, \xi_{0} ; \wedge\right) \\
& \quad\left\{\begin{array}{l}
A_{0}=\sqrt{z_{A}} A, \psi_{0}=\sqrt{z_{4}} \psi, c_{0}=\sqrt{z_{c}} c, \bar{c}_{0}=\sqrt{z_{c}} \bar{c}, B_{0}=\sqrt{z_{B}} B \\
e_{0}=e_{0}(e, m ; \Lambda), m_{0}=m_{0}(e, m ; \Lambda), \beta_{0}=\xi_{0}(e, m, \xi ; \Lambda)
\end{array}\right. \\
& =\left[\left(A, \psi, c, \bar{c}, B ; e_{1} m, \xi ; \Lambda\right): \text { finite as } \wedge \nearrow \infty\right.
\end{aligned}
$$

if we choose $Z_{i}=Z_{i}(e, m ; \Lambda)$

$$
e_{0}(e, m ; \Lambda), m_{0}(e, m ; \Lambda), \xi_{0}(e, m, \xi ; \Lambda)
$$

appropriately.

Remark $Z_{A}, Z_{4}, Z_{C}, Z_{B}, e_{0}, m_{0}, \xi_{0}$ may be different for different components:
$G=G_{1} \times G_{2} \times \cdots \times G_{k} \quad$ decomposition to simple or abelian factors
$V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{N} \quad$ irreducible decomposition

Then $A_{0}=\left(\sqrt{Z_{A_{1}}} A_{1}, \sqrt{Z_{A_{2}}} A_{2}, \ldots, \sqrt{Z_{A_{k}}} A_{h}\right)$
similarly for $C_{0}, \bar{C}_{0}, B_{0}$

$$
\begin{aligned}
& \psi_{0}=\left(\sqrt{z_{4}}, \psi_{1}, \sqrt{z_{\psi}} \psi_{2}, \cdots, \sqrt{z_{\psi_{N}}} \psi_{N}\right) \\
& e_{0}=\cdots \\
& m_{0}=\cdots \\
& \xi_{0}=\cdots
\end{aligned}
$$

For simplicity, G is assumed to be simple, so that you just have to consider a single $Z_{A}, Z_{C}, Z_{B}, e_{0}, \xi_{0}$
\checkmark may not be irreducible:

$$
Z_{\psi}=\left(Z_{\psi_{i}}\right)_{i=1}^{N}, \quad m_{0}=\left(m_{0 i}\right)_{i=1}^{N} \text { is understood. }
$$

Extended 1PT effective action

$$
\begin{aligned}
& X=\left(A_{\mu}, \psi, C, \bar{C}, B\right) \\
& K=\left(K^{m}, K^{\psi}, K^{c}, K^{\bar{c}},-\right) \\
& S[X, K]=\widetilde{S}_{E}[X]+K \cdot \delta_{B} X \\
& e^{-W[J, K]}:=\int D x e^{-S[x, K]+J \cdot x} \\
& \Gamma[X, K]:=W\left[J_{K}[x], K\right]+J_{K}[x] \cdot x
\end{aligned}
$$

where $J=J_{K}(X)$ is the soln of $\frac{\delta W}{\delta J}[J, K] \stackrel{!}{=}-X$.
Then

$$
\begin{aligned}
& \frac{\delta \Gamma}{\delta x_{i}}[x, k]=\epsilon_{i} J_{k}^{i}(x) \quad \epsilon_{i}=\left\{\begin{array}{cc}
1 & x_{i} \text { bosonic } \\
-1 & x_{i} \text { fermionic }
\end{array}\right. \\
& \frac{\delta \Gamma}{\delta K_{i}}[x, k]=+\left\langle\delta_{B} x_{i}\right\rangle_{J_{k}[x], k} \\
& 0= \int \delta_{B}\left(\delta x e^{-S[x, k]+J \cdot x}\right) \leadsto
\end{aligned}
$$

$$
\sum_{i} \frac{\delta \Gamma}{\delta X_{i}} \cdot \frac{\delta \Gamma}{\delta K^{i}}=0
$$

Zinn-Justin equation

$$
\begin{aligned}
0 & =\int A x \frac{\delta}{\delta B}\left(e^{-S[x, k]+J \cdot x}\right) \quad \int[x, k] \supset k^{\bar{c}} \cdot i B \\
& =\int D x e^{-S[x, k]+J \cdot x}\left(-\xi B+i \partial^{\mu} A_{r}-i k^{\bar{c}}+J^{B}\right)
\end{aligned}
$$

Set $J=J_{k}(x)$. Then

$$
\begin{aligned}
& -\xi B+i \partial^{m} A_{\mu}-i K^{\bar{c}}+\frac{\delta \Gamma}{\delta B}=0 \\
& \therefore \frac{\delta \Gamma}{\delta B}=\xi B-i \partial^{m} A_{\mu}+i K^{\bar{c}}
\end{aligned}
$$

Also, $\frac{\delta \Gamma}{\delta K^{\bar{c}}}=\left\langle\delta_{B} \bar{C}\right\rangle_{J_{k}[x], K}=\langle i B\rangle_{J_{K}[x], K}=i B$

$$
\Gamma[x, k]=\int d^{4} x\left(\frac{\xi}{2} B^{2}-i B \cdot \partial^{m} A_{\mu}+K^{\bar{c}} \cdot i B\right)
$$

$+B \& K^{\bar{c}}$ independent terms.

Le. " \nexists quantum correction to $B \in K^{\bar{c}}$ dependence."

$$
\begin{aligned}
& \text { - } 0=\int D x \frac{\delta}{\delta \bar{c}}\left(e^{-S[x, k]+J \cdot x}\right) \\
& =\int \partial x e^{-\delta[x, k]}\left(-\partial^{r} D_{r}-j^{\bar{c}}\right) \quad\left(J^{\bar{c}}\right. \text { is fermionic) } \\
& \delta_{B} A_{r} \\
& \therefore J^{\mu}\left\langle\delta_{B} A_{\Gamma}\right\rangle+J^{\bar{c}}=0 \\
& J=J_{K}[x] \searrow \quad \partial^{\mu} \frac{\delta \Gamma}{\delta K^{\mu}}-\frac{\delta \Gamma}{\delta \bar{c}}=0 \\
& \text { (} \not \otimes \text {) }
\end{aligned}
$$

(*) and (**) may be interpreted as "gauge fixing condition is not renormalized." $\binom{$ These hold as long as the gauge fixing function is }{ linear in fields so that $\langle X(\phi)\rangle_{J_{k}[x], k}=X(\phi)}$.

To be precise, the above identities ($Z J, \otimes, \Delta$) hold for bare fields X_{0}, Ko. However, with an appropriate relation among $Z_{X_{i}}$ \& $Z_{k i \prime}$ where $K_{s}^{i}=\sqrt{Z_{K^{i}}} K_{i}$, they ats hold for renormalized X, K :

- If Z_{k} are chosen so that
$Z_{X_{i}} \cdot Z_{k}$ is i-independent $=: \#$

$$
\sum_{i} \frac{\delta \Gamma}{\delta K_{0}^{i}} \cdot \frac{\delta \Gamma}{\delta X_{0 i}}=0 \Rightarrow \quad \sum_{i} \frac{\delta P}{\delta K^{i}} \cdot \frac{\delta \Gamma}{\delta X_{i}}=0
$$

- $K^{\bar{C}}, B$ dependent terms remains unchanged

$$
\frac{\xi_{0}}{2} B_{0}^{2}-i B_{0} \cdot \partial^{m} A_{0 \mu}+K_{0}^{\bar{c}} \cdot i B_{0} \stackrel{!}{=} \frac{3}{2} B^{2}-i B \cdot \partial^{m} A_{\mu}+K^{\bar{c}} \cdot i B
$$

$\leadsto \xi_{0} Z_{B}=\xi, \quad Z_{B} \cdot Z_{A}=1, \quad Z_{k^{c}} \cdot Z_{B}=1$
$\leadsto Z_{A}=Z_{B}^{-1}=Z_{K^{-}}=Z_{C}^{-1} \cdot \# \quad \therefore \quad \#=Z_{A} \cdot Z_{C}$

$$
\begin{aligned}
z_{K}^{i} & =z_{X_{i}}^{-1} \cdot z_{A} z_{C} \\
\xi_{0} & =z_{A}^{3}
\end{aligned}
$$

Then $Z_{K^{\mu}}=Z_{C}$ so that

$$
\partial^{\mu} \frac{\delta \Gamma}{\delta K_{0}^{\mu}}=\frac{\delta \Gamma}{\delta \bar{C}_{0}} \Rightarrow \partial^{\mu} \frac{\delta \Gamma}{\partial K^{\mu}}=\frac{\delta \Gamma}{\delta \vec{C}}
$$

$$
\begin{aligned}
& \mathcal{L}_{E}=\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{r v}-i \bar{\psi} D_{A} \psi+\bar{\psi} m \psi \\
& \tilde{\mathcal{L}}_{E}=\mathcal{L}_{E}+\frac{3}{2} B^{2}-i B \cdot \partial^{r} A_{r}+\bar{c} \cdot \partial^{\mu} D_{r} c
\end{aligned}
$$

Suppose $C_{0}=e+\hbar e^{(1)}+\hbar^{2} e^{(2)}+\cdots+\hbar^{N-1} e^{(N-1)}$

$$
\left.\begin{array}{rl}
m_{0} & =m+\hbar m^{(1)}+\hbar^{2} m^{(2)}+\cdots+\hbar^{N-1} m^{(N-1)} \\
Z_{i} & =1+\hbar Z_{i}^{(1)}+\hbar^{2} Z_{i}^{(2)}+\cdots+\hbar^{N-1} Z_{i}^{(N-1)} \\
i & =A_{\Gamma}, \psi, c
\end{array}\right\}
$$

have been chosen so that the loop $\leqslant N-1$ terms of its 1P[effective action is made finite:

$$
\Gamma \varrho_{N-1}=\underbrace{\Gamma_{0}+\hbar \Gamma_{1}+\cdots+\hbar^{N-1} \Gamma_{N-1}}_{\text {finite. }}+\underbrace{\hbar^{N} \Gamma_{N}^{\prime}+\hbar^{N+1} \Gamma_{N+1}^{\prime}+\cdots}_{\text {possibly divergent }}
$$

The divergence comes from $\left\{\begin{array}{l}\text {, the loop integrals } \\ \text {, counter terms }\end{array}\right.$

Let $\Gamma_{N, \infty}$ be a divergent part of Γ_{N}^{\prime}

$$
\Gamma_{N}^{\prime}=\Gamma_{N, \infty}+\text { finite. }
$$

We shall determine a possible form of $\Gamma_{N, \infty}$ and show that $C_{0}^{(N)}, m_{0}^{(N)}, Z_{i}^{(N)}(i=A, \Psi, C)$ can be chosen so that
$\Gamma_{N}=\Gamma_{N}^{\prime}+$ new counter term is finite.

- $\Gamma_{N, \infty}$ is independent of $B \& K^{\bar{C}}$
- N, ∞ can be chosen to the integral of a local expression"

$$
\Gamma_{N, \infty}=\int d^{4} x \mathcal{L}_{N, \infty}
$$

polynomial of fields \& their derivatives with coefficients of mass $\operatorname{dim} \geqslant 0$

- $\Gamma_{N, \infty}$ is invariant under linear symmetries:
- rigid gauge symmetry : $g \in C$ constant

$$
\begin{aligned}
& O \rightarrow g O g^{-1} \text { for } \mathcal{O}=A, c, \bar{c}, K^{\mu}, K^{c} \\
& \psi \rightarrow g \psi, \bar{\psi} \rightarrow \bar{\psi} g^{-1}, K^{\psi} \rightarrow K^{4} g^{-1}, \overline{K^{\psi}} \rightarrow g \overline{K^{4}}
\end{aligned}
$$

flavor symmetry: $h: V \rightarrow V$ commuting with G, m

$$
\psi \rightarrow h \psi, \quad \bar{\psi} \rightarrow \bar{\psi} h^{-1}, k^{\psi} \rightarrow k^{\psi} h^{-1}, \overline{k^{\psi}} \rightarrow h \overline{k^{\psi}}
$$

- Canonical dimension of fields

$$
\left[\delta_{B} X\right]=[X]+1
$$

A_{μ}	ψ	C	\bar{C}	K^{μ}	K^{4}	K^{c}
1	$3 / 2$	1	1	2	$3 / 2$	2

$\leadsto \Gamma_{N, \infty}$ is at most quadratic in K^{i} 's

$$
\begin{aligned}
& \mathcal{L}_{N, \infty}=\underbrace{\alpha_{i j}} K^{i} K^{j}+\beta_{i} K^{i}+K \text { may include } K^{4} A K^{\bar{\psi}}, K^{4} \not \partial K^{\bar{\psi}}
\end{aligned}
$$

- Ghost number symmetry

$$
\begin{array}{ccccccc}
A_{\mu} & \Psi & C & \bar{C} & K^{\mu} & K^{4} & K^{c} \\
0 & 0 & 1 & -1 & -1 & -1 & -2
\end{array}
$$

This forbids $\alpha_{i j} K^{i} K^{j}$.
$\therefore \mathcal{C}_{N, \infty}$ is at most linear in $K^{i} ' S\left(i=A_{r}, \psi, \bar{\psi}, C\right)$:

$$
\begin{aligned}
\Gamma_{N, \infty} & =\Gamma_{N, \infty}^{(0)}[A, \psi, C, \bar{C}] \\
& +K^{\mu} \cdot \delta_{N, \infty} A_{\mu}+\left(K^{\psi} \cdot \delta_{N, \infty} \psi+c c\right)+K^{c} \cdot \delta_{N, \infty} C
\end{aligned}
$$

These define local expressions (modulo finite ones)

$$
\delta_{N, \infty} A_{r}, \delta_{N, \infty} \psi, \delta_{N, \infty} \bar{\psi}, \delta_{N, \infty} C .
$$

We also put $\delta_{N, \infty} \bar{C}:=0, \quad \delta_{N, \infty} B:=0$.
Then, we have

$$
\Gamma_{N, \infty}=\Gamma_{N, \infty}^{(0)}[A, \psi, C, \bar{C}]+K^{i} \cdot \delta_{N, \infty} X_{i} .
$$

Also, we define "variation $\delta_{\mu, \infty}$ " by

$$
\delta_{N, \infty} \mathcal{F}:=\sum_{i} \delta_{N, \infty} X_{i} \cdot \frac{\delta \mathcal{F}}{\delta X_{i}}
$$

Zinn-Justin equ for $\Gamma_{\complement_{N-1}}=\Gamma_{0}+\hbar \Gamma_{1}+\cdots+\hbar^{N-1} \Gamma_{N-1}+\hbar^{N} \Gamma_{N}^{\prime}+\cdots \cdot$ at $O\left(\hbar^{N}\right)$:

$$
\frac{\delta \Gamma_{0}}{\delta K^{i}} \cdot \frac{\delta \Gamma_{N}^{\prime}}{\delta X_{i}}+\underbrace{\frac{\delta P_{1}}{\delta K^{i}} \cdot \frac{\delta \Gamma_{N-1}}{\delta X_{i}}+\cdots+\frac{\delta P_{N-1}}{\delta K^{i}} \cdot \frac{\delta \Gamma_{1}}{\delta X_{i}}}_{\text {finite }}+\frac{\delta \Gamma_{N}^{\prime}}{\delta K^{i}} \cdot \frac{\delta \Gamma_{0}}{\delta X_{i}}=0
$$

Write $\cdots=$ finite as $\cdots \doteq 0$. Then $\Gamma_{N}{ }^{\prime} \doteq \Gamma_{N, \infty}$ and

$$
\frac{\delta \Gamma_{0}}{\delta K^{i}} \cdot \frac{\delta \Gamma_{N, \infty}}{\delta X_{i}}+\frac{\delta \Gamma_{N+\infty}}{\delta K^{i}} \cdot \frac{\delta \Gamma_{0}}{\delta X_{i}} \doteq 0 .
$$

Recall $\Gamma_{0}=\widetilde{S_{E}}+K^{i} \cdot \delta_{B} X_{i}, \quad \Gamma_{N \infty}=\Gamma_{N \infty}^{(0)}[A, \psi, C, \bar{c}]+K^{i} \cdot \delta_{N a} X_{i}$

$$
\begin{aligned}
& \sim \frac{\delta \Gamma_{0}}{\delta K^{i}}=\delta_{B} X_{i}, \frac{\delta P_{N \infty}}{\delta K^{i}}=\delta_{N \infty} X_{i} \\
& \therefore \delta_{B} X_{i} \frac{\delta \Gamma_{N, \infty}}{\delta X_{i}}+\delta_{N, \infty} X_{i} \frac{\delta \Gamma_{0}}{\delta X_{i}} \doteq 0, \quad \text { that is, } \\
& \delta_{B} \Gamma_{N, \infty}+\delta_{N, \infty} P_{0} \doteq 0
\end{aligned}
$$

(1) $\delta_{B} \Gamma_{N, \infty}^{(0)}+\delta_{N, \infty} \widetilde{S}_{E} \doteq 0$
(2) $\delta_{B} \delta_{N, \infty} X_{i}+\delta_{N, \infty} \delta_{B} X_{i}=0 \leftarrow$ nontrivial only for $X_{i}=A, \psi, c$

$$
\begin{aligned}
B_{y} \quad \partial^{n} \frac{\delta \Gamma}{\delta K^{\mu}} & =\frac{\delta \Gamma}{\delta \bar{C}} \text { at } O\left(\hbar^{N}\right) \\
\partial^{n} \underbrace{\delta \Gamma_{N, \infty}}_{\delta_{N, \infty} A_{r}} & =\frac{\delta \Gamma_{N, \infty}}{\delta \bar{C}}=\frac{\delta \Gamma_{N, \infty}^{(0)}}{\delta \bar{C}}+\frac{\delta}{\delta \bar{C}}\left(K^{i} \cdot \delta_{N, \infty} X_{i}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
(3) \frac{\delta \Gamma_{N, \infty}^{(0)}}{\delta \bar{c}} \doteq \partial^{\mu} \delta_{N, \infty} A_{\mu} \\
(4) \frac{\delta}{\delta \bar{c}} \delta_{N, \infty} X_{i} \doteq 0 \quad X_{i}=A, \psi, c
\end{array}\right.
$$

$$
\therefore \quad \Gamma_{N, \infty}^{(0)}\left[A, \psi, C_{1} \bar{C}\right] \stackrel{(3)}{\doteq} \bar{C} \cdot \partial^{\mu} d_{N, \infty} A_{\mu}+\underbrace{\bar{C} \text {-independent }}
$$

also C-independent by Short \# symmetry

$$
\doteq \tilde{\Gamma}_{N, \infty}^{(0)}[A, \psi]+\bar{e} \cdot \partial^{\mu} \delta_{N \infty} A_{\mu}
$$

By Zinn-Justin (2): $\left\{\delta_{B}, \delta_{N, \infty}\right\} X_{i} \doteq 0$,
(4) $\frac{\delta}{\delta \bar{c}} \delta_{N, \infty} X_{i}=0$, and symmetries a dimensional analysis,

One can show that

$$
\begin{aligned}
\delta_{N, \infty} A_{\mu} & \doteq \xi_{N} \partial_{\mu} C+\eta_{N}\left[A_{\mu}, C\right] \\
& =\eta_{N} \delta_{B} A_{\mu}+\left(\xi_{N}-\eta_{N}\right) \partial_{\mu} C \\
\delta_{N, \infty} \psi & \doteq-\eta_{N} C \psi=\eta_{N} \delta_{B} \psi \\
\delta_{N, \infty} C & \doteq-\frac{1}{2} \eta_{N}[C, C]=\eta_{N} \delta_{B} C
\end{aligned}
$$

for some constants η_{N} and ξ_{N}.
See the additional note.

Zinn-JusTin (1):

$$
\begin{aligned}
& \Gamma_{N, \infty}^{(0)}=\widetilde{\Gamma}_{N, \infty}[A, 4]+\bar{C} \cdot \partial^{m} \delta_{N, \infty} A_{r} \\
& \widetilde{S}_{E}=S_{E}[A, 4]+\frac{3}{2} B^{2}-i B \cdot \partial^{m} A_{r}+\bar{C} \cdot \partial^{\mu} D_{r} C
\end{aligned}
$$

$$
\begin{aligned}
0 & \dot{ } \delta_{B} \Gamma_{N, \infty}^{(6)}+\delta_{N, \infty} \widetilde{S}_{E} \\
= & \delta_{B} \widetilde{\Gamma}_{N, \infty}^{(0)}[A, \psi]+i B \cdot \partial^{\mu} \delta_{N \infty} A_{\mu}-\bar{C} \cdot \partial^{\mu} \delta_{B} \delta_{N, \infty} A_{\mu} \\
& +\delta_{N, \infty} S_{E}[A, \psi]-i B \cdot \partial^{\mu} \delta_{N, \infty} A_{\mu}-\bar{C} \cdot \partial^{\mu} \delta_{N, \infty} \delta_{B} A_{\mu} \\
= & \delta_{B} \widetilde{\Gamma}_{N, \infty}^{(0)}[A, \psi]+\left(\xi_{N}-\eta_{N}\right) \partial_{N} C \cdot \frac{\delta S_{E}}{\delta A_{\mu}}
\end{aligned}
$$

On the other hond

$$
\begin{aligned}
\partial_{\mu} C \cdot \frac{\delta S_{E}}{\delta A_{r}} & =\int d^{4} x\left\{\frac{1}{e^{2}} F^{\mu \nu} \cdot D_{\mu} \partial_{\nu} c+i \bar{\psi} \partial c \psi\right\} \\
& =\delta_{B} \int d^{4} x\left\{\frac{1}{2 e^{2}} F^{\mu \nu} \cdot\left[A_{\mu}, A_{\nu}\right]-i \bar{\psi} \notin \psi\right\} \\
& \uparrow
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\therefore \widetilde{T}_{N, \infty}^{(0)}\left[A_{1} \psi\right] & \doteq-\left(\xi_{N}-\eta_{N}\right) \int d^{4} x\left\{\frac{1}{2 e^{2}} F^{\mu \nu} \cdot\left[A_{\mu}, A_{\nu}\right]-i \Psi A \psi\right\} \\
& +\int d^{4} x \mathcal{L}_{G . I}
\end{aligned}
$$

gauge invariant, $\operatorname{dim}=4$

$$
\begin{aligned}
& \mathcal{L}_{C . L}=\frac{1}{4} \underset{\uparrow}{X_{N}} F^{N^{\prime}} \cdot F_{R \nu}-Y_{N} i \bar{\psi} \varnothing \psi+\underset{\uparrow}{\Psi} M_{N} \psi \\
& \text { number number } \\
& \text { mass matrix commuting } \\
& \text { with gange/flavor sym } \\
& \mathcal{L}_{N, \infty} \doteq \mathcal{L}_{G . \tau} . \\
& -\left(\xi_{N}-\eta_{N}\right) \frac{1}{2 e^{2}} F^{\mu^{\nu}} \cdot\left[A_{\mu}, A_{\nu}\right]+\left(\xi_{N}-\eta_{N}\right) i \bar{\psi} A \psi \\
& +\bar{c} \cdot \partial^{\mu}\left(\xi_{N} \partial_{\Gamma} c+\eta_{N}\left[A_{\mu}, c\right]\right) \\
& +K^{\mu} \cdot\left(\xi_{N} \partial_{\mu} C+\eta_{N}\left[A_{\mu}, C\right]\right) \\
& +K^{4}\left(-\eta_{N} c \psi\right)+c . c \text {. } \\
& +K^{c} \cdot\left(-\frac{1}{2} \eta_{N}[c, c]\right)
\end{aligned}
$$

Claim This $\hbar^{N} \Gamma_{N, \infty}$ can be cancelled by the new $O\left(\hbar^{N}\right)$ terms that appears in $S\left[x_{0}, K_{0} ; e_{0}, m_{0}, \xi_{0}\right]$ when we add an appropriate $O\left(\hbar^{N}\right)$ terms to $z_{A}, z_{4}, z_{c}, e_{0}, m_{0}$.

Indeed, if we put

$$
\begin{aligned}
& \sqrt{Z_{A}}=1+\hbar \sqrt{Z_{A}^{(1)}+\cdots+\hbar^{N-1} \sqrt{Z}_{A}^{(N-1)}}+\hbar^{N} \sqrt{Z_{A}^{(N)}}+O\left(\hbar^{N+1}\right), \\
& \begin{array}{l}
Z_{4}=1+\hbar Z_{\psi}^{(1)}+\cdots+\hbar^{N-1} Z_{\psi}^{(N-1)}+\hbar^{N} Z_{\psi}^{(N)} \\
Z_{c}=1+\hbar Z_{c}^{(1)}+\cdots+\hbar^{N-1} Z_{C}^{(N-1)}+\hbar^{N} Z_{c}^{(N)}, \\
\frac{Z_{A}}{e_{0}^{2}}=\frac{1}{e^{2}}+\hbar\left(\frac{Z_{A}}{e_{0}^{2}}\right)^{(1)}+\cdots+\hbar^{N-1}\left(\frac{Z_{A}}{e_{0}^{2}}\right)^{(N-1)}+\hbar^{N}\left(\frac{Z_{A}}{e_{0}^{2}}\right)^{(N)}+O\left(\hbar^{N+1}\right),
\end{array} \\
& \text { then } Z_{4} m_{0}=\underbrace{\left[\begin{array}{l}
m\left(Z_{4} m_{0}\right)^{(1)}+\cdots+\hbar^{N-1}\left(Z_{\psi} m_{0}\right)^{(N-1)}
\end{array}+\hbar^{N\left(Z_{\psi} m_{0}\right)^{(N)}}+O\left(\hbar^{N+1}\right), ~\right.}_{\text {old }}
\end{aligned}
$$

$$
\begin{aligned}
S\left[X_{0}, K_{0} ; e_{0}, m_{0}, \xi_{0}\right]= & O\left(1, \hbar, \cdots, \hbar^{N-1}\right) \text { from old } \\
+\hbar^{N} \int d^{4} x\{ & \frac{1}{4}\left(\frac{Z_{A}}{e_{0}^{2}}\right)^{(N)} F^{\mu \nu} \cdot F_{\mu^{\nu}}+\frac{1}{2} \frac{\sqrt{Z_{A}^{(N)}}}{e^{2}} F^{\mu \nu} \cdot\left[A_{\mu}, A_{\nu}\right] \\
& -i Z_{\psi}^{(N)} \Psi \not \supset \psi-i \sqrt{Z_{A}^{(N)}} \bar{\Psi} A \psi+\bar{\Psi}\left(Z_{\psi} m_{0}\right)^{(N)} \psi \\
& +\bar{c} \partial^{\mu}\left(Z_{c}^{(N)} \partial_{\mu} c+\left(Z_{c}^{(N)}+\sqrt{Z}_{A}^{(N)}\right)\left[A_{\mu}, c\right]\right) \\
& +K^{\mu}\left(Z_{c}^{(N)} \partial_{\mu} C+\left(Z_{c}^{(N)}+\sqrt{Z_{A}^{(N)}}\right)\left[A_{\mu}, C\right]\right) \\
& +K^{\psi}\left(Z_{c}^{(N)}+\sqrt{Z_{A}^{(N)}}\right)(-c \psi)+c \cdot c . \\
& \left.+K^{c}\left(Z_{c}^{(N)}+\sqrt{Z_{A}^{(N)}}\right)\left(-\frac{1}{2}[C, c]\right)\right\}+O\left(\hbar^{N+1}\right)
\end{aligned}
$$

See the additional note.

$$
\begin{aligned}
\text { If }\left(\frac{Z_{A}}{e_{0}^{2}}\right)^{(N)}=-X_{N}, \quad Z_{4}^{(N)}=-Y_{N}, \quad\left(Z_{4} m_{0}\right)^{(N)}=-M_{N} \\
{\sqrt{Z_{A}^{(N)}}=\xi_{N}-\eta_{N}, \quad Z_{C}^{(N)}=-\xi_{N},}^{\succ} \begin{aligned}
Z_{C}^{(N)}+\sqrt{Z_{A}^{(N)}}=-\eta_{N}
\end{aligned}
\end{aligned}
$$

then

$$
\hbar^{N} \Gamma_{N, \infty}+\text { the new } O\left(\hbar^{N}\right) \text { counter terms } \doteq 0 \text {. }
$$

