Anomalies
A symmetry of the classical action is said to be anomalous when it is not a symmetry of the path-integral measure. Egg. when it is broken by regularization procedure.

Anomaly of global symmetry is harmless.
Nothing is wrong with the theory itself. It is just that the quantum system loses the classical symmetry.

Anomaly of gauge symmetry is unacceptable!
The theory does not make sense as a quantum theory. Absence of anomaly is an important criterion of consistency.
t'Hooft anomaly
A global symmetry may become anomalous when you try to gauge it. Nothing is wrong with the theory itself, as long as you do not really gauge it. Rather, the anomaly is an important and useful information of the theory.
It is invariant under the RG flow:
anomaly of high energy (or elementary) theory
= anomaly of low energy (or effective) theory.

Suppose we have a classical system $(P, S[\Phi])$ with a group G of global symmetries: $S\left[\phi^{9}\right]=S[\phi], g \in G$.

This may be made invariant under position dependent $g(x)$'s by coupling it to a gauge field $A: S\left[A^{9}, \phi^{9}\right]=S[A, \phi]$.

The partition (or correlation function) is a functional of A :

$$
Z[A]=\int D_{A} \phi e^{-S[A, \phi]}
$$

Is it invariant under $A \mapsto A^{g}$?

$$
Z\left[A^{g}\right]=\int D_{A^{s}} \phi e^{-S\left[A^{g}, \phi\right]}=\int D_{A^{s}} \phi^{g} e^{-S\left[A^{g}, \phi^{g}\right]}
$$

If $D_{A^{s}} \phi^{9}=D_{A} \phi$, then yes, $Z\left[A^{j}\right]=Z[A]$.
Then we can make A dynamical and consider the gauge theory with variable (A, ϕ) :

$$
Z=\int_{A / g}^{\text {measwe }} e^{-\operatorname{SyM}[A]} Z[A]
$$

This is the ganging. It is possible if $Z\left[A^{S}\right]=Z[A]$.

However, this may not be so

$$
D_{A^{g}} \phi^{g}=D_{A} \phi e^{i a_{g}[A, \phi]}
$$

This is the anomaly. The infinitesimal form is

$$
\delta_{\in} D_{A} \phi=D_{A} \phi ; Q_{\epsilon}[A, \phi] .
$$

Sometimes, $a_{g}[A, \Phi]$ is field-independent, $=a_{g}[A]$. In such a case,

$$
\begin{gathered}
Z\left[A^{9}\right]=Z[A] e^{i a_{g}[A]} \\
\leadsto \delta \in Z[A]=Z[A] i a_{\in}[A]
\end{gathered}
$$

This is the usual form of t'Hooft anomaly.
Remarks

- If $a_{\in}[A, D]$ is variation of some local expression

$$
a_{\epsilon}[A, \phi]=\delta_{\epsilon} \int \Delta \mathcal{L}(A, \partial A,-, \phi, \partial \phi,--) d^{4} x
$$

then we can modify the system by adding the local Counter term $i \Delta \mathcal{L}(A, \partial A, \cdots, \phi, \partial \phi, \cdots)$ to the Lagrangian:

$$
S^{\prime}[A, \phi]=\int[A, \phi]+i \int \Delta \mathcal{L}(A,-, \varphi,-) d^{4} x
$$

So that $\delta_{\in} S^{\prime}[A, \phi]=; a_{\in}[A, \phi]$
and the modified system has no anomaly

$$
\delta_{\in}\left(D_{A} \phi e^{-S^{-}[A, \phi]}\right)=0
$$

Finite version:

$$
\begin{aligned}
& S^{\prime}\left[A^{g}, \phi^{g}\right]=S^{\prime}[A, \phi]+i a_{g}[A, \phi], \text { and } \\
& \begin{aligned}
D_{A^{s}} \phi^{S} e^{-S^{\prime}\left[A^{S}, \phi^{s}\right]} & =D_{A} \phi e^{i a_{g}[A, \phi]} \cdot e^{-S^{\prime}[A, \phi]-i a_{g}[A, P]} \\
& =D_{A} \phi e^{-S^{\prime}[A, \phi]}
\end{aligned}
\end{aligned}
$$

After this modification, the symmetry can be gauged.
Therefore, anomaly is defined only up to variation of local expression

$$
a_{\epsilon}[A, \phi] \sim a_{\epsilon}[A, \phi]+\delta_{\epsilon} \int \Delta \mathcal{L}(A, \cdots, \phi, \cdots) d^{4} x
$$

- The symmery current J is defined by

$$
\delta\left(D_{A} \phi e^{-S[A, \phi]}\right)=D_{A} \phi e^{-S[A, \phi]} \int d^{4} x \delta A \cdot J
$$

for an arbitrary variation $A \rightarrow A+\delta A$.
In particular, for the gauge transformation $\delta_{\epsilon} A_{\mu}=D_{\mu} \epsilon$

$$
\delta_{\in}\left(D_{A} \phi e^{-S(A, \phi]}\right)=D_{A} \phi e^{-S[A, \phi]} \int d^{4} x D_{\mu} \in \cdot J^{\mu}
$$

Thus, the anomaly can be expressed in terms of the current

$$
i a_{\epsilon}[A, \phi]=\int d^{4} x D_{\mu} \in \cdot J^{\mu}=-\int d^{4} x \in \cdot D_{\mu} J^{\mu}
$$

- The anomaly of the original global symmetry is simply the anomaly at the trivial gauge field,

$$
\begin{aligned}
i a_{\epsilon}[\phi] & :=i a_{\in}[A=0, \phi] \\
& =\int d^{4} x \partial_{\mu} \in \cdot J^{\mu}=-\int d^{4} x \in \cdot \partial_{\mu} J^{\mu}
\end{aligned}
$$

\therefore anomaly \Leftrightarrow current-non-conservation.

Two basic examples: axial anomaly (global) chiral anomaly (gauge or 't Hoot)

Axial anomaly
Theory: gauge theory with gauge group C, massless Dirac fermion ψ in a representation V of G :

$$
S[A, \psi]=S_{Y M}[A]+\int d^{4} x\left(-i \bar{\psi} \varnothing_{A} \psi\right)
$$

Symmetry: $U(1)_{5}=$ axial phase rotations of fermion

$$
\psi \rightarrow e^{i \epsilon \gamma_{S}} \psi, \bar{\psi} \rightarrow \bar{\psi} e^{i \in \gamma_{5}}
$$

recall $r_{S}=\gamma^{4} \gamma^{\prime} \gamma^{2} r^{3}, r_{5} \gamma^{\mu}=-\gamma^{\mu} \gamma_{5}, r_{S}=\left\{\begin{array}{cc}+1 & \psi_{R} \\ -1 & \psi_{2}\end{array}\right.$
indeed $\bar{\psi} \varnothing_{A} \psi \rightarrow \Psi \underbrace{e^{i \epsilon \gamma_{S}} \varnothing_{A}} e^{i \in \gamma_{S}} \psi=\bar{\Psi} \varnothing_{A} \psi$

$$
D_{A} e^{-i j v s}
$$

$$
\epsilon \leadsto \in(x): i \bar{\psi} \not \varnothing_{\Delta} \psi \leadsto i \bar{\psi} \gamma^{\mu} \partial_{\mu}\left(i \in \gamma_{s}\right) \psi=-\partial_{\mu} \in \bar{\psi} \gamma^{\mu} \gamma_{s} \psi
$$

\therefore The Noether current is

$$
j_{s}^{\mu}=-\bar{\psi} r^{\mu} r_{5} \psi=\bar{\psi} r_{5} \gamma^{\wedge} \psi
$$

anomaly:

$$
\partial_{\mu} j_{5}^{\mu}=\frac{i}{16 \pi^{2}} \epsilon^{\mu \nu \rho \lambda} \operatorname{tr}_{v}\left(F_{\mu \nu} F_{\rho \lambda}\right)
$$

ie. $\quad a_{\epsilon}^{5}[A]:=a_{\epsilon}^{5}\left[A_{5}=0, A, \psi\right]$

$$
\begin{aligned}
& =\int d^{4} x \in(x) \frac{-1}{16 \pi^{2}} \epsilon^{\mu \nu \rho \lambda} \operatorname{tr}_{v}\left(F_{\mu \nu} F_{\rho_{\lambda}}\right) \\
& =\int \frac{-1}{4 \pi^{2}} \in \operatorname{tr}_{v}\left(F_{A \wedge} F_{A}\right)
\end{aligned}
$$

Here we used differential forms:

$$
\begin{aligned}
& A=A_{\mu} d x^{\mu}, F_{A}=d A+\frac{1}{2}[A, A]=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu} \\
& F_{A} \wedge F_{A}=\frac{1}{4} F_{\mu \nu} F_{\rho \lambda} \underbrace{d x^{\mu} \wedge d x^{\nu} \wedge d x^{\rho} \wedge d x^{\lambda}}_{E^{\mu \nu \rho_{\lambda}} d^{4} x}
\end{aligned}
$$

Remark We may ungauge G.
Original: external internal

$$
\left({\underset{A}{s},}_{A}^{A}, \Psi\right): \quad a_{\epsilon}^{5} \text { is }\left\{\begin{array}{l}
\text { field-dependent } \\
\text { field-independent }
\end{array}\right.
$$

ungauged: external internal

Chiral anomaly
Theory: free massless fermion Ψ_{R} and Ψ_{L} in representations V_{R} and V_{L} of G

$$
S=\int d^{4} x\left(-i \bar{\psi}_{R} \partial \psi_{R}-i \bar{\psi}_{L} \partial \psi_{L}\right)
$$

Symmetry:

$$
\begin{aligned}
& \psi_{R} \rightarrow g^{-1} \psi_{R}, \bar{\psi}_{R} \\
& \rightarrow \bar{\psi}_{R} g \\
& \psi_{L} \rightarrow g^{-1} \psi_{L}, \bar{\psi}_{L} \\
& \rightarrow \bar{\psi}_{L} g \\
& S\left[A, \psi_{R}, \psi_{L}\right]=\int d^{4} x\left(-i \bar{\psi}_{R} \not \varnothing_{A} \psi_{R}-i \bar{\psi}_{L} \varnothing_{A} \psi_{L}\right)
\end{aligned}
$$

Current $J^{\mu a}=i \bar{\psi}_{R} \gamma^{\mu} e^{a} \psi_{R}+i \bar{\psi}_{L} \gamma^{\mu} e^{a} \psi_{L}$
anomaly:

$$
\begin{aligned}
D_{\mu} J^{\mu a}=\frac{1}{24 \pi^{2}} \epsilon^{\mu \nu \rho \lambda} & \left\{\operatorname{tr}_{V_{k}}\left[e^{a} \partial_{\mu}\left(A_{\nu} \partial_{p} A_{\lambda}+\frac{1}{2} A_{\nu} A_{p} A_{\lambda}\right)\right]\right. \\
& \left.-\operatorname{tr}_{V_{c}}\left(e^{a} \partial_{\mu}\left(A_{\nu} \partial_{p} A_{\lambda}+\frac{1}{2} A_{\nu} A_{p} A_{\lambda}\right)\right]\right\}
\end{aligned}
$$

field independent

$$
\begin{aligned}
& a_{\epsilon}[A]=\int d^{a} x \epsilon_{a}(x) i D_{\mu} J^{\mu a} \\
& \quad=\int \frac{i}{24 \pi^{2}}\left\{\operatorname{rr}_{V_{R}}\left[\epsilon d\left(A d A+\frac{1}{2} A^{2}\right)\right]-\pi r_{V_{L}}\left[\epsilon d\left(A d A+\frac{1}{2} A^{2}\right)\right)\right\}
\end{aligned}
$$

Remark Axial anomaly (in which G-gange potential A is regarded as external) can be regarded as a Special case of chiral anomaly:

$$
\begin{aligned}
G_{\text {tot }}= & U(1)_{5} \times G \\
V_{\text {tot } R}=V(1) \cdots & V \text { as a representation of } G \\
& U(1)_{s} \text { charge }+1 \\
V_{\text {tot } L}=V(-1) \cdots & V \text { as a representation of } G \\
& U(1)_{s} \text { charge }-1
\end{aligned}
$$

Then, the axial anomaly (where A is external) can be regarded as the chiral anomaly for
the variation $\epsilon_{\text {tot }}=(\epsilon, 0)$
the back ground $A_{\text {tot }}=(0, A)$

NB We need modification by local counter term for the match.

Computation of anomalies
We compute the axial s chiral anomalies and verify the above sretements.
There anomalies are fiell-independent (if G-gauge potential is regarded extended for axial anomaly). Thus

$$
\delta_{\epsilon} Z[A]=Z[A] i a_{\epsilon}[A] .
$$

If we write $Z[A]=\int \theta_{A} \phi e^{-S[A, \phi]}=e^{-W[A]}$, then

$$
\begin{aligned}
& \delta Z[A]=\int D_{A} \phi e^{-S[A, \Phi]} \int d^{4} x \delta A \cdot J \\
& Z[A](-\delta W[A]) \\
& \therefore-\delta W[A]=\left\langle\int d^{4} x \delta A \cdot J\right\rangle_{A}
\end{aligned}
$$

In particular

$$
\begin{aligned}
i a_{\epsilon}(A] & =\delta_{\epsilon} Z[A] / Z[A] \\
& =-\delta_{\epsilon} W[A]=\left\langle\int d^{4} x D_{r} \epsilon \cdot J^{r}\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{2} \delta_{1} Z[A]=\int D_{A} \phi e^{-\int[A, \phi]} \int d^{4} x_{1} \delta_{1} A \cdot J \int d^{4} x_{2} \delta_{2} A \cdot J \\
& 11 \\
& \delta_{2}\left(Z[A] \delta_{1}(-W[A])=Z[A]\left(-\delta_{2} \delta_{1} W[A]+\delta_{2} W[A] \delta_{1} W[A]\right)\right. \\
& \therefore-\delta_{2} \delta_{1} W[A]=\left\langle\int d^{4} x_{1} \delta_{1} A J \int d^{4} x_{2} \delta_{2} A \cdot J\right\rangle_{A} \\
& -\left\langle\int d^{4} x_{1} \delta_{1} A \cdot J\right\rangle_{A}\left\langle\int d^{4} x_{2} \delta_{2} A \cdot J\right\rangle_{A} \\
& =\left\langle\int d^{4} x_{1} \delta_{1} A \cdot J \int d^{4} x_{2} \delta_{2} A \cdot J\right\rangle_{A, \text { coun }} \\
& \sim \delta_{1} \cdots \delta_{n} W[A]=\left\langle\prod_{i=1}^{n} \int d^{4} x_{i} \cdot \delta_{i} A \cdot J\right\rangle_{A, \text { coun }} \\
& i \delta_{1} \cdots \delta_{n} a_{\epsilon}[A]=-\delta_{1} \cdots \delta_{n} \delta_{\epsilon} W[A] \\
& =\left\langle\int d^{4} x D_{r} \in \cdot J^{m} \prod_{i=1}^{n} \int d^{4} x_{i} \delta_{i} \cdot A \cdot J\right\rangle_{A, c o n n} \\
& +\sum_{i=1}^{n}\left\langle\int d^{4} x\left(\delta_{i} A_{r} \in\right] \cdot J^{\mu} \prod_{j \neq i} \int d^{4} x_{j} \delta_{j} A \cdot J\right\rangle_{A, \text { conn }}
\end{aligned}
$$

Axial anomaly

$$
\begin{aligned}
& i a_{\epsilon}^{5}[A]=-\left.\delta_{\epsilon}^{5} W\left[A_{S}, A\right]\right|_{A_{S}=0}=\left\langle\int d^{4} x \partial_{\mu} \in j_{s}^{m}\right\rangle_{A} \\
& i a_{\epsilon}^{5}[0]=\left\langle\int d^{4} x \partial_{r} \in j_{5}^{\mu}\right\rangle=0 \text { by "Lventzinu. } \\
& \left.i \delta a_{\epsilon}^{5}[A]\right|_{A=0}=\left\langle\int d^{4} x \partial_{\mu} \in J_{5}^{r} \int d^{4} y \delta A \cdot J(y)\right\rangle_{\text {conn }} \\
& \left\{\begin{array}{l}
\partial_{\mu} \in J_{r}^{r}=\partial_{\mu} \in \bar{\psi} \gamma_{s} \gamma^{\mu} \psi \\
\delta A \cdot J=i \bar{\psi} \delta A \psi=\delta A_{v a} i \bar{\psi} \gamma^{c} e^{a} \psi
\end{array}\right. \\
& =\int d^{4} x \partial_{k} \in(x) \int d^{4} y \delta A_{v a l}(y) \\
& x(-1) \Vdash_{V_{Q S S}}\left[r_{S} \gamma^{M} \psi(x) \bar{\psi}(y) i \gamma^{v} e^{a} \overleftarrow{\psi(y) \bar{\psi}}(x)\right] \\
& \stackrel{\square}{!}+0 \\
& \left.i \delta_{1} \delta_{2} a_{\epsilon}^{5}[A]\right|_{A=0}=\left\langle\int d^{4} x \partial_{\mu} \in j_{5}^{\mu} \prod_{i=1}^{2} \int d^{4} x_{i} \delta_{i} A \cdot J\left(x_{i}\right)\right)_{\text {conn }}
\end{aligned}
$$

Do this for $\delta_{1} A=d x^{\nu} e^{a} e^{-i q x}, \delta_{2} A=d x^{\rho} e^{b} e^{-i p x}$

$$
\begin{aligned}
= & \int d^{4} x \partial_{\mu} \in(x) \int d^{a} x_{1} e^{-i q x_{1}} \int d^{i} x_{2} e^{-i p x_{2}} \\
& (-1) \operatorname{Tr}_{V \otimes S}\left[r_{\delta} \gamma^{h} \psi(x) \bar{\psi}\left(x_{1}\right) i \gamma^{u} e^{a} \stackrel{\rightharpoonup}{\psi}\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) i \gamma^{\rho} e^{s} \overparen{\psi\left(x_{2}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\int d^{4} x \underbrace{\partial_{\mu} \epsilon(x) e^{-i(l+q) k}} \int \frac{d^{4} k}{(k \pi)^{4}} r^{+} r_{\otimes S S}\left(\gamma_{5} \gamma^{\mu} \frac{1}{-(b+a)} r^{L} e^{a} \frac{1}{-k} r^{p} e^{b} \frac{1}{-(k-p)}\right) \\
& \epsilon(x)_{i(p+q)_{\mu}} e^{-i(p+q) x}+(q, a, u) \leftarrow(p, b, p)
\end{aligned}
$$

logarithmically divergent

Pauli-Willars regularization
Introduce a regulator: a spinor, mass Λ, opposite statistics (bose)

$$
\left.\begin{array}{l}
f(h, m)=\operatorname{Tr}_{V_{B S}}\left(r_{5}(\rho+q) \frac{1}{-(k+a)+m} r^{v} e^{a} \frac{1}{-k+m} r^{\rho} e^{b} \frac{1}{-(k-\rho T+m}\right) \\
\quad+(q, a, u) \leftrightarrow(p, b, \rho)
\end{array}\right)
$$

Compute $f(k, m)$

$$
\begin{aligned}
& r_{5}(f+q)=\gamma_{5} x-8 r_{5} \\
& =-r_{5}(-(k+q)+m)-(-(h-r)+m) r_{5}+2 m r_{5} \\
& f(k, m)=\operatorname{rr}_{v}\left(e^{a} e^{b}\right) \operatorname{tr}_{S}\left(-r_{s} r^{v} \frac{1}{-k+m} r^{p} \frac{1}{-(k-p)+m}\right. \\
& -\gamma_{S} \frac{1}{-(k+2)+m} \gamma^{\nu} \frac{1}{-k+m} \gamma^{p} \\
& \left.+2 m r_{3} \frac{1}{-(k+\sigma)+m} \gamma^{\nu} \frac{1}{-\nless+m} \gamma^{p} \frac{1}{-(k+)^{2}+m}\right)+ \text { exchange } \\
& =\operatorname{tr}_{u}\left(e^{a} e^{b}\right)\left\{-\frac{\operatorname{rr}_{s}\left(r_{s} \gamma^{v}(k+m) r^{p}((k-\rho)+m)\right)}{\left(k^{2}+m^{2}\right)\left((h-\rho)^{2}+m^{2}\right)}\right. \\
& -\frac{\operatorname{tr}_{S}\left(r_{s}((h+q)+m) r^{\nu}(k+m) r^{p}\right)}{\left((k+q)^{2}+m^{2}\right)\left(u^{2}+m^{2}\right)} \\
& \left.+2 m \frac{\operatorname{tr}_{S}\left(\gamma_{S}((h+q)+m) r^{2}(k+m) \gamma^{p}((h-P+m))\right.}{\left((h+q)^{2}+m^{2}\right)\left(h^{2}+m^{2}\right)\left((h-r)^{2}+m^{2}\right)}\right\} \\
& +(q, 0) \leftrightarrow(p, p)
\end{aligned}
$$

Use $r_{5}=-\gamma^{\prime} r^{2} r^{3} r^{4}$

$$
\begin{aligned}
& \operatorname{tr}_{s}\left(r_{s} \gamma^{\mu_{1}}-\gamma^{\mu_{s}}\right)=0 \quad s \leqslant 3, \quad s=5 \\
& \operatorname{tr}_{S}\left(r_{s} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\lambda}\right)=-4 \epsilon^{\mu \nu \rho \lambda} \quad\left(\epsilon^{(2)^{4}}=1\right)
\end{aligned}
$$

- numerator of the 1 it term $=\operatorname{Tr}_{5}\left(\gamma_{5} \gamma^{\nu} k \gamma^{p}(h-p)\right)$

$$
=-4 \epsilon^{\nu \lambda \rho \sigma} h_{\lambda}(h-p)_{\sigma}=4 \epsilon^{u \lambda \rho \sigma} h_{\lambda} P_{\sigma}
$$

after k-integration of the regularized system: $k_{\lambda} \propto p_{\lambda}$

$$
\rightarrow t \epsilon^{\omega \lambda \rho \sigma} p_{\lambda} p_{\sigma}=0 . \quad \text { Noconviburion }
$$

- Similarly the ind tern has no contribution to the integral.
- numerator of the 3rd term

$$
\begin{aligned}
& \operatorname{trs}\left(r_{5}((k+q)+m) \gamma^{v}(k+m) r^{p}((h-\infty)+m)\right. \\
& =m \operatorname{tr}_{s}\left(\gamma_{s}\left\{r^{\circ} \hbar \gamma^{\rho}(k r)+(k-q) \gamma^{\nu} \gamma^{\rho}(k-r)+\left(k-q \gamma^{\nu} \hbar r^{\rho}\right\}\right)\right. \\
& =m \operatorname{tr}\left(r_{s}\left(r^{\nu}\right) k r^{\rho}(-8)+k r y r^{\rho}(-8)+x r^{v} \gamma^{\rho} k+x r^{\nu} r^{\rho}\left(-\gamma^{\rho}\right)\right. \\
& \left.\left.+9 \gamma^{\circ} k r^{c}\right\}\right) \\
& =4 m \epsilon^{\lambda \nu \rho \sigma} q_{\lambda} p_{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \int \frac{d^{4} h}{(2 \pi)^{4}}(f(h, 0)-f(h, \Lambda)) \\
& =r_{v}\left(e^{a} e^{b}\right) \int \frac{d^{4} k}{(2 \pi)^{4}}(-2 \Lambda) \frac{4 \Lambda \epsilon^{\lambda \nu \rho \sigma} q_{\lambda} p_{\sigma}}{\left((k+q)^{2}+\Lambda^{2}\right)\left(k^{2}+\Lambda^{2}\right)\left((k-p)^{2}+\Lambda^{2}\right)}+\underbrace{(9,0)_{\kappa(p, p)}}_{\text {doubles }} \\
& k=\Lambda h^{\prime}, \Lambda \rightarrow \infty \quad \text { Omit } \frac{q}{\Lambda}, \frac{p}{\Lambda} \\
& =-16 \operatorname{tr}_{v}\left(e^{a} e^{b}\right) \int \frac{d^{q} h}{(2 \pi)^{4}} \frac{\epsilon^{\lambda v \rho \sigma} q_{\lambda} p_{\sigma}}{\left(k^{\prime 2}+1\right)^{3}} \\
& =\frac{V l\left(S^{3}\right)}{2(2 \pi)^{4}} \int_{0}^{\infty} \frac{h^{2} d h^{2}}{\left(h^{2}+1\right)^{3}}=\frac{1}{2(4 \pi)^{2}} \\
& =-\frac{1}{2 \pi^{2}} \operatorname{tr}_{\nu}\left(e^{a} e^{b}\right) \epsilon^{\lambda u e \sigma} q_{\lambda} P_{\sigma} \\
& \left.\therefore \delta_{1} \delta_{2} a_{E}^{5}[A]\right|_{A=0}=\int d^{4} x \in(x) e^{-i(p+i) x} \frac{-1}{2 \pi^{2}} \nabla_{v}\left(e^{a} e^{b}\right) \epsilon^{\lambda \nu \rho \sigma} q_{\lambda} \rho_{\sigma} \\
& \text { for } \delta_{1} A=d x^{c} e^{a} e^{-i q x}, \delta_{2} A=d x^{p} e^{b} e^{-i p x}
\end{aligned}
$$

These are to be compared with

$$
\left.\delta_{1} \cdots \delta_{n} \underbrace{\int d^{a} x \in(x) \frac{-1}{16 \pi^{2}} \epsilon^{\mu v p \lambda}{r_{v}} F_{r^{\nu}} F_{\rho \lambda}}_{x}\right|_{A=0}
$$

$$
\begin{aligned}
& \left.X\right|_{A=0}=0=a_{\epsilon}^{5}[0] \\
& \left.\delta X\right|_{A=0}=0=\left.\delta a_{e}^{5}[A]\right|_{A=0} \\
& \left.\delta_{1} \delta_{L} X\right|_{A=0} \\
& =\int d^{4} x \in(x) \frac{-1}{16 \pi^{2}} \epsilon^{\mu_{1 / 2} \mu_{3} \mu_{4}} r_{V} \delta_{1} F_{\Gamma_{1}, \mu_{L}} \delta_{2} F_{\mu_{3} \mu_{4}} \times 2
\end{aligned}
$$

$\delta_{i} A$ as above: $\left(-i q_{\mu_{1}} \delta_{\mu_{2}}^{v}+i q_{\mu_{2}} \delta_{\mu_{1}}^{v}\right) e^{a} e^{-i q x}\left(-i p_{\mu_{3}} \delta_{\mu_{4}}^{\rho}+i p_{\mu_{4}} \delta_{\mu_{3}}^{\rho}\right) e^{b} e^{-i p x}$

$$
\begin{aligned}
& =\int d^{\prime} x \in(x) e^{-i(\rho+\{) x} \frac{1}{2 \pi^{2}} r_{v}\left(e^{a} e^{b}\right) \underbrace{\epsilon_{1, \mu_{2} \mu_{3} \mu_{a}} q_{\mu_{1}} \delta_{\mu_{1}}^{u} p_{\mu_{3}} \delta_{\mu_{4}}^{\rho}}_{\epsilon^{\mu_{1} u \mu_{3} \rho} q_{\mu_{1}} p_{\mu_{3}}=-\epsilon^{\lambda u \rho \sigma} q_{\lambda} p_{\sigma}} \\
& =\left.\delta_{1} \delta_{2} a_{\in}^{5}[A]\right|_{A=0}
\end{aligned}
$$

$$
\therefore a_{\epsilon}^{5}[A]=\int d^{4} x \in(x) \frac{-1}{16 \pi^{2}} \epsilon^{\mu \nu p_{\lambda}} r_{v} F_{\mu} F_{p \lambda}
$$

at $O\left(A^{2}\right)$

Chiral anomaly
Consider the care $V_{R}=V, V_{L}=\{0\}$ for simplicity.

$$
\begin{aligned}
Z[A] & =\int D \bar{\psi}_{R} \Delta \psi_{R} e^{\int i \bar{\psi}_{R} \nabla_{A} \psi_{R} d^{4} x} \\
& =\text { const } \cdot \int D \bar{\psi}_{R} \Delta \psi_{R} \Delta \bar{\psi}_{L} D \psi_{L} e^{\int\left(i \bar{\psi}_{R} \nabla_{A} \psi_{R}+i \bar{\psi}_{L} \partial \psi_{L}\right) d^{4} x} \\
& =\text { const } \int D \bar{\psi} D \psi e^{\int\left(i \bar{\psi} \partial \psi+i \bar{\psi} \delta A P_{R} \psi\right) d^{4} x}
\end{aligned}
$$

where $P_{R}=\frac{1+r_{5}}{2}$ projection to R-components.
For the purpose of computation of anomaly, we can consider the Dirac fermion ψ with values in V where A is coupled to $\psi_{R}=P_{R} \psi$ only. Tic.

$$
J=i \bar{\psi}_{R} \delta A \psi_{R}=i \bar{\psi} \delta A P_{R} \psi
$$

Now let us compute $-\left.\delta_{1} \cdots \delta_{n} \delta_{\in} W[A]\right|_{A=0}$.

$$
-\delta_{\epsilon} W[A=0]=\left\langle\int d^{4} x D_{r} \in \cdot J^{\mu}\right\rangle=0 \text { by "Lorentz" inv. }
$$

$$
\begin{aligned}
-\left.\delta \delta \in W[A]\right|_{A=0}= & \left\langle\int d^{4} x \partial_{1} \in J^{\mu} \int d^{4} y \delta A \cdot J\right\rangle_{\text {conn }} \\
& \left.+\iint d^{4} x\left[\delta A_{n}, \epsilon\right] \cdot J^{\mu}\right)
\end{aligned}
$$

$$
=\int d^{4} x \partial_{r} E_{a}(x) \int d^{4} y
$$

$$
(-1) \operatorname{tr}_{V \otimes S}\left(i \gamma^{r} e^{a} P_{R} \stackrel{\psi(x)}{\bar{\psi}}(y) i \delta A P_{R} \stackrel{\psi(y) \bar{\psi}}{ }(x)\right)
$$

$$
\delta A=d x^{v} e^{b} e^{-i q x}
$$

$$
=\int d^{4} x \partial_{\mu} \epsilon_{a}(x) \int d^{4} y e^{-i q y}+r_{V \otimes S}\left(\gamma^{m} e^{a} P_{R} \psi(x) \bar{\psi}(y) \gamma^{2} e^{b} P_{R} \psi(y) \bar{\psi}(x)\right)
$$

$$
\begin{array}{r}
=\int d^{4} x \partial_{r} \epsilon_{a}(x) e^{-i q x} \operatorname{tr}_{v}\left(e^{a} e^{b}\right) \frac{\int \frac{d^{4} k}{(2 \pi)^{4}} T r_{s}\left(r^{r} p_{R} \frac{1}{-\not x} r^{u} \rho_{R} \frac{1}{-(b-\pi)}\right)}{!!} \\
\sim i \epsilon_{\mu} \epsilon_{a}(x) e^{-i q x} \text { quadratically divergent. }
\end{array}
$$

Pauli- Villars regularization

Replace (*) by

$$
I^{\mu \nu}(q):=\int \frac{d^{\alpha} k}{(2 \pi)^{4}} \sum_{i=0}^{3} \epsilon_{i} \operatorname{tr}_{S}\left(\gamma^{\mu} P_{R} \frac{1}{-k+\Lambda_{i}} \gamma^{u} P_{R} \frac{1}{-(k-q)+\Lambda_{i}}\right)
$$

It turns out that $\sum_{i=1}^{3} \epsilon_{i} \Lambda_{i}^{2}=0$ is sufficient to make it convergent.

After some computation, we find $I^{\mu u}(q)$

$$
\begin{aligned}
&=-\frac{1}{3(4 \pi)^{2}}\{ \left(\delta^{\mu v} q^{2}-q^{\mu} q^{u}\right) 2\left(\log q^{2}-\frac{5}{3}+\sum_{i=1}^{3} \epsilon_{i} \log n_{i}^{2}\right) \\
&\left.+\delta^{\mu v}\left(6 \sum_{i=1}^{3} \epsilon_{i} n_{i}^{2} \log n_{i}^{2}-q^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\left.\delta \delta \in W[A]\right|_{A=0} \\
& \quad=i \int d^{4} x \epsilon_{a}(x) e^{i q x} \operatorname{tr}_{v}\left(e^{a} e^{b}\right) \underbrace{}_{r} I^{\mu v}(q) \neq 0 \\
&
\end{aligned}
$$

This does not look to match with the claimed anomaly. In fact, this can be cancelled by adding a local counter Herm to $W[A]$.

