Remarks on axial anomaly in d=2n

Remarks on axial anomaly in d=2n
\nFor d=2n Dirac fermion
$$
\Psi
$$
 with values in a repV of G,
\n
$$
D_{A}(\overline{\Psi}e^{i\epsilon V_{\text{dm}}})D_{A}(e^{i\epsilon V_{\text{tm}}}\Psi)
$$
\n
$$
= D_{A}\overline{\Psi}D_{A}\Psi \exp\left[2i\int_{\mathbf{R}^{4}} \epsilon^{\pi}V_{V}\left(\frac{1}{n!}(\frac{i}{2\pi}\overline{F}_{A})^{n}\right)\right]
$$
\n(1) In the theory where G is gauged, as a part of the
\naction, we may consider the theta term
\n
$$
-\int_{V,\theta_{V}}[A] = i\int_{\mathbf{R}^{4}} \theta_{V} tr_{V}\left(\frac{1}{n!}(\frac{i}{2\pi}\overline{F}_{A})^{n}\right).
$$
\nThen, the axial anomaly formula fays
\n
$$
T_{\text{tan}}
$$
 the initial notation $\Psi \rightarrow e^{i\epsilon V_{\text{dm}}} \Psi_{V} \overline{\Psi} \rightarrow \overline{\Psi}e^{i\epsilon V_{\text{dm}}}$
\nwith a constant ϵ shift $\theta_{V} \rightarrow \theta_{V} + 2\epsilon$.
\n
$$
\cdot
$$
 In d=4 a G simple, there is a canonically
\nnormalized theta term
\n
$$
-\int_{\theta} (A) = i \int_{\mathbf{R}^{4}} \theta tr(\frac{1}{2}(\frac{i}{2\pi}\overline{F}_{A})^{2})
$$

I

using "the standard trace" defined by
\n
$$
tr(XY...) := \frac{1}{2h} tr_{g}(XY...) - \forall_{X+Y...} \in g.
$$
\nNote that $tr(XY) = -\frac{1}{2}X \cdot Y$.
\nThen, the shift is
\n
$$
\theta \to \theta + 4T_{0} \in
$$
\nWe may consider a Dirac fermion with a Complex mass
\n
$$
\oint_{\phi} = -i \overline{\Psi}_{R} \not{D}_{R} \Psi_{R} - i \overline{\Psi}_{L} \not{D}_{R} \Psi_{L} + \overline{\Psi}_{L} m \Psi_{R} + \overline{\Psi}_{R} m^{*} \Psi_{L}
$$
\nThe phase of mass, $m = Im \int e^{i \alpha_{0} m} \cos \alpha_{0} \cos \alpha$

2) Chern-Simons form
\n
$$
\frac{1}{2}
$$
 the density of axial anomaly is the 2n-form part of
\nthe Chern character $Ch_{U}[A] = tr_{U}(e^{\frac{c}{2n}T_{A}})$, and hence
\nis denoted by $Ch_{2n,V}(A) = tr_{U}[\frac{1}{n!}(\frac{1}{2n}T_{A})^{n}]$.
\nIt is closed and gauge invariant,
\nd $ch_{2n,V}(A) = o$, $ch_{2n,V}(A^{3}) = ch_{2n,V}(A)$.
\nIn fact, it is exact, it with as
\n $ch_{2n,V}(A) = d\omega_{2n+V}(A)$
\nfor a (2n-1)-form $\omega_{2n+V}(A)$ called the Chern-Simons form.
\nThe expression can be found as follows :
\nFor any transformation $A \rightarrow A + \delta A$,
\n $\delta tr_{U}(F_{A}^{n}) = n tr_{U}(\delta F_{A} F_{A}^{n}) = n tr_{U}(D_{A}(\delta A) F_{A}^{n-1})$
\n $= n dr_{U} (\delta A F_{A}^{n})$
\nwhere we used $\delta F_{A} = D_{A} \delta A$, $d tr_{U}(O) = tr_{U}(D_{A}O)$,
\nand Bianchi identity $D_{A} F_{A} = o$.

For a one-parameter family of gauge potentials
$$
A_{\epsilon} = t \cdot A
$$
,
\n
$$
tr_{V}F_{A}^{n} = tr_{V}F_{A_{1}}^{n} - tr_{V}F_{A_{2}}^{n} = \int_{s}^{1} dt \sqrt{\frac{2}{\epsilon}} tr_{V}F_{A_{2}}^{n} + dt \frac{dF_{V}}{2t} \sqrt{\frac{2A_{\epsilon}}{2t}} F_{A_{\epsilon}}^{n-1}
$$
\n
$$
= d \int_{0}^{1} dt \cdot n tr_{V} (A F_{A_{\epsilon}}^{n-1})
$$
\n
$$
\therefore \omega_{2n-1,V} [A] = \frac{1}{n!} (\frac{1}{2\pi})^{n} n \int_{0}^{1} dt tr_{V} (A F_{A_{\epsilon}}^{n-1})
$$
\n
$$
\therefore F_{A_{\epsilon}} = dA_{\epsilon} + A_{\epsilon}^{2} = t dA + t^{2} A^{2}
$$
\nMore explicitly
\n
$$
\omega_{1,V} [A] = \frac{1}{2\pi} \int_{s}^{1} dt tr_{V} A = \frac{1}{2\pi} tr_{V} A
$$
\n
$$
\omega_{3,V} [A] = (\frac{1}{2\pi})^{2} \int_{0}^{t} dt tr_{V} (A (t4A + t^{2} A^{2}))
$$
\n
$$
= (\frac{1}{2\pi})^{2} tr_{V} (\frac{1}{2} A A + \frac{1}{3} A^{3})
$$
\n
$$
\omega_{5,V} [A] = \frac{1}{2} (\frac{1}{2\pi})^{3} \int_{0}^{1} dt tr_{V} (A (t4A + t^{2} A^{2}))
$$
\n
$$
t^{2} A (A A)^{2} + t^{3} A (A A)^{2} + A^{3} A A + \frac{1}{5} A^{5}
$$
\n
$$
= \frac{1}{2} (\frac{1}{2\pi})^{3} tr_{V} (\frac{1}{3} A (A A)^{2} + \frac{1}{2} A^{3} A A + \frac{1}{5} A^{5})
$$
\n
$$
\vdots
$$

Chen-Simons form is NOT gauge invariant:
\n
$$
\omega_{2n+1,0}[A^3] = \omega_{2n+1,0}(A) + \omega_{2n+1,0}(S'49) + d\omega_{2n+2,0}(5,A)
$$
\nfor some (2n-2)-form $\omega_{2n-2,0}(9, A)$.
\nThe expression for $\omega_{2n-1,0}$ can be found by extending
\nthe method to find $\omega_{2n-1,0}$ from $\omega_{2n,0}$.
\n[see Zumino's Les Houches lecture]
\nFor (our Ns, they are
\n
$$
\omega_{0,0}(9, A) = -\frac{1}{2}(\frac{1}{2\pi})^2 \text{tr}_0(499^2) + (\frac{1}{2}\frac{1}{2})^2 \text{tr}_0(44A + 4A + A^3) + \frac{1}{2}(A499^2)^2 + A(499^2)^3 + \frac{1}{2}(A499^2)^3 + A(499^2)^3]
$$

Theta **angle** (3) Integrality. Suppose $A \rightarrow \tilde{g}^{-1}dg$ as $|x| \rightarrow \infty$, so that $F_A \rightarrow 0$ at ∞ and Syn [A] is finite. $(for d > 2, F_A = o$ near co implies $A \rightarrow 9^{-1}d9$) Then $\int_{\mathbb{R}^d} ch_{d,U}[\begin{matrix}A\end{matrix}] \in X_{V}$ for some Ky. This means that e iS_{v.8v} [A] is invariant under $\theta_v \rightarrow \theta_v + 2\pi/\kappa_v$. For $d=4$ & G simple and simply connected, $\int_{10^4} \text{tr}\left(\frac{1}{2!} \left(\frac{i}{2\pi}F_A\right)^2\right) \in \mathbb{Z}$ iSo(A] i Sola]
and $e^{iS_{\theta}(A)}$ is invariant under $\theta \rightarrow \theta + 2\pi$. For this reason, θ_v or θ is called Theta angle. \bigodot $S_{\mathbb{R}^{d}}$ ch_{av} [A] = $\lim_{R\to\infty}$ $S_{\mathbb{R}^{d}}$ (ch_{av} [A] .
Dr /
 $\!$ $d\,\omega_{\!\scriptscriptstyle \pmb{\scriptstyle \lambda} \!-\! \!1}^{}$ $\overline{\vee_{\alpha_{d-i}}\vee^{(A)}}$ $\sqrt{\frac{2}{\kappa}}$

 $\mathcal{L}_{\mathcal{L}}$

$$
= \lim_{R_{1}\to 0} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}^{1}(\widehat{A}) \overline{B^{1}d\theta} \text{ on } S_{R}^{d-1} \text{ at } log R
$$
\n
$$
= \lim_{R_{1}\to 0} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}^{3}(\widehat{A}) = \Omega_{d-1,V}^{1}(\widehat{A}) + \Omega_{d-1,V}(\widehat{A}) + d \Omega_{d-2,V}(\widehat{A})
$$
\n
$$
= \lim_{R \to \infty} \int_{S_{R}^{d-1}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A}
$$
\n
$$
= \lim_{R \to \infty} \int_{S_{R}^{d-1}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A}
$$
\n
$$
= \Omega_{d-1,V}^{1}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{R} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d-1,V}} \Omega_{d-1,V}(\widehat{A}) d\widehat{A} = 0
$$
\n
$$
= \frac{1}{2} \int_{\Omega_{d
$$

Exarbles
... $\omega_{1,v} [g^{\dagger}49] = \frac{i}{2\pi} tr_v(g^{\dagger}49)$
For $G = U(1) \cong S^1$, $V = \text{chauge 1 representation } C(1)$
$\int_{C^1} U_{1,GU_1} [f^{\dagger}49] = \int_{S^1} \frac{i}{4\pi} 6^{\dagger} 49$
$= (-1) \times \text{the winding number of the map } 3: S^1 \rightarrow U(1) \cong S^1$
... $\omega_{3,v} [g^{\dagger}45] = \frac{1}{24\pi^2} tr_v (6^{\dagger} 45)^3$
For $G = SU(2) \cong S^3$, $V = \text{fundamental (rep } C^2$,\n
$\int_{S^3} \omega_{3,G^2} [f^{\dagger}49] = \int_{S^3} \frac{1}{24\pi^2} tr_{C^2} (6^{\dagger} 45)^3$
$= \text{the } \omega \text{ in the number of the map } 3: S^3 \rightarrow SU(1) \cong S^3$
For $\text{Other } (G, V, d)$, $\int_{S^{d-1}} \omega_{d-1,V} [f^{\dagger}49]$ can be interpreted as "winding number" in the same way, or such an interpretation is not straight or even absent.

 δ

e.g.
\n
$$
d=2
$$
, G simple.
\n $tr_Xx = b$ $\forall x \in \mathcal{J}$, \forall rep V.
\n \therefore $ch_{2,N}(A) = 0$, $\omega_{1,N}(d^{7}u_{3}) = 0$ for \forall rep V
\nThus 6xial anomaly, is absent.
\nHowever, we may have a non-trivial map $S^{1} \rightarrow G$
\nwhen G is not simply connected $(T_{1}G$ is a finite group).
\n $d=4$, G simple, simply connected $(e_{3}, G=SU(2))$
\nWe may use the standard 'tr'. Then
\n $\int_{S^{3}} \frac{1}{24\pi^{2}} tr(\mathcal{G}^{-1}d_{3})^{3}$ measures the winding number
\nof $S: S^{3} \rightarrow G$ and defines $H^{3}(G, \mathcal{Z}) \cong T_{3}(G) \cong \mathbb{Z}$.
\nThis means $\int_{\mathbb{R}^{4}} tr(\frac{1}{2}(\frac{1}{2\pi}fa)^{2})$ can take all possible
\ninteger values. Then the periodicity of That angle is
\nstrictly $\theta \sim \theta + 2\pi$.

(In what follows, we omit writing
$$
V^{\prime}
$$
 to simplify expressions.)
\n
$$
Ch_{2n+2}[A] \text{ is gauge invariant, closed and exact}
$$
\n
$$
\delta_{\varepsilon} ch_{2n+2}[A] = 0, d_{Ch_{2n+1}}[A] = 0,
$$
\n
$$
Ch_{2n+1}[A] \text{ is not gauge invariant, but its infinitesimal}
$$
\n
$$
gauge transformation is exact
$$
\n
$$
\delta_{\varepsilon} \omega_{2n+1}[A] = d \omega_{2n}[\varepsilon, A].
$$
\n
$$
\omega_{2n}[\varepsilon, A] \text{ satisfies}
$$
\n
$$
\delta_{\varepsilon_{1}} \omega_{2n}[\varepsilon, A] - \delta_{\varepsilon_{2}} \omega_{2n}[\varepsilon, A] - \omega_{2n}[\varepsilon, \varepsilon, A]
$$
\n
$$
\frac{1}{\varepsilon_{1}} \omega_{2n}[\varepsilon, A] - \delta_{\varepsilon_{2}} \omega_{2n}[\varepsilon, \varepsilon, A]
$$
\n
$$
\frac{1}{\varepsilon_{2}} \omega_{2n}[\varepsilon, \varepsilon, A]
$$
\nThis is called the anomaly descent.
\nThe derivation can be found in Zumin's left by the feature.
\nIt may also be posted as an additional note.

Note:
$$
\int_{\mathbb{R}^d} \omega_d[G,A]
$$
 satisfies the Wess-Lumino
\nconsistency Condition and can be a candidate for
\nansmag (up to a Constant multiplelication).
\nIndeed, $\omega_q[G,A] = \frac{d}{d\tau} O_q\{e^{i\tau}, A\}|_{t=0}$
\n $= -\frac{1}{2 \cdot 3!}(\frac{i}{2\pi})^3 \text{ tr} \{d\tau \{A(A+dA+A^3)\}\}$
\n $= \frac{1}{2 \cdot 3!}(\frac{i}{2\pi})^3 \text{ Tr} \{d(AA+dA+A^3)\} + d(-)$
\n $= \frac{-1}{2\pi} \cdot \frac{i}{24\pi} \text{ tr} \{d(AA + 4A + A^3)\} + d(-)$
\nThis is nothing but the 4d chiral anomaly up to
\nthe factor of $\pm \frac{1}{2}\pi$.
\nThus, $d=6$ axial anomaly seems to be related to
\n $d=4$ chiral anomaly.

 $\overline{\mathfrak{t}}$

The descent plays a role in anomaly more generally.
\nSuppose we have a system of differential forms that depend
\non background A and gauge transformation parameter G:
\n
$$
f_{4H}(A) = f_{4H}(A) = f_{4}[E, A], f_{4-}(E, E, A],
$$
\n(Hesubscript shows the form degree) which obeys the descent
\nequation
\n
$$
d\epsilon f_{4H}(A) = d f_{4H}(A) = 0,
$$
\n
$$
f_{4H}(A) = d f_{4H}(A) = 0,
$$
\n
$$
f_{4H}(A) = d f_{4H}(A),
$$
\n
$$
d\epsilon f_{4H}(A) = d f_{4}^{\circ} (E, A),
$$
\n
$$
d\epsilon f_{4H}^{\circ} (E, A) - f_{4}^{\circ} (E, E, A) = d f_{4}^{\circ} (E, E, A)
$$
\n
$$
\vdots
$$
\nSuppose there is a d-dimensional theory with anomaly f¹
\nThe partition function on a closed d-dimensional mfd
\nX with background A varies as
\n
$$
d\epsilon \zeta_{X}(A) = Z_{X}(A) + \int_{X}^{1} f_{4}^{\circ} (E, A),
$$
\nNote: the anomaly satisfies the WZ consisting condition.

We may consider cancelling the anomaly by choosing a d+1 dimensional manifold Y with bounday $X = \partial Y$ X , A el manifold
DV. $\bm{\mathsf{A}}$ and extending A to Y and putting $-i \int_{Y} f_{d+1}^{o}(A)$ $Z_{x}[A] = Z_{x}[A] e^{Q_{x}[A]x}$ Then $G_{\epsilon}\widetilde{Z}_{X}(A) = Z_{X}(A) i \int_{X} f_{A}^{T}(f,A) e^{-i \int_{Y} f_{A+1}^{S}(A)}$ + $Z_{x}(A) e^{-i \int \varphi f_{4+1}^{*}(A)} (-i \int \varphi f_{4+1}^{*}(A))$ $=$ Z_{x} LAJi $\left(\int_{X} f'_{1}(\epsilon, A) - \int_{Y} \delta \epsilon f_{d_{1}}^{o}(\epsilon)$ $J_{\gamma}f_{d+1}^{*}(A)$
- $\int_{\gamma} \frac{\delta_{\epsilon}f_{d+1}^{o}(A)}{df_{d}^{*}(E,A)}$
 $\int_{\partial Y} f_{d}^{*}(E,A)$ \Rightarrow 0 . $\qquad \qquad \times$ We would like $\widetilde{Z}_x(A)$ to be independent of the choice of Y and extension of A to Y .

So, let us make another choice (Y', A') and compare. The difference is $\widetilde{\mathcal{Z}}_{\chi}(A)/\widetilde{\mathcal{Z}}'_{\chi}(A) = \exp\left(i\int_{\gamma} f_{d+1}^{o}[A] - i\int_{\gamma'} f_{d+1}^{o}[A']\right)$ $=$ exp(i) $\frac{1}{2}$ f_{d+1} [\hat{A}] where Y is Y and \overline{Y}' glued along $X = \partial Y = -\partial \overline{Y}'$ and A is s.t. $\hat{A}|y = A$ and $\hat{A}|y = A'$. \overline{Y}' , A' (|) Y, A = (\hat{Y} , \hat{A}) X, A We would like \int_{γ} $\int_{4\pi}^{0} (\hat{A}) = o$ (mod $2\pi Z$). Let us choose a d+2 dimensional manifold Z with boundary $\hat{Y} = \partial Z$ and extend \hat{A} to Z . Then $S_{\tilde{\zeta}}$ $f^{\circ}_{dH}(\tilde{A}) = \int_{\tilde{\zeta}} f^{\circ}_{dH}(\tilde{A}) = \int_{\tilde{\zeta}} df^{\circ}_{dH}(A) =$ $S_{\alpha+1}^{\circ}[\hat{A}] = \int_{\mathcal{Z}} df_{\alpha+1}^{\circ}(A) = \int_{\mathcal{Z}} f_{\alpha+2}[A].$

If
$$
f_{4+2}(A) = 0
$$
, then we have modified the theory
unambiguously so that the anomaly is absent.
However, $f_{4+2}(A)$ may not have to vanish for this:
If $f_{4+2}(A) = d_{data}(A)$ with a gauge invariant $9_{4+1}(A)$
we can use $f_{4+1}^0(A) - 9_{4+1}(A)$ instead of $f_{4+1}^0(A)$
in the modification:
 $\tilde{Z}_X(A) = \tilde{Z}_X(A) \tilde{C}^{i} \times (f_{4+1}^0(A) - 9_{4+1}(A))$
Thus, the condition for the ability to modify the
though so that it is anomaly free is vanishing of
the cohomology class of the top form:
 $\{f_{4+2}(A)\} = 0$.

A practical use	
Consider a 4-dimensional theory with	
R-handed fermion in a representation V_R of G	
L-handed fermion in a representation V_L of G	
The condition of G-anomaly to be absent is	
Ch _{V_{R/6}} (A] - ch _{V_{U/6}} (A) = O	
Exercise	Show that the standard model has
no gauge anomaly	In this case,
$G = SU(3) \times SU(1) \times U(1)$	
$V_R = [(1, 1, -1) \oplus (3, 1, \frac{3}{3}) \oplus (3, 1, -\frac{1}{3})]^{03}$	
$V_L = [(1, 2, -\frac{1}{2}) \oplus (3, 2, \frac{1}{6})]^{03}$	

If

d=2n+2 axial anomaly vs d=2n chiral anomaly

$ch_{2n+2,V}(A) \cdots \frac{1}{2} \text{ density of axial anomaly in}$	
descent $\frac{2}{3}$	$d = 24+2$ Dirac fermion in rep. V of G
$W_{2n,V}(E,A] \cdots \frac{1}{2n} \text{ density of chiral anomaly in}$	
$d = 2n$ R-handed fermion in rep. V of G	
Why	

18
\n
$$
D = 2n+2
$$
 Dirac fermion with complex mass
\n
$$
L = -i \overline{\Psi}_{R} \partial^{(b)} \Psi_{R} - i \overline{\Psi}_{L} \partial^{(b)} \Psi_{L} + m \overline{\Psi}_{L} \Psi_{R} + m^{2} \overline{\Psi}_{R} \Psi_{L}
$$
\nLet us consider a positron dependent mass
\n
$$
m = 2M^{3} (x^{tm^{2}} - i x^{w+1}) = 2M^{3} \overline{z}
$$
\nFor $\Psi_{R} = \begin{pmatrix} a_{R} \\ a_{L} \end{pmatrix}$, $\Psi_{L} = \begin{pmatrix} b_{L} \\ b_{R} \end{pmatrix}$, a_{L} , b_{L} : L , $a_{L} = 2n$
\n
$$
Q_{\text{incc}} = \begin{pmatrix} -i \partial^{(a)} a_{R} \\ -i \partial^{(b)} a_{L} \end{pmatrix} + 2 \begin{pmatrix} 0 & 0_{2} \\ 0_{2} & 0 \end{pmatrix} \begin{pmatrix} a_{R} \\ a_{L} \end{pmatrix} + M^{2} \overline{z} \begin{pmatrix} b_{L} \\ b_{R} \end{pmatrix} = 0
$$
\n
$$
\begin{pmatrix} -i \partial^{(a)} b_{L} \\ i \partial^{(b)} b_{R} \end{pmatrix} + 2 \begin{pmatrix} 0 & 0_{2} \\ 0_{3} & 0 \end{pmatrix} \begin{pmatrix} b_{L} \\ b_{R} \end{pmatrix} + M^{2} \overline{z} \begin{pmatrix} a_{R} \\ a_{L} \end{pmatrix} = 0
$$
\n
$$
\begin{pmatrix} -i \partial^{(a)} b_{L} \\ i \partial^{(b)} b_{R} \end{pmatrix} + 2 \begin{pmatrix} 0 & 0_{2} \\ 0_{3} & 0 \end{pmatrix} \begin{pmatrix} b_{L} \\ b_{R} \end{pmatrix} + M^{2} \overline{z} \begin{pmatrix} a_{R} \\ a_{L} \end{pmatrix} = 0
$$
\n
$$
\begin{pmatrix} -i \partial^{(a)} b_{L} \\ i \partial^{(b)} b_{R} \end{pmatrix} + 2 \begin{pmatrix} 0 & 0_{2} \\ 0_{3} & 0 \end{pmatrix} \begin{pmatrix} b
$$

Is

Now consider
$$
D = 2n+2
$$
 Dirac fermion in a rep. V of G
\nwith m = 2M² Z.
\nThere is a R-handed fermion in rep V super at Z=0
\n \rightarrow effective action $W_{2n,V}^R[A]_{p}$]
\nThe phase of mass $\Delta rg(m) = \Delta rg(\overline{z}) = -\Delta rg(\overline{z})$
\n \rightarrow That term $S_{\Delta\theta}[A]$ with $\Delta\theta = -\Delta rg(\overline{z})$
\n $\rightarrow S_{\Delta\theta}[A] = i \int_{IR^{4}\times \mathbb{C}} \Delta\theta \int_{Q_{2n+1,V}}^{\Delta} [A]$
\n $= i \int_{IR^{4}\times \mathbb{C}} \Delta \sigma_{q} [z] \omega_{2n+1,V}[A]$
\n $= \int_{R^{4}\times \mathbb{C}} d\sigma_{q} [z] \omega_{2n+1,V}[A]$
\nIts gauge function is
\n $= \int_{C} \Delta_{\theta}[A] = \lim_{\epsilon \to 0} i \int_{R^{4}\times (\mathbb{C} \setminus D_{\epsilon}^{2})} d\sigma_{q} [z] \Delta_{\epsilon} \omega_{2n+1,V}[A]$
\n $= \lim_{\epsilon \to 0} i \int_{R^{4}\times (\mathbb{C} \setminus D_{\epsilon}^{2})} d\sigma_{q} [z] \Delta_{\epsilon} \omega_{2n+1} [E,A]$
\n $= \lim_{\epsilon \to 0} i \int_{R^{4}\times \partial D_{\epsilon}^{2}} d\sigma_{q} [E] \omega_{2n,V}[E,A]$

$$
= 2\pi i \int_{\mathbb{R}^{d}} \omega_{2n,V}(E.A) \Big|_{0}
$$
\n
\n
$$
\frac{\pi k}{2} D = 20k2 \text{ System has no gauge anomaly :}
$$
\n
$$
0 = \delta_{\epsilon} \Big(- W_{2n,V}^{R}(A|_{0}) - S_{\Delta 0}(A) \Big)
$$
\n
$$
= - \delta_{\epsilon} W_{2n,V}^{R}(A|_{0}) + 2\pi i \int_{\mathbb{R}^{d}} \omega_{2n,V}(E.A) \Big|_{0}
$$
\n
$$
\therefore \text{ The density of Chiral anomaly in } d = 2n \text{ R-handed}
$$
\n
$$
\text{fermion in rep. V of G is indeed}
$$
\n
$$
- 2\pi \omega_{2n,V}(E.A) \text{ obtained via descent.}
$$