
Instantons in quantum mechanics

quantum
tunneling effect

I

Up) a double well potentialW assume even
,

U(x) = U(- )
.

-aoa

Classical -2 degenerate ground states : One at x= a

another at x = - a
.

Quantum proximate ground states of the same energy

E i W= W"(a) .

But we know that the degeneracy is lifted by

Only one state Foll , even Top= Fote),

no zero point Foll* 0 Es
, has the lowest energy.

& nestion : What is the energy splitting ?

Two methods : · usual WKB

· instantons <



2

- (+ V()
ZE

,

T(xiki) : = (ox e
zu

Omit below
3)(T()=xy ,x)T(z) = x ;

- En= En(t)e En(i)
*

The low lying spectrum can be studied by looking at the
behaviour as T- A.

The measure 82

Take any
JT() Obeying B .

C
.

(T() =+, -T/ = x:

and Write (((t) = (t) + 3(t) ; 3([T()= 0.

F it space of such 3(T)'s.

Inner product in F : (3.
,
3u) =Ja, E

Choose an Orthonormal basis (x. ] [F

X3F can be written uniquely as 31 = [5nP(i)

&x : = N. N = a fixed number to be

determined.
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Computation by saddle point approximation

As 60
,
dominant contributions to the path-integral come

from CCE)'s with smallest values of

Sel] =[ +Um]

Suppose J.

1
. minimum CTCT)

.
It must obey the E-Lequ

EOM for "upside down" potential
- ) +U I w- &
For((T) = c(t) + 3(t)

,

SE(k] = Se(s]+ 3([- + U"Gins]3(5) +013%

z
+
(xf , xi)

= Se](N. ] O
3 =3

= -ESE(z)Ne+ &"Giuss)]
*
(1+ 0(t))

fluctuation determinant
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Suppose Si(k] is minimized by a family of configurations

[CIS ,[I]seMan m-parameter space

S = (S! . . ., SM)

Again -s,) + Ukil , i) = 0 Es

=> ( +Usi))] oa= 1, m

Pals ,e)= are zero modes of - + U"(C, 2),

(not necessarily Orthonormal).

Write ((T) = c[(s ,i)+ 3n(n(S
,T)

[xn) : Orthonormal basis of Goals .1 CF .

Then OX = N.etka.xs) n

z
+ (xfixi)

=>e)
- N. (det * (- + U "((s

,es))]
*

(1 + 0(t)

determinant for non-zero modes only
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g2
Example UK)=

2

Harmonic Oscillator. = O
.2

7
.

1
. minimum (T) = 0.

z
+
(0 ,0) = N . (det(w)j

*
Exact. No 0(t) correction

.

=: A

Un(T) & Sin((+) diagonalizes A with eigenvalue (I)+w?

: detA= +w= +()
-

· Zeroes at WT= Ittin

3-> II
n = 1 , 2

, 3
,

--

o - 1 as WT+
sinh (8T)/T

t

( ( - (2wT) as T+ a= 10 . 0) = N wi)
Operator result :

+ 100)= Elo -as T+

to =(
match (withN=) v

Side Enlistent)=we also holds,
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The double well W
Compute Zy(taita) & ETIIa , a) - a a

> x

· For c= :
= Ia

,
TIT) = la is the unique minimum

Ea ,
Ia) ~( as T+ o (w" := U "(a)

· For >=a , xi = -a
,
we look for trajectories like

t= -YYz
8 >

T = T/2

&
As we are interested in T-r

,
look for

Solutions [T(T) St . (T) -+ 99 i
+ +o

- A T+ -A

T+ IG
↓

Conservation of energy: Uki) = const = o

TM

=> IUG

i
.

e
. T =

1 + St)dx [1

↑
2U(x)

-a↑ a
7

integration constant[JCT) = 0



“instanton”
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Remarks

CCT) is monotone as 2U() >0 for-a < <a.

· Sell = [ (*+ (ii)

=(2U:
· Near ((= Ia

,
(() ~ + w2(x =a)

- with
=> cal = Rizal e as [ + Is

1

instantaneous jump~ ~ Yo
->

e
.g. U()= (T) = atanh(T-)

· The Zero mode associated with T shift is

C ,
(T)= (T ,i) = - (t)

(0x ,8) = [dt)- So



anti-instantons

g

· All other modes have - + U" ics) < 0

Regard it as a Schrodinger operator. The E= o mode

8,(2) has no zero point (as CT) is monotone).
: It is the ground state .

All Other state has EXO
.

Thus
,
the contribution to Zola ,-a) is

-t

-Net(U)
The integrand is T-independent => The integral diverges .

But for finite (and large) T , JdT -

T

.

= (a ,-all
instanton

=TNde(U)]
· For (f = -a

, xi = G
,

contribute
.

=-a , a) (anti-instanton
=> the same as above but2 instanton -> Tantiinstanton

(same value).
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There are other approximate saddle points :

Chain of instantons & anti-instantons

> > k

· action~nSo
n-1 > k

· Fluctuation determinant
:

~(
> k

· Integration of parameters
> k: > k ( &In ... dEzdT1. 1 --

Th

n !

#Sinb-- <TzIT, ]- E

u (

zo = N . (det- +w4]
7 =T N. (det

I
=> k = ( det +w)/det( + V" (E())))
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& = (kTe-ES) (1+ 0(t)

z
+(ta , [a) = 2 zn

n : even

=> T J(H+0()

E
+(19 , [a) =I

=
-

J(H+0()- e

: The ground state :

Eo =( -ke-So)(I+0(t)
t (a) = E (a) = ( ) (1+0(t)

1st excited state :

Ei =(t + +ke So)(1 +0()

Elas = - E(-a) =(()+ )
*
((+0(t)

: -Eo = 2tke So (1+ O(t)
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I
k =det +w)/det( + V"(()))]

can be computed.

U"(EC)) "gu

initi
The Spectra of - + 02 c - + U"((T) are close

at large eigenvalues (x(2)

- The ratio of the determinants is well-defined .

It can be computed and is ZwA
?
with

So
* A := w im Is-alexp)/s)(x-a

(see the additional note ]

·= SA

· Cdr

So 2U(x)
Ei-Er = 2twSoltin Kale Hot
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Exercise Derive this using standard WKB
.

Exercise UK)= a
=> E-Es =Pow

The above is called the dilute gas approximation.

I is valid when the dominant contribution comes from

the configurations where instantons/antiinstantons are

well-separated.

Relevant terms in the sum are those n with

n k+ e-Solt
S

The density of instantons/antiinstantons is

- So/th

= Ke
-

As long as SoDt
,
it is vanishingly small, and

the dilute gas approximation is valid.



13

Periodic potential

infinitely many classical vacua
um at x= ja(j = 2)

+ (ifa , jia) In instantons (n - n =j+- ji)
in antiinstantins·

on

, C

· Jdin-- - dT , dEF-- - dE

T/2 ? TnL-- = [ . 2 - T/2 3I
- ? En ?. -zEi2 - Th

C

z(ja , jia) =( (kTe Sot)n
+i

nin im
n !!

2π
i O(n-n - jf+ji)So e

-Sot if

=>Wi exp)T
- E So - 10)+ KTe
--

instantons anti-instantons

-
- Solt

2KT cosPe
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=> Continuum of energy eigenstates To

labelled by OIR/2.

Eof-2tK cost -Sot) (HO(t)

Ep(ia) = () -

j(1+0(t)

Fo

.
I ·

> 0
-T O TL
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..... matches with well-known result in Q
.

M.

(j)

&/1/ Suppose Estates &(j) Jjez localized1
ja at x) = ja

, <x(j) = f(x-ja)
,

Sit ,

Ex j=j
< /Hli] =

[ -8j- 5 = 1)
"fight binding

approximation
"

0 (j-j1 > 2

Then,

To : = [e-it(j) are energy eigenstates :

jez

Ep = Eo-28 cost

-i
Fo(k) = e Up() (Block's theorem (
- -u

plain wave periodic : Up(x + a) = 10(k)

h= M/2a (Brioullin Zone

- Folia) = eiioMolial
j - independent .


