A bound on Yang-Mills action (G simple)

 $\overline{1}$

 $S_{\epsilon}[A] = -\frac{1}{e^{2}} \int_{10^{4}} \text{Tr}(F_{A \Lambda^{*}}F_{A})$ = $-\frac{1}{e^2}\int_{\mathbb{R}^4} \left\{ \frac{1}{L} \text{Tr}((F_A \pm *F_A)_{A}*(F_A \pm *F_A)) - \text{Tr}(F_A \wedge F_A) \right\}$ = $\frac{1}{4e^2}$ $\int_{\mathbb{R}^4}$ $\|F_A + F_A\|^2 d^4x + \frac{1}{e^2} \int_{\mathbb{R}^4} Tr(F_A^2)$ F_A^2 $\geqslant \pm \frac{1}{e^2}\int_{\mathbb{R}^4} \overline{1}_r(\overline{r}_A^2)$ $\geq \left| \frac{1}{e^2} \int_{\mathbb{R}^4} T_r(F_A^2) \right|$ If $\int_{\mathbb{R}^4} \tau_r(F_A^2) \geq o$, the bound is saturated by A obeying $F_A \pm *F_A = 0$. Wote $F_A \pm *F_A = 0 \implies EL$ eqn $\sum_{\mu} D_{\mu}F_{\mu} = 0$ (YM eqn) 1st urder differential egn end ander differential agn Det Pontrjagin index of A $D[A] = -\frac{1}{8\pi^2} \int_{\mathbb{R}^4} \overline{I} \cdot (\overline{F}_A^2)$

 $\overline{2}$

Recall from lecture 12:
\n
$$
\int_{E} [A] \leq c_0 \implies A \to \int^{T} 4 \int_{0}^{T} dt \quad |x| \to \infty
$$
\n
$$
T_{\nu}(F_{A}^{2}) = dT_{\nu} (A A A + \frac{2}{3} A^{3})
$$
\n
$$
U(A) = -\frac{1}{8\pi} \int_{R^{3}} dT_{\nu} (A A A + \frac{2}{3} A^{3})
$$
\n
$$
= -\frac{1}{8\pi} \int_{S_{\infty}^{3}} T_{\nu} (A A A + \frac{2}{3} A^{3}) |_{A = \int_{0}^{T} 4 \int_{0}^{T
$$

θ vacua

Consider the Yang-Mills theory with simple t- *is*th connected G.
Formulate it on a box of finite size
$$
V \times T
$$
 with a boundary
condition set. A has a definite Portugal's index $k \in \mathbb{Z}$.
We eventually take $V \rightarrow \infty$, $T \rightarrow \infty$.

$$
\mathcal{Z}(V,T,k) = \int_{\mathcal{A}/Q} \frac{\Delta A}{v \mu Q} e^{-S_E[A]} \underbrace{\delta_{U[A],k}}_{\mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}} e^{i\theta (L[A]-k)}
$$

$$
= \int_{\mathcal{I} \mathcal{I}}^{\mathcal{I} \mathcal{I} \mathcal{I}} e^{-ik\theta} \underbrace{\int_{\mathcal{A}/Q} \frac{\Delta A}{v \mu Q}}_{\mathcal{I} \mathcal{I} \mathcal{I}} e^{-S_E[A] + i\theta L[A]}
$$

We assume that there are (out-) instantaneous, i.e.,
locdired solutions to

$$
F_A \pm \kappa F_A = D, L[A] = \pm 1
$$

$$
\Rightarrow S_E[A] = \frac{p_{\pi}^2}{e^2} = S_0
$$

By the dilute
$$
955
$$
 $\epsilon_{\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow}^{\text{in}}$ we have
\n
$$
\mathbb{Z}(\mathbf{V}_{1}\mathbf{F}_{1}\theta)|_{\mathbf{d}_{3}} = \sum_{n,\overline{n}} e^{-(n+\overline{n})S_{n}} K^{n+\overline{n}} \frac{(\mathbf{V}_{1}\mathbf{T})^{n+\overline{n}}}{n!\overline{n}!} e^{i(n-\overline{n})\theta}
$$
\n
$$
= \exp\left[\frac{\kappa \sqrt{T} e^{-S_{n}+i\theta} + \kappa \sqrt{T} e^{-S_{n}-i\theta}}{\kappa \sqrt{T} e^{-S_{n}-i\theta}}\right]
$$
\n
$$
= \exp\left[-\sqrt{T} \mathbf{E}(\theta)\right]
$$
\nAs in the case of periodic potential, we find
\na continuous of vacuum states, labelled by $\theta \in \mathbb{R}_{\mathcal{H}\mathbb{Z}}$
\nThese are called the θ -vacua.
\nWe shall discuss the meaning of this observation in
\nthe Gaussianical/Hamition formula for the theory.

Hamiltonian formulation of YM theory

Minkowski (red time) action
\n
$$
\sum [A] = \int -\frac{1}{4e^2} F^2 F_{\text{ref}} d^4 x
$$
\n
$$
= \int d^4 x \left(\frac{1}{2e^2} \sum_{i} F_{\text{ref}}^2 - \frac{1}{2e^2} \sum_{i \in j} F_{\text{ref}}^2 \right)
$$
\nintegrate out E
\n
$$
\int \text{integrate } \omega + E
$$
\n
$$
\int [A \cdot E : A_0] = \int d^4 x \left(\sum_{i} E_{i} F_{\text{ref}} - \frac{e^2}{2} \sum_{i} E_{i}^2 - \frac{1}{2e^2} \sum_{i \in j} F_{\text{ref}}^2 \right)
$$
\n
$$
= \int d^4 x \left(\sum E_{i} A_{i} - \frac{e^2}{2} \sum_{i} E_{i}^2 - \frac{1}{2e^2} \sum_{i \in j} F_{\text{ref}}^2 + A_0 \sum_{i} D_{i} E_{i} \right)
$$
\n
$$
\Rightarrow A_0(x) \text{ is a Lagrange matrix, therefore, imposing a constraint}
$$
\n
$$
D \cdot E = 0 \qquad \text{Gauss law.}
$$
\n
$$
\therefore A_i(x) = E_i(x) \text{ are canonically conjugate variables}
$$
\n
$$
\{A_{i\alpha}(x) = E_{i\beta}(x) = \delta_{ij} \text{ and } \delta(x \rightarrow 0)
$$
\n
$$
\therefore \text{Hom, from}
$$
\n
$$
\left((E \cdot A) = \int d^3 x \left(\frac{e^2}{2} \sum_{i} E_{i}(x)^2 + \frac{1}{2e^2} \sum_{i \in j} F_{\text{ref}}(x)^2 \right) \right)
$$

 ζ

with a first class constraint. More on the constraint $\Phi(x) = D E = \sum (J_{i} E_{i} + [A_{i}, E_{i}]) = 0:$ For a g -valued function $f(x)$ of x , put on the
 $\Phi(x)$
 $g-vdu$ = $\int d^{2}x \in (0, \cdot)$ $\overline{\Phi}(x) = - \int d^{2}x \text{ } \mathbb{D} \in (0, \cdot)$ It obeys $\{\overline{\Phi}_{\epsilon}, \overline{A}(x)\} = \overline{\phi}_{\epsilon}(x)$ $\{\overline{\varphi}_{\epsilon}, \overline{E}(*)\} = [E, \epsilon](*)$:
: , Φ_{∞} generates the gauge transformation by $\epsilon(x)$. As H is gauge invariant, $\{\Phi_{\epsilon}, H\} = o$. Also, $\{\overline{\Phi}_{\epsilon_{i}},\overline{\Phi}_{\epsilon_{2}}\}=$ $\Phi_{\mathfrak{l}\mathfrak{e}\mathfrak{r},\mathfrak{p}}$ $e.$] . The Hamiltonian system of this type is called the system ont a <u>moticiass constraint</u>.
Methods to quantize such a system have been developed. Methods to quantize such
See the additional note.

One proposal : Physical states are wave functionals &[A] which satisfy the Gauss law $\overline{\Phi}_{\epsilon}\Psi[A] = o \qquad \forall \epsilon$. -
1) Since $E(x) =$ $-i\frac{\delta}{\delta A(x)}$ ' this means $S_{\epsilon} \Psi(A) = 0, \qquad \forall \epsilon$ i. e. invariance under infinitesimal gauge transformations. le invariance under infinitesimal gauge transformations.
To be precise, we need to impose a boundary condition at ∞ . As one natural choice, we take $A(x) \rightarrow 0$ as $|x| \rightarrow \infty$ $E(X) \rightarrow 0$ as $|X| \rightarrow \infty$ Let $\mathcal A$ be the space of such $A(x)'s$ and g be the Lie algebra of such $E(x)$ s. of generates the identity component of of the gump \mathcal{C}
 \mathcal{C} = $\left(9 : \mathbb{R}^3 \to \mathbb{C} \mid 9(x) \to 1$ as $|x| \to \infty \right)$

g

large gauge transformations - 9 An element $g \in \mathcal{G}$ defines a map $g : S^3 = \mathbb{R}^3 \cup \{ \infty \} \longrightarrow G$. It belongs to 96 if and only if it has no winding $#$: $g \in \mathcal{Y}_{\infty} \iff n(s) = 0.$ Furtheremore, $\mathcal{Y}/\mathcal{Y}_{\circ} \cong \pi_{s}(G) \cong \mathbb{Z}$ $A \mapsto A^3$ by $g \in Q \setminus Q$ is called a The above proposal: physical states are functionals Ψ on A which are invariant under $\mathcal{D}_{\mathcal{P}}$: $\overline{\psi}$ [A^S] = $\overline{\psi}$ [A] $\overline{\psi}$ SE $\overline{\psi}$ In other words, they are functionals on $A/g_{\rm b}$. It does not require invariance under large gauge transformations. Then, how should they transform?

 $H = \int_{\mathbb{R}^3} dx \left(\frac{e^2}{2} E(x)^2 + \frac{1}{2e^2} F_{\mathcal{A}}(x)^2 \right) \implies$ The potential is $U[A] = \frac{1}{2\epsilon^2} \int_{10^3} d^3x \ \overline{\Gamma_A}(x)^2$. It is invariant under $A \mapsto A^3$ for $\forall g \in G$. including large gauge transformations. \cdot U[A] \geq D $= 0 \Leftrightarrow A = 5^{\circ}19$ for some $9 \in 9$ \therefore As a function on \mathcal{A}/g , the potential looks like $92^{\frac{1}{2}}d9.$ $92^{\frac{1}{2}}d9.$ $9 - 189 - 1$ $\mathbf{0}$ $\overline{g_3}$ ¹ 49_3 where $3_i \in 9$, $N[3_i] = j \in \mathbb{Z}$. The system is similar to QM with periodic potential. As in that Care, we may consider tunnelling between different minima.

 \sqrt{O}

Tunnelling	Put the system in a box
\n $\int_{S_i^u} \int_{S_i}$ \n	\n $\int_{S_i^u} \int_{S_i}$ \n
\n $\int_{S_u^u} \int_{S_i} \int$	

 \overline{U}

 $\mathbb{Z}_{V,T}$ ($9f'49f, 9f'45f$) $\frac{1}{\sqrt{\frac{48}{27}}e^{i\theta(n-\overline{n}-n5)}+n54)}$ = $\int \frac{d\theta}{2\pi} e^{i(n(s_f)-n(s_i))\theta} exp (kVT e^{-s\pi^2} + kVT e^{-s\pi^2} - i\theta)$ $=\int \frac{d\theta}{2\pi} e^{i \theta (9f) \theta - i \theta (9f) \theta} exp(-\sqrt{T} \mathcal{E}(\theta))$ Should be identified with $\overline{\psi}_{A}$ $\overline{\psi}_{A}$ $\overline{\psi}_{A}$ $\overline{\psi}_{A}$ $\overline{\psi}_{A}$ $\overline{\psi}_{A}$ $\overline{\psi}_{B}$ $\overline{\psi}_{B}$ \rightsquigarrow $\psi_{\theta}(\tilde{g'ag}) \propto e^{i\eta(g)\theta}$ The eigenstate Ψ_θ (A) is not invariant under large gauge transformations (unless $\theta \in 2\pi\mathbb{Z}$) since $\Psi_{\alpha}[\omega^{\beta}] = e^{in\{\beta\}\theta} \Psi_{\alpha}[\omega].$

9) (or /⁼ 2) keeps the Hamiltonian invariant and hence is ^a symmetry of the system. Therefore , the energy eigenstate to (PEIR/TE) is expected to be an eigenstate of this symmetry : TolA] =) Fo(A]. ↑ depends only on the winding number n(s) of ^G by the Gauss law. What we've seen, Eolo] ⁼ einig¹⁰ EOLOS, is enough to determine the eigenvalue : in Cp(n) ⁼ ^e. Thus, we conclude EolAs] ⁼ ein(s)0 . FoCAS Ege@)

 (x)

Similar to the shift symmetry T of periodic potential $\overline{\Psi}$ T $\overline{\Psi}$ Similar to the shift symmetry T of periodic pote
 $\frac{V}{2a}$ $\frac{V}{2a}$ $\frac{V}{2a}$ $(T\Psi)(x) = \Psi(x$ to the shift symmetry T of periodic potent.
 $\sqrt{\frac{\Psi}{a}}$ $\pi \frac{T\Psi}{2a}$ $(T\Psi)(x) = \Psi(x-a)$ -4 o 4 2a $locclized$ state ij at $x = ja$ with $H(j)=E_{o}(j>-\Delta(j+)-\Delta(j+1>-(tight binding))$ $T(j) = (j+1)$ \Rightarrow $\psi_{\theta} = \sum_{i \in \mathbb{Z}} e^{i j \theta}$ lj $>$ eigenstate of H & T $H\Psi_{\theta} = (E_{o} - 2\Delta\omega_{1}\theta)\Psi_{\theta}$ $T\Psi_{\theta} = \vec{e}$ $^{\mathbf{\mathbf{\mathfrak{g}}}}\Psi_{\boldsymbol{\theta}}$ \bigcap $\psi_{\theta}(\mathbf{x}$ -na) = $e^{-i\mathbf{n}\theta}\Psi_{\theta}(\mathbf{x}), \cdots$ Similar to $\mathbf{x})$ \rightarrow Bloch wave function $\Psi_{\theta}(x) =$ Similar to (periodic. Q Similar expression for $\Psi_{\theta}(A)$ in $\bigvee_{\alpha n_{\beta}} M_i || s$ theory? Jimilar expression to Yolas in
What is the analog of $e^{i\theta}$ and $\frac{1}{\sqrt{1-\frac{1}{2}}}$ = $(C_0 - 2\Delta \omega_1 \sigma) \Psi_{\theta}$
= $e^{-i\theta} \Psi_{\theta}$
(a) = $e^{-i\theta} \Psi_{\theta}(x)$.
function $\Psi_{\theta}(x) = e^{i\theta}$
expression for $\Psi_{\theta}(A)$
the analog of $e^{i\theta \frac{x}{\alpha}}$
Chern-Simons functional \longrightarrow Chern-Simons functional

Chern-Simons functional 15 Y an oriented 3-dimensional manifold $(R^3,V,S^3$ etc). A a -valued 1-form on $\overline{\vee}$ $\frac{1}{\sqrt{1-\frac{1}{2}}}$ The Chern-Simons functional of A on Y is —
;= $CS_{\gamma}(A) := -\frac{1}{8\pi^{2}}\sqrt{\tau_{r}(A dA + \frac{2}{3}A^{3})}$ Some properties : • For a variation of A, $dCS_{\gamma}(A) = -\frac{1}{4\pi^{2}}\int_{\gamma}T_{\gamma}(dA \wedge F_{A})$ \therefore EL egn 15 $FA = o$ (flatness) · For $g: Y \rightarrow G$, $Tr(A^{\frac{1}{2}} A^{\frac{2}{3}} A^{\frac{2}{3}})$ = $Tr(A4A + \frac{2}{3}A^{3}) - \frac{1}{3} Tr(\overline{3}^{1}45)^{3} - d Tr(495^{4}AA)$ Thus, if $\partial Y = \phi$ or $Tr(dg\ddot{g}^T A)|_{\partial Y} = 0$, $C\mathcal{S}_{\gamma}(\mathbb{A}^{9})=$ CS_{φ} (A) + $\frac{1}{24\pi^{2}}\int_{\gamma}$ $\overline{\mathrm{Tr}}(\overline{\mathbf{\theta}}^{\mathrm{T}}\mathbf{L}\mathbf{\theta})^{3}$ $+\frac{2}{3}A^{5}$)
 $-\frac{1}{3}(8) - 14A$
 $-\frac{1}{24}\pi^2$
 $-\frac{1}{24}\pi^2$
 $-\frac{1}{24}\pi^2$
 $-\frac{1}{24}\pi^2$ _
= : ท \overline{y} [9]

Recell Tr F_A² = dTr(AdA +
$$
\frac{2}{D}A^2
$$
).
\nThus for an oriented 4-dimensional manifold X
\npossibly with boundary 3X and a 0J-valued 1-form A
\non X
\n
$$
V_X[A] := -\frac{1}{8\pi^2} \int_X Tr F_A^2 = CS_{0X} [A]_{0X}.
$$
\n85. $X = R^3 \times [T_C, T_F]$ (Eudidea)
\n
$$
\partial X = \frac{\partial R^3 \times [T_C, T_F] + R^3 \times T_C = R^3 \times \{T_F\}}{A = 0
$$
\n
$$
V_R^3 \times [T_C, T_F] + R^3 \times T_C = R^3 \times \{T_F\}
$$
\n
$$
V_R^3 \times [T_C, T_F] (A) = CS_{R^3} [A|_{T_C} - CS_{R^3} [A|_{T_F}].
$$
\n
$$
C_R = \frac{\theta}{RT} \int_{R^3 \times [T_C, T_F]} d^4x \in {}^{(1)}T_C (F_C, F_{\overline{J}^L})
$$
\n
$$
= \theta CS_{R^3} [A|_{T_C}] - \theta CS_{R^3} [A|_{T_F}]
$$

 $\sqrt{6}$

CS[A] := CS_R, (A)
$$
degS
$$

\nCS[A⁶) = CS(A) + n(3).
\nSo, if we write
\n $\Psi_{\theta}(A) = e^{i\theta CS(A)} U_{\theta}(A)$
\nHow, $U_{0}(A)$ is invariant under all $g \in G$).
\nWe may consider more general states $\Psi(A)$ with the
\nsame transformation property as $\Psi_{\theta}(A)$, is.
\n $\Psi(A^{s}) = e^{in(S)\theta} \Psi(A) \quad \forall g \in G$).
\nIf we write $\Psi(A) = e^{i\theta CS(A)} U(A)$, then
\n $U(A)$ is invariant under all $g \in G$.
\nLet $\Psi_{i} \in \Psi_{f}$ be such series with a common θ .
\nThus, the transition amplitude between them is

 $(\Psi_{f}, e^{-i(\mathbf{t}_{f}-\mathbf{t}_{d})H} \Psi_{i})$ = $\int_{0}^{t} e^{iS[A]} \Psi_{f}[A(t_{i})]^{*} \Psi_{i}[A(t_{i})]$ $e^{-i\theta CS[At(t_1)] + i\theta CS[At(t_1)]}\mathcal{U}_f[A(t_1)]^* \mathcal{U}_i[A(t_1)]$ = $\int e^{i S(A) + i S_0[A]} u_f(A(t) + u(t))$ We may consider the O-sector in which (1) All states transform as $\Psi(A^s) = e^{in[3] \theta} \Psi(A)$ for g \in (2) and the action is $S[A]$, Or equivalently All states are invariant under (9) \overline{c} but the action is $S[A]+S_{\theta}[A]$

Note that the state $\Psi_{\bm{\theta}}$ (or $\mathcal{U}_{\bm{\theta}}$) belongs to this sector as the ground state. That's why call it the θ -vacuum. All states obtained from $\overline{\Psi}_{\theta}$ (or \mathcal{U}_{θ}) by operating gauge invariant local operators are in the same sector. This implies that sectors of different values of θ ,
e.g. θ_1 -sector and θ_2 -sector with $\theta_1 \not\equiv \theta_2 \pmod{2\pi \mathbb{Z}}$ do not mix with each other. We shall consider different sectors to be different QFTs. In other words, to specify ^a theory, we need to specity the value of $\theta \in \mathbb{R}/2\pi\mathbb{Z}$. It the states are as in (1) or (2) with a fixed θ ell/2TZ, ↑ avoid infinity , the path-integral must be over A/g where ^G consists of ^g which does not have to Satisfy $n[g]_t]=0$:

 $(\Psi_{f}, e^{-i(\mathbf{t}_{f}-\mathbf{t}_{i})H}\Psi_{i})$ = $\int \frac{dA}{v dY} e^{iS[A]} \Psi_{f}(A(t))^{*} \Psi_{i}(A(t))$ in [= $\int_{\mathcal{A}/Q} \frac{\Delta A}{\Delta U_{s} dQ}$ e ${}^{S[A]+iS_{\theta}(A)}$
 $V_{f}[A(t_{i})]^{*}U_{i}[A(t_{i})]$ in (2)