A bound on Yang-Mills action (G simple)

$$S_{E}(A) = \int_{\mathbb{R}^{4}}^{4} \frac{1}{4e^{2}} \sum_{p,\nu}^{4} F_{\mu\nu} F_{\mu\nu} F_{\mu\nu}$$

$$= -\frac{1}{3^{2}} \int_{\mathbb{R}^{4}} \sum_{p < \nu} T_{r} F_{\mu\nu} F_{\mu\nu} \geqslant 0$$

$$= -\frac{1}{3^{2}} \int_{\mathbb{R}^{4}} \sum_{p < \nu} T_{r} F_{\mu\nu} F_{\mu\nu} \geqslant 0$$

$$\eta_{\Lambda} * \omega = \omega_{\Lambda} * \eta = (\eta, \omega) d^{4} z \qquad dq_{\Lambda} dx_{\Lambda} d$$

$$\star \star = (-1)^{\ell}$$
 on ℓ -forms in 4d

$$\star (\gamma \chi_{\nu} \vee \gamma \chi_{\nu}) = \frac{7}{7} \sum_{\nu} \epsilon_{\nu \nu} \varphi_{\nu} \gamma_{\nu} \gamma_{\nu}$$

e.g.
$$\times (dx' \wedge dx') = dx^3 \wedge dx^4$$
, $\times dx' \wedge dx^5 = -dx^2 \wedge dx^4$,...

* Can be defined on any oriented Riemannian mfd of any dimension.

$$S_{E}[A] = -\frac{1}{e^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr}(F_{A} \wedge \times F_{A})$$

$$= -\frac{1}{e^{2}} \int_{\mathbb{R}^{4}} \left\{ \frac{1}{2} \operatorname{Tr}(F_{A} + \times F_{A}) \wedge \times (F_{A} + \times F_{A}) + \operatorname{Tr}(F_{A} \wedge F_{A}) \right\}$$

$$= \frac{1}{4e^{2}} \int_{\mathbb{R}^{4}} ||F_{A} + F_{A}||^{2} d^{4}x + \frac{1}{2} \int_{\mathbb{R}^{4}} \operatorname{Tr}(F_{A}^{2})$$

$$\geqslant \pm \frac{1}{e^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr}(F_{A}^{2})$$

$$\geqslant \left| \frac{1}{e^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr}(F_{A}^{2}) \right|.$$

If $\int_{\mathbb{R}^4} \text{Tr}(F_A^2) \gtrsim 0$, the bound is saturated by A obeying $F_A \pm *F_A = 0$.

Def Pontrjagin index of A $D[A] := -\frac{1}{8\pi^2} \int_{\mathbb{R}^4} T_r(F_A^2)$

Recall from Lecture 12:

$$T_{\nu}(F_{A}^{2}) = \lambda T_{\nu} \left(A \lambda A + \frac{2}{3} A^{3} \right)$$

$$U(A) = -\frac{1}{8\pi^2} \int_{\mathbb{R}^4} d \operatorname{Tr} (A \lambda A + \frac{2}{3} A^3)$$

$$= -\frac{1}{8\pi^{2}} \int_{S_{\infty}^{3}} T_{r}(AdA + \frac{2}{3}A^{3}) \Big|_{A=\bar{g}'dg}$$

$$= \frac{1}{24\pi^2} \int_{S_{\infty}^3} T_{\nu} ((g^{\gamma} d g)^3)$$

=: N[g] the winding number of $g: S^3_{\infty} \to G$

Fact G simple & simply connected (e.s. G = SU(n), Usp(n), Spin(n)) $T(3(G) \stackrel{\cong}{\to} Z ; [g] \longleftrightarrow n[g]$

Exercise
$$G = SU(2)$$
. For $g: S^3 \rightarrow G$ defined by
$$g(x) = \begin{pmatrix} \chi_{4+i}\chi_{3-i}\chi_{4+i}\chi_{3-i}\chi_{4-i}\chi_{3-i} \end{pmatrix}; |x| = 1$$

Consider the Yang-Mills theory with simple or simply connected G. Formulate it on a box of finite size $V \times T$ with a boundary condition s.t. A has a definite Pontagain index $k \in \mathbb{Z}$. We eventually take $V \to \infty$, $T \to \infty$.

$$Z(V,T,k) = \int_{A/g}^{\Delta A} \frac{\partial A}{\partial x^{2}} e^{-S_{E}[A]} \int_{U(A),k}^{U(A)} e^{-S_{E}[A]} \int_{U(A)}^{U(A)} e^{-S_{E}[A]} e^{-S_{E}[A]} + i\theta U[A]$$

$$= \int_{A/g}^{\Delta B} e^{-S_{E}[A]} \int_{U(A)}^{U(A)} e^{-S_{E}[A]} + i\theta U[A]$$

We assume that there are (anti-) instantons, i.e., localized solutions to

$$F_A \pm *F_A = 0 \qquad \omega(A) = \pm 1$$

$$\Rightarrow S_E(A) = \frac{8\pi^2}{e^2} = :S_0.$$

By the dilute gas approximation, we have

$$Z(V,T,\theta)|_{d,g} = \sum_{n,\bar{n}} e^{-(n+\bar{n})S_0} \kappa^{n+\bar{n}} \frac{(VT)^{n+\bar{n}}}{n!\bar{n}!} e^{i(n-\bar{n})\theta}$$

$$= \exp\left[\kappa VT e^{-S_0+i\theta} + \kappa VT e^{-S_0-i\theta}\right]$$

$$= \exp\left[-VT \varepsilon(\theta)\right]$$

$$\mathcal{E}(\theta) = -2k e^{-\frac{\pi^2}{2}e^2} \cos(\theta)$$

As in the case of periodic potential, we find a continuum of vacuum states, labelled by $\theta \in \mathbb{R}/_{2\pi\mathbb{Z}}$

These are called the O-vacua.

We shall discuss the meaning of this observation in the Canonical / Hamitonian formulation of the theory.

Hamiltonian formulation of YM theory

Minkowski (real time) action

$$S[A] = \int -\frac{1}{4e^2} F^{\mu\nu} F^{\mu\nu} d^4x$$

$$= \int d^4x \left(\frac{1}{2e^2} \sum_{i} F_{0i}^2 - \frac{1}{2e^2} \sum_{i \in J} F_{ij}^2 \right)$$
integrate out E

$$S[A,E;A_0] = \int d^4x \left(\sum_i E_i F_{0i} - \frac{e^2}{2} \sum_i E_i^2 - \frac{1}{2e^2} \sum_{i \in j} F_{ij}^2 \right)$$

$$= \int d^4x \left(\sum_i E_i A_i - \frac{e^2}{2} \sum_i E_i^2 - \frac{1}{2e^2} \sum_{i \in j} F_{ij}^2 + A_0 \sum_i D_i E_i \right)$$

· Ao(x) is a Lagrange multiplier imposing a constraint

. A:(*) & E:(*) are canonically conjugate variables

· Hamiltonian

$$H(E,A) = \int d^3x \left(\frac{e^2}{2} \sum E_i(x)^2 + \frac{1}{2e^2} \sum_{i \leq j} F_{ij}(x)^2 \right)$$

More on the constraint

$$\overline{\Phi}(\mathbf{x}) := \mathbb{D} \cdot \mathbb{E} = \sum_{i} \left(\partial_{i} E_{i} + [A_{i}, E_{i}] \right) = 0 :$$

For a g-valued function E(*) of *, put

$$\overline{\Phi}_{\epsilon} := \int d^{2}x \ \epsilon(x) \cdot \overline{\Phi}(x) = -\int d^{2}x \ D\epsilon(x) \cdot \overline{E}.$$

It obeys

$$\{\Phi_{\epsilon}, A(*)\} = D\epsilon(*)$$

$$\{\Phi_{\epsilon}, \mathbb{E}(*)\} = [\mathbb{E}, \epsilon](*)$$

i De generates the gauge transformation by E(*).

As H is gauge invariant, (\$\Pe, H 7 = 0.

The Humiltonian system of this type is called the system with a first class constraint.

Methods to quantize such a system have been developed. See the additional note. One proposal: physical states are wavefunctionals

I(A) which satisfy the Gauss law

$$\widehat{\Phi}_{\epsilon} \Psi(A) = 0 \quad \forall \epsilon.$$

Since $\widehat{\mathbb{E}}(x) = -i \frac{S}{SA(x)}$, this means

$$\delta_{\epsilon} \Psi(A) = 0, \forall \epsilon$$

le invariance under infinitesimal gauge transformations.

To be precise, we need to impose a boundary condition at 00.

As one natural choice, we take

$$A(x) \rightarrow 0$$
 $w \mid x \mid \rightarrow \infty$

$$\in (\times) \rightarrow 0$$
 as $|\times| \rightarrow \infty$

Let A be the space of such A(*)'s and

g be the Lie algebra of such E(*)'s.

generates the identity component G_0 of the group $G_0 = \{g: |R^3 \to G| g(x) \to 1 \text{ as } |x| \to \infty \}$

An element $g \in \mathcal{G}$ defines a map $g: S^3 = \mathbb{R}^3 \cup \{\infty\} \to G$.

It belongs to \mathcal{G} if and only if it has no winding #: $g \in \mathcal{G}_0 \iff \mathsf{N[S]} = 0$.

Furtheremore,

$$9/9$$
 = $\pi_3(G) \cong Z$

 $A \mapsto A^{9}$ by $g \in Q \setminus Q_{0}$ is called a

large gauge transformations.

The above proposal: physical states are functionals I on A which are invariant under 90:

$$\Psi[A^{g}] = \Psi[A] \quad \forall g \in \mathcal{G}.$$

In other words, they are functionals on A/90.

It does not require invariance under large gauge transformations. Then, how should they transform?

$$H = \int_{\mathbb{R}^3} dx \left(\frac{e^2}{2} \mathbb{E}(x)^2 + \frac{1}{2e^2} F_A(x)^2 \right) \Rightarrow$$

The potential is
$$U(A) = \frac{1}{2e^2} \int_{\mathbb{R}^3} d^3x \, F_A(x)^2$$

. It is invariant under $A \mapsto A^g$ for $\forall g \in \mathcal{G}$,

including large gauge transformations.

•
$$\bigcup \{A\} \geqslant 0$$

= $0 \iff A = 9^{\prime} \downarrow 9$ for some $9 \in 9$

: As a function on Alogo, the potential looks like

where $g_j \in \mathcal{G}$, $N[g_j] = j \in \mathbb{Z}$.

The system is similar to QM with periodic potential.

As in that case, we may consider tunnelling between different minima.

Tunnelling

Put the system in a box

Boundary condition:

$$A \rightarrow 0 \times \rightarrow \partial V$$

$$A \rightarrow 9^{-1} \downarrow 9; \quad \tau \rightarrow -\frac{\tau}{2}$$

$$A \rightarrow 9^{-1} \downarrow 19; \quad \tau \rightarrow \frac{\tau}{2}$$

$$A|_{\partial(V\times T)} = g^{-1}Ag$$

where $g: \partial(V \times T) \to G$

$$n(g) = n(s_i) - n(g_f)$$

$$D(A)$$

$$=\sum_{n,\bar{n}}e^{(n+\bar{n})S_0} \times^{n+\bar{n}} \frac{(\sqrt{T})^{n+n}}{n!\,\bar{n}!} \int_{\overline{T}_i}^{n-\bar{n}} e^{i\theta(n-\bar{n}-n[s_i]+n[s_f])} \int_{\overline{T}_i}^{n+\bar{n}} e^{i\theta(n-\bar{n}-n[s_i]+n[s_f])}$$

$$=\int \frac{d\theta}{2\pi} e^{i(\eta(g_f)-\eta(g_i))\theta} \exp\left(kVTe^{-\frac{g\pi^2}{\ell^2}+i\theta} + kVTe^{-\frac{g\pi^2}{\ell^2}-i\theta}\right)$$

$$=\int \frac{d\theta}{2\pi} e^{in\{9f\}\theta-in\{9i\}\theta} \exp(-VTE(\theta))$$

should be identified with

$$\longrightarrow \Psi_{\theta}(\bar{g}'ag) \propto e^{in(g)\theta}$$

The eigenstate $\{0,(A)\}$ is not invariant under large gauge transformations (unless $0 \in 2\pi\mathbb{Z}$) since

$$\Psi_{\theta}[\Phi^{\theta}] = e^{in[\theta]\theta} \Psi_{\theta}[\Phi]$$

If (or 91/9) \approx Z) keeps the Hamiltonian invariant and hence is a symmetry of the system.

Therefore, the energy eigenstate V_{θ} ($\theta \in \mathbb{R}/2\pi z$) is expected to be an eigenstate of this symmety:

 $\Psi_{\theta}[A^g] = C_{\theta}(n(s)) \Psi_{\theta}[A].$ depends only on the winding number n(s) of g by the Gauss law.

What we've seen, $\Psi_0(0^9) = e^{in(9)\theta} \Psi_0(0)$, is enough to determine the eigenvalue:

$$C^{\theta}(v) = e^{iv\theta}$$

Thus, we conclude

$$\mathcal{T}_{\theta}[A^{9}] = e^{in(9)\theta} \cdot \mathcal{T}_{\theta}[A] \quad \forall g \in \mathcal{G}$$

Similar to the shift symmetry T of periodic potential

localized state (j) at x=ja with $H(j) = E_0(j) - \Delta(j-1) - \Delta(j+1) \quad (tight binding)$ $T(j) = \{j+1\}$

 $\frac{1}{\sqrt{100}} = \sum_{j \in \mathbb{Z}} e^{ij\theta} |_{j} > \text{ eigenstate of } \text{Ho} \text{T}$ $\frac{1}{\sqrt{100}} = (E_0 - 2\Delta \omega_0 \theta) \sqrt{100}$ $\frac{1}{\sqrt{100}} = e^{-i\theta} \sqrt{100}$ $\sqrt{100} = e^{-i\theta} \sqrt{100}$ $\sqrt{100} = e^{-i\theta} \sqrt{100}$ Similar to (\$\frac{1}{100}\$).

 \rightarrow Bloch wave function $\Psi_{\theta}(x) = e^{i\theta \frac{x}{a}} \Psi_{\theta}(x)$ Periodic.

- Similar expression for Zo(A) in Yang-Mills theory? What is the analog of eio 2?
 - --> Chesn-Simons functional

Chern-Simons functional

Y an oriented 3 - dimensional manifold (R3, V, S3 etc),

A a g-valued 1-form on Y.

The Chern-Simons functional of A on Y is

$$CS_{Y}(A) := -\frac{1}{8\pi^{2}}\int_{Y} T_{V}(AdA + \frac{2}{3}A^{3})$$

Some properties:

For a variation of A,
$$\delta CS_{\gamma}(A) = -\frac{1}{4\pi^2} \int_{\gamma} T_{\nu}(\delta A \wedge F_{A})$$

: EL eqn is $F_{A} = 0$ (flatness)

• For
$$g: Y \to G$$
, $T_r(A^9 dA^9 + \frac{2}{3}A^{93})$
= $T_r(AdA + \frac{2}{3}A^3) - \frac{1}{3}T_r(5^1 d5)^3 - dT_r(d55^1 \wedge A)$

Thus, if
$$\partial Y = \phi$$
 or $Tr(dgg^{\dagger}A)|_{\partial Y} = 0$,

$$CS_{\gamma}[A^{9}] = CS_{\gamma}[A] + \frac{1}{24\pi^{2}} \int_{\gamma} T_{\gamma}(5^{1}49)^{3}$$

$$= : N_{\gamma}[9]$$

Thus for an oriented 4-dimensional manifold X possibly with boundary DX and a oj-valued 1-form A on X

$$V_{X}[A] := -\frac{1}{8\pi^{2}}\int_{X} T_{r} F_{A}^{2} = CS_{\partial X}[A]_{\partial X}.$$

e.s.
$$X = \mathbb{R}^3 \times [\tau_i, \tau_f]$$
 (Euclidean)

$$\partial X = \partial \mathbb{R}^3 \times [\tau_i, \tau_f] + \mathbb{R}^3 \times \{\tau_i\} - \mathbb{R}^3 \times \{\tau_f\}$$

$$A = 0 \text{ here}$$

$$U_{\mathbb{R}^3 \times (\tau_i, \tau_f)}(A) = CS_{\mathbb{R}^3}(A|_{\tau_i}) - CS_{\mathbb{R}^3}(A|_{\tau_f}).$$

In Minkowski space

$$S_{\theta}[A] := \frac{\theta}{r\pi^2} \int_{\mathbb{R}^3 \times \{t_i, t_f\}} d^4x \in \mathcal{F}_{r}(F_0, F_{r}u)$$

$$= \theta CS_{\mathbb{R}^3} [A|_{t_i}] - \theta CS_{\mathbb{R}^3} [A|_{t_f}]$$

$$CS(A^9) = CS(A) + n(9).$$

So, if we write

then, $U_0[A]$ is invariant under all $g \in \mathcal{G}$).

"Block-type wave functional".

We may consider more general states I[A] with the same transformation property as Vo[A], is.

$$\Psi[A^9] = e^{(n(s)\theta)} \Psi[A] \quad \forall g \in \mathcal{G}.$$

If we write $\mathcal{T}[A] = e^{i\theta CS[A]} \mathcal{U}(A)$, then $\mathcal{U}(A)$ is invariant under all $g \in S$.

Let I; e If be such states with a common O.

Then, the transition amplitude between them is

$$(\Psi_{f}, e^{-i(t_{f}-t_{f})H}\Psi_{f})$$

$$= \int_{-i}^{\infty} e^{iS[A]} \Psi_{f}[A(t_{f})]^{*} \Psi_{f}[A(t_{f})]$$

$$= \int_{-i}^{\infty} e^{iS[A]} \Psi_{f}[A(t_{f})]^{*} \mathcal{U}_{f}[A(t_{f})]^{*} \mathcal{U}_{f}[A(t_{f})]$$

$$= \int_{-i}^{\infty} e^{iS[A]} \Psi_{f}[A(t_{f})]^{*} \mathcal{U}_{f}[A(t_{f})]$$

We may consider the O-sector in which

- (1) All states transform as $\mathbb{T}[A^s] = e^{in[s]\theta}\mathbb{T}[A]$ for $g \in \mathcal{G}$) and the action is S[A], or equivalently
- 2) All states are invariant under 9) but the action is S[A]+So[A]

Note that the state To (or No) belongs to this sector as the ground state. That's why call it the O-vacuum.

All states obtained from To (or No) by operating gauge invariant local operators are in the same sector.

This implies that sectors of different values of θ ,
e.s. θ_1 -sector and θ_2 -sector with $\theta_1 \not\equiv \theta_2 \pmod{2\pi 2}$ do not mix with each other.

We shall consider different sectors to be different QFTs. In other words, to specify a theory, we need to specify the value of $0 \in \mathbb{R}/2\pi\mathbb{Z}$.

If the states are as in (1) or (2) with a fixed $0 \in \mathbb{R}/2\pi \mathbb{Z}$, to avoid infinity, the path-integral must be over A/g where g consists of g which does not have to satisfy $n[g|_t] = 0$:

$$(\Psi_f, e^{-i(t_f-t_i)H}\Psi_i)$$

$$=\int \frac{\partial A}{\partial x} e^{iS[A]} \overline{Y}_{f}[A(t_{f})]^{*} \overline{Y}_{i}[A(t_{f})] \quad \text{in } I$$

$$A/g$$

$$=\int \frac{DA}{V=19} e^{iS[A]+iS_{0}[A]} \mathcal{V}_{f}[A(t_{f})]^{*} \mathcal{U}_{i}[A(t_{i})] \text{ in } 2$$