More about diagrams

- Connected or not
- Loops

$$
\begin{aligned}
& E=\# \text { external lines } \\
& P=\# \text { propagators } \\
& V=\# \text { vertices }
\end{aligned}
$$

$$
\begin{aligned}
& E=0 \\
& P=3 \\
& V=2 \\
& E=4 \\
& P=2
\end{aligned}
$$

Then \# internal lines $I=P-E$
and \# loops $L=[-V+1=P-E-V+1$ if connected.

$$
L=3-2+1=2
$$

$$
L=4-4+1=1
$$

$$
L=2-2+1=1
$$

$$
\underset{\sim}{?} L=2-2+1=1
$$

$$
\int \prod_{v \in V} d^{4} y_{v} \int \prod_{e \in E} d^{4} P_{e} e^{-i P_{e}\left(x_{e}-y_{v(e)}\right)} \int \prod_{i \in I} d^{4} P_{i} e^{-i P_{i}\left(y_{t(i)}-y_{s(i)}\right)} F(P)
$$

$$
\int d^{4} y_{v} e^{i \sum_{l \in V} \varepsilon_{l} P_{l} y_{v}}=(2 \pi)^{4} \delta^{(t)}\left(\sum_{l \in V} \varepsilon_{l} P_{l}\right)
$$

$\begin{aligned} & \text { Sum over lines } \\ & \text { connected to } v\end{aligned} \quad \varepsilon_{l}= \begin{cases}+1 & \text { if } l \text { goes out of } v \\ -1 & \text { if } l \text { comes in to } v\end{cases}$ egg.

$$
\begin{aligned}
=\int \prod_{e \in E} d^{4} p_{e} e^{-i p_{e} x_{e}} \int \prod_{i \in I} d^{4} p_{i} \prod_{V \in V}(2 \pi)^{4} \delta^{(4)}\left(\sum_{l \in V} \varepsilon_{l} p_{l}\right) & F(p) \\
& (2 \pi)^{4} \delta^{(4)}\left(\sum_{c \in E} p_{e}\right) \prod_{V=1}^{V-1}(2 \pi)^{4} \delta^{(4)}\left(\sum_{l \in V} \varepsilon_{l} p_{l}\right)
\end{aligned}
$$

Overall momentum
conservation
\therefore net \# of momentem integrals

$$
=I-(V-l)=L
$$

- A diagram without loop $(L=0)$ is called a tree diagram :

.... no momentum integral
- A connected diagram (\neq a propagator $)$ is one particle irreducible (1 PI) if it is still connected when any internal line is cut.

- Any diagram is uniquely decomposed into 1PI blocks and separating lines

$Z_{\text {pert }} \&\langle f\rangle_{\text {pert }}$ is the sum of tree diagrams with 1 PI vertices.
$\underline{1 \mathrm{PI} \text { effective action }}$
Consider a theory of variables $\phi=\left(\phi_{1}, \cdots, \phi_{N}\right)$ measure $d \phi$ and action $S_{E}(\phi)$ (omit " E "below).

$$
e^{-W(J)}=\int d \phi e^{-S(\phi)+J \cdot \phi}
$$

Decompose $S(\phi)-J \cdot \phi=\underbrace{\frac{1}{2} \sum_{i, j} \phi_{i} A^{i j} \phi_{j}}_{\text {free part }}+\underbrace{\text { else }}_{\text {interaction part }}$ and evaluate $W(J)$ perturbatively.
*. Everything below is perturbative but we omit "pert".
e.g. $W(J)=W_{\text {pert }}(J)$ is the sum of connected diagram.

$$
-\frac{\partial}{\partial J^{i}} W(J)=\frac{\int d \phi e^{-S(\phi)+J \cdot \phi} \phi_{i}}{\int d \phi e^{-S(\phi)+J \cdot \phi}}=:\left\langle\phi_{i}\right\rangle_{J}
$$

Solve $\left(\phi_{i}\right)_{J} \stackrel{!}{=} \phi_{i} \quad i=1, \cdots, N$ for J, write $\frac{\text { the solution }}{}$ as $J=J(\varphi)$ and put theory

$$
\Gamma(\phi):=W(J(\phi))+J(\phi) \cdot \phi
$$

... Legendre transform of $W(J)$.

$$
\begin{array}{r}
\frac{\partial \Gamma(\phi)}{\partial \phi_{i}}=\frac{\partial J^{j}(\phi)}{\partial \phi_{i}} \cdot \frac{\partial W}{\partial J^{j}}(J(\phi))
\end{array}+\frac{\partial J^{j}(\phi)}{\partial \phi_{i}} \cdot \phi_{j}+J^{i}(\phi)=J^{i}(\phi), ~ \begin{aligned}
& =1, \cdots, N .
\end{aligned}
$$

Thus,

$$
\phi_{i}^{*}:=\left\langle\phi_{i}\right\rangle_{J=0} \Rightarrow J\left(\phi^{*}\right)=0 \quad \therefore \frac{\partial \Gamma}{\partial \phi_{i}}\left(\phi^{*}\right)=0 .
$$

VEV of ϕ at $J=0$ is a critical point of $\Gamma(\phi)$.

Properties of $\Gamma(\phi)$
(1) It is a generating series of 1 PI vertices

$$
\begin{aligned}
\Gamma(\phi)= & \frac{1}{2} \log \operatorname{det}(A / 2 \pi)+\frac{1}{2} \sum_{i_{j}} \phi_{i} A^{i j} \phi_{j} \\
& -\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{i, \cdots i_{n}} \lambda_{1 P T}^{i_{1} \cdots i_{n}} \phi_{i_{1}} \cdots \phi_{i_{n}}
\end{aligned}
$$

where $\lambda_{1 P I}^{i_{1} \cdots i_{n}}$ is the IPI vertex defined by

$$
\left\langle\phi_{i_{1}} \cdots \phi_{i n}\right\rangle_{1 P L}=\left.{ }_{i} \nabla_{i}\right|_{i} ^{i n}=\sum_{j \cdots j_{n}} \overleftarrow{\phi}_{i} \phi_{u 1} \cdots \phi_{i n} \phi_{j_{n}} \lambda_{1 P I}^{j_{1} \cdots j_{n}}
$$

For this reason, $P(\Phi)$ is called $1 P I$ effective action.
(2) $\Gamma(\phi)=\frac{1}{2} \log \operatorname{det}(A / 2 \pi)$ - The sum of $1 P I$ vacuum diagrams of $J(\varphi)$, the theory with background ϕ :

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { variables } \xi=\left(\xi_{1}, \cdots, \xi N\right) \\
\text { measure } d_{\phi} \xi=d(\phi+\xi) \\
\text { action } S_{\phi}(\xi)=S(\phi+\xi)
\end{array}\right. \\
& \int d_{\phi} \xi e^{-S_{\phi}(\xi)}=\sqrt{\frac{(2 \pi)^{N}}{d e t A}} e^{\text {connected vacuum diagrams }} \\
& =e^{-\Gamma(\phi)+\text { non-LPI conn. vac. diagrams }}
\end{aligned}
$$

Here we take

$$
S_{\phi}(\xi)=\frac{1}{2} \xi_{i} A^{i j} \xi_{j}+e l_{s e}
$$

free part interaction part
(3) This holds for any decomposition of $S_{\phi}(\xi)$ into free + interaction. In particular, for the expansion in powers of ξ, we can take th ξ-quadratic part $\frac{1}{2} \sum_{i j} \xi_{i} \xi_{j} \partial_{i} \partial_{j} S(\phi)$ as the free part.

$$
S_{\phi}(\xi)=\underbrace{S(\phi)}_{\text {free part }}+\underbrace{S^{\prime}(\phi) \xi}_{\text {interaction }}+\underbrace{\frac{1}{2} S^{\prime \prime}(\phi) \xi^{2}}+\frac{1}{3!} S^{\prime \prime \prime}(\phi) \xi^{3}+\cdots
$$

$\left\{\begin{array}{l}\text { - } S(\phi) \text { is outside the } \xi \text { integral. } \\ \text { - Any diagram involving the vertex }-S^{\prime}(\phi) \cdot \xi\end{array}\right.$ is not $1 P I$:

Thus, we can take only the cubic or higher powers in $\}$ as the interaction part to produce vertices.

With this understanding,

$$
e^{-\Gamma(\phi)}=e^{-S(\phi)} \cdot \sqrt{\frac{(2 \pi)^{N}}{d e t S^{\prime \prime}(\phi)}} \cdot \exp (1 P I \text { vacuum diagrams }) .
$$

That is,

$$
\Gamma(\phi)=S(\phi)+\underbrace{\frac{1}{2} \log \operatorname{det}\left(\frac{S^{\prime \prime}(\phi)}{2 \pi}\right)}_{\frac{1}{2} \operatorname{tr} \log \left(\frac{S^{\prime \prime}(\phi)}{2 \pi}\right)}-1 P[\text { vacuum diagrams. }
$$

Consequence of ? recover $\hbar \int d_{\phi} \xi e^{-\frac{1}{\hbar} S_{\phi}(\xi)}=e^{-\frac{1}{\hbar} P(\phi, \hbar)+\text { others }}$
\leadsto propagator $\propto \hbar$, vertex $\propto \hbar^{-1}$

A LPI vacuum diagram with \# propagator $=P$
\# Vertices $=V$

$$
\alpha \hbar^{P-V}=\hbar^{L-1}
$$

where $L=P-V+1$ is \#loops
egg.

$$
\begin{aligned}
& P=3 \\
& V=2
\end{aligned} \quad L=3-2+1=2
$$

Thus, $\Gamma(\phi, \hbar)=\sum_{L=0}^{\infty} \hbar^{L} \Gamma_{L}(\phi)$
$\Rightarrow-P_{L}(\phi)=$ the sum of $L P I$ vacuum diagrams

$$
\text { with \# loops }=L
$$

$(\log \operatorname{det}(A / 2 \pi \hbar)$ is included in $L=1)$
$\therefore t$-expansion $=$ loop expansion.

Parameter dependence
The action may depend on parameters $g=\left(g_{I}\right)$
such as coupling constants \& external fields, and the dependence can be made explicit as $S(\phi, S)$, and similarly for $W(J, g)$ \& $\Gamma(\phi, \rho)$. Le.

$$
\begin{aligned}
& e^{-W(J, g)}=\int d \phi e^{-S(\phi, s)+J \cdot \phi} \\
& \left(\phi_{i}\right\rangle_{J, g}=-\frac{\partial W}{\partial J^{i}}(J, \phi) \stackrel{!}{=} \phi_{i} \sim J=J_{g}(\phi) \\
& \Gamma(\phi, g):=W\left(J_{g}(\phi), s\right)+J_{g}(\phi) \cdot \phi
\end{aligned}
$$

Then $\frac{\partial \Gamma}{\partial \phi_{i}}(\phi, g)=J_{g}^{i}(\phi)$ remains to hold.
Also $\frac{\partial \Gamma}{\partial g_{I}}(\phi, g)=\frac{\partial J_{g}^{j}(\phi)}{\partial g_{I}} \frac{\partial W}{\partial J^{j}}\left(J_{\phi}(\phi), g\right)+\frac{\partial W}{\partial g_{\tau}}\left(J_{g}(\phi), g\right)$

$$
\begin{gathered}
+\frac{\partial J_{g}^{j}(\phi)}{\partial g \tau} \phi_{j} \\
=\left\langle\frac{\partial S}{\partial g_{I}}(\phi, g)\right\rangle_{J_{g}(\phi), g}
\end{gathered}
$$

Ward identity for 1PI effective action
Suppose $\phi \rightarrow \phi+\delta \phi$ is a symmetry, $\delta\left(d \phi e^{-S(q)}\right)=0$.
Then, wa have Ward identity

$$
\begin{aligned}
0 & =\int \delta\left(d \phi e^{-S(\phi)+J \cdot \phi}\right) \\
& =\int d \phi e^{-\delta(\phi)+J \cdot \phi} J \cdot \delta \phi=e^{-W(J)} J \cdot\langle\delta \phi\rangle_{J}
\end{aligned}
$$

Set $J=J(\phi)$ and use $\frac{\partial \Gamma}{\partial \phi_{i}}(\phi)=J^{i}(\phi)$.
We obtain
$\sum_{i}\left\langle\delta \phi_{i}\right\rangle_{\mathcal{J}(\phi)} \frac{\partial \Gamma}{\partial \phi_{i}}(P)=0 . \quad$ Slavnov-Taylor identity
ie. $\quad \Gamma(\phi)$ is invariant under $\phi \rightarrow \phi+\langle\delta \phi\rangle_{J(\Phi)}$.

For an at most linear symmery: $\delta \phi_{i}=M_{i}, \phi_{j}+C_{i}$,

$$
\left\langle\delta \phi_{i}\right\rangle_{J(\phi)}=M_{i j}\left\langle\phi_{j}\right\rangle_{J(\phi)}+C_{i}=M_{i j} \phi_{j}+C_{i}=\delta \phi_{i}
$$

So $\Gamma(P)$ is invariant under the original symmetry.

A variant: Suppose $S(\phi, g)$ is invariant under

$$
\begin{aligned}
& \phi \rightarrow \phi+\delta \phi \text { and } g \rightarrow g+\delta g . \\
& 0= \int_{R} \delta_{\text {for } \phi \text { only }}\left(d \phi e^{-S(\phi, g)+J \cdot \phi}\right) \\
&= \int d \phi e^{-\delta(\phi, g)+J \cdot \phi}(\underbrace{-\delta \phi_{i} \frac{\partial S}{\partial \phi_{i}}(\phi, g)}+J \cdot \delta \phi) \\
&=\delta g_{\tau} \frac{\partial S}{\partial S_{\tau}}(\phi, g) \\
&= e^{-W(J, g)}\left(\delta g \cdot\left\langle\frac{\partial S}{\partial g}(\phi, S)\right)_{J, g}+J \cdot\langle\delta \phi\rangle_{J, g}\right)
\end{aligned}
$$

Set $J=J_{g}(\phi) k$ use $\frac{\partial P}{\partial \phi_{i}}(\phi, g)=J_{g}^{i}(\phi)$,

$$
\frac{\frac{\partial \Gamma}{\partial g_{\tau}}(\phi, g)=\left\langle\frac{\partial S}{\partial g_{\tau}}(\phi, g)\right\rangle_{J_{g}(\phi), g}}{\sum_{i}\left\langle\delta \phi_{i}\right\rangle_{J_{g}(\phi), g} \frac{\partial \Gamma}{\partial \phi_{i}}(\phi, g)+\sum_{I} \delta g_{\tau} \frac{\partial \Gamma}{\partial g_{\tau}}(\phi, g)=0}
$$

ie. $\Gamma(\phi, g)$ is invariant under

$$
\phi \rightarrow \phi+\langle\delta \phi\rangle_{\delta(\rho), g}, g \rightarrow g+\delta g .
$$

Ward identities in gauge theory
Consider a gauge theory with variable ϕ, action $S_{E}(\phi)$, gauge symmetry $\phi \rightarrow \phi+\delta_{\epsilon} \phi$.

Choose a gauge fixing function $X(D)$ \leadsto gauge fixed system: variable $X=(\phi, C, \vec{C}, B)$ action $\tilde{S_{E}}(X)=S_{E}(\phi)+\frac{3}{2} B^{2}-i B \cdot X(\phi)+\bar{c} \delta_{c} \chi(\phi)$
BRST symmetry (fermionic \& nilpotent $\delta_{B}^{2}=0$):

$$
\delta_{B} \phi=\delta_{C} \phi, \quad \delta_{B} C=-\frac{1}{2}[C, C], \quad \delta_{B} \bar{C}=i B, \quad \delta_{B} B=0
$$

Introduce an external field $K=\left(K^{f / b}, K^{b}, K^{b}, K^{\bar{c}}\right)$
coupled to $\delta_{B} X=\left(\delta_{B} \phi, \delta_{B} C, \delta_{B} \bar{C}, 0\right)$, and consider

$$
S(X, K)=\widetilde{S}_{E}(X)-K \cdot \delta_{B} X
$$

Define $W(J, K)$ \& $\Gamma(\phi, K)$ as before.

Ie. $e^{-W(J, K)}:=\int d x e^{-\tilde{S}(X)+J \cdot X+K \cdot \delta_{B} X}$

$$
J=\left(J^{\phi / f}, J^{c}, J^{\bar{c}}, J^{B}\right)
$$

$$
\Gamma(x, k):=W\left(J_{k}(x), k\right)+J_{k}(x) \cdot x
$$

where $J=J_{K}(X)$ soln of $\frac{\partial W}{\partial J}(J, K) \stackrel{!}{=}-X$

$$
\begin{aligned}
& \frac{\partial \Gamma}{\partial x_{i}}(x, K)=\frac{\partial J_{k}(x)}{\partial x_{i}} \cdot \underbrace{\frac{\partial W}{\partial J}\left(J_{k}(x), K\right)}_{-x}+\frac{\partial J_{k}(x)}{\partial X_{i}} \cdot x+\epsilon_{i} J_{k}^{i}(x) \\
&=\epsilon_{i} J_{k}^{i}(x) ; \quad \epsilon_{i}= \begin{cases}1 & x_{i} \text { bosonic } \\
-1 & x, \text { fermionic }\end{cases} \\
& \begin{aligned}
\frac{\partial \Gamma}{\partial K^{i}}(X, K) & =\left\langle\frac{\partial S}{\partial K^{i}}(X, K)\right\rangle_{J_{k}(x), k}=-\left\langle\delta_{B} X_{i}\right\rangle_{J_{k}(x), k}
\end{aligned}
\end{aligned}
$$

Ward identity for BRST symmetry:

$$
\begin{aligned}
0 & =\int \delta_{B}\left(d x e^{-\widetilde{S}(X)+J \cdot X+K \cdot \delta_{B} X}\right) \\
& =\int d x e^{-\widetilde{S}(x)+J \cdot x+k \cdot \delta_{B} X} \sum_{i} \epsilon_{i} J^{i} \delta_{B} X_{i} \\
& =e^{-W(J, K)} \sum_{i} \epsilon_{i} J^{i}\left\langle\delta_{B} X_{i}\right\rangle_{J, k}
\end{aligned}
$$

Set $J=J_{K}(x)$ \& use above:

$$
\sum_{i} \frac{\partial \Gamma}{\partial x_{i}}(x, k) \cdot \frac{\partial \Gamma}{\partial k^{i}}(x, K)=0
$$

Zinn-Justin equation
At $K=0$, it reduces to BRST-Ward identity:

$$
\sum_{i}\left\langle\delta_{B} X_{i}\right\rangle_{J(x)} \frac{\partial \Gamma}{\partial x_{i}}(x)=0
$$

Ghost number symmetry
The extended system $S(X, K)=\tilde{S}_{E}(X)-K \cdot \delta_{B} X$ has ghost number symmetry:

	Φ	C	\bar{C}	B	K^{ϕ}	K^{c}	$K^{\bar{C}}$
ghost \#	0	1	-1	0	-1	-2	0

Tee. it is invariant under

$$
x_{i} \rightarrow e^{Q_{x_{i}} \alpha} x_{i}, K^{i} \rightarrow e^{Q_{k^{i \alpha}}} K^{i}
$$

$\rightarrow \Gamma(X, K)$ also has the same symmetry.

B\& $K^{\bar{c}}$ dependence

$$
\begin{aligned}
& \frac{B \& K^{c} \text { dependence }}{} \\
&\left.\begin{array}{rl}
0 & =\int d x \frac{\partial}{\partial B}\left(e^{-\overline{S_{E}}(x)}+J \cdot x+K \cdot \delta_{B} x\right.
\end{array}\right) \\
&= \int d x e^{-\tilde{S}_{E}(x)+J \cdot x+K \cdot \delta_{B} x} x \\
&\left(-\xi B+i X(\phi)+J^{B}+i K^{\bar{c}}\right)
\end{aligned}
$$

Set $J=J_{k}(X)$. Also, assume $X(\phi)$ is at most linear in ϕ.
Then

$$
\begin{aligned}
& -\xi B+i X(p)+\frac{\partial \Gamma}{\partial B}+i k^{\bar{c}}=0 \\
& \therefore \frac{\partial \Gamma}{\partial B}=\xi B-i X(p)-i K^{\bar{c}}
\end{aligned}
$$

$A l s_{0}, \frac{\partial \Gamma}{\partial K^{\bar{c}}}=-\langle i B\rangle_{J_{K}(x), k}=-i B$.

$$
\therefore \Gamma(X, K)=\frac{1}{2} \xi B^{2}-i B \cdot X(\phi)-i K^{\bar{c}} \cdot B
$$

$+B \& K^{\bar{C}}$ independent terms.
Lie. \nexists quantum correction to $B k K^{\bar{c}}$ dependence.

There Ward identities will be used in the proof of Venormalizability of gauge theory.

