proof of (1) $-W(J) = -\frac{1}{2}\log\left(\det\frac{A}{2\pi}\right) + \sum D$ D: Connected Vacuum diagram G"C.V.d." below of the perturbation theory with propagator $i = \phi_i \phi_j = A_{ij}$ Vertices χ etc = $-\frac{\lambda}{4!}\phi^4$ etc $J - = J \cdot \varphi$ $e_{\mathcal{G}} = \frac{1}{2!} J \phi J \phi = \frac{1}{2!} J A_{ij} J_{j}$ $\frac{1}{2} = \frac{1}{2!} \int \phi J \phi - \frac{\lambda}{4!} \phi \phi \phi \phi \times (\frac{4}{2}) \cdot 2$ a separating line $\mathsf{N}_{\mathsf{J}}(\mathsf{O}) := \# \, \mathsf{J}' \mathsf{s} \ in \ \mathsf{O}$:= a line s.t. the NIPI(D) = #1PI blocks in D diagram is disconnected if cut NSP (D) == # separating lines in D $N_{3} = 4$ $N_{lPT} = 3$ $N_{SL} = 6$

 $\langle \phi_i \rangle_{J} = i - \langle \phi \rangle$ sum of connected diagrams with one external line ending at i. $\sum_{\substack{D: c.v.d.}} N_{s.l.}(D) \cdot D = \bigcirc = \frac{1}{2} \langle \phi_i \rangle_{J} A_{ij} \langle \phi_j \rangle_{J}$ $\sum_{D:C.v.d.} N_J(D) \cdot D = J - (\phi) = J \cdot (\phi)_J$ $\sum_{D: c.v.d.} N_{1PI}(D) = \sum_{N=0}^{\infty} \frac{1}{1} \sum_{D=0}^{\infty} \frac{1}{1} \sum_{n=0}^{\infty} \frac{1}{$ $= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{i_1\cdots i_n} \lambda_{1PI}^{i_1\cdots i_n} \langle \phi_{i_n} \rangle_{J} \cdots \langle \phi_{i_n} \rangle_{J}$ If we regard 1PI blocks as vertices, then a C.U.d. D is a tree diagram (a diagram without a loop) st. $E = N_{J}$, $V = N_{1PL}$, $P = N_{S.L}$ $= L = P - E - V + I = N_{SR} - N_7 - N_{(PI} + I)$ $-N_{SR}(D) + N_{J}(D) + N_{IPI}(D) = 1.$

 $-W(\mathcal{J}) + \frac{1}{2}\log dut\left(\frac{A}{2\pi}\right) = \sum_{\mathcal{D}: \mathcal{C}, \mathcal{V}, \mathcal{A}} \mathcal{D}$ $= \sum_{D \leq CV, d} \left(-N_{s, \ell}(0) + N_{T}(D) + N_{1PI}(D) \right) D$ = $-\frac{1}{2}\langle \varphi_i \rangle_{\mathcal{A}_{ij}} \langle \varphi_j \rangle_{\mathcal{A}_{ij}} + \overline{J}_i \langle \varphi_i \rangle_{\mathcal{A}_{ij}} + \sum_{\mu=0}^{\infty} \frac{1}{\mu_i} \lambda_{1PI}^{\mu_i \dots \mu_i} \langle \varphi_i \rangle_{\mathcal{A}_{ij}} - \langle \varphi_{i\mu} \rangle_{\mathcal{A}_{ij}}$ --- (18) Set $J = J(\varphi)$ here: $\langle \varphi_i \rangle_{J(\varphi)} = \varphi_i$ - W (J(P) + + loy det (A) $= -\frac{1}{2} \phi_i A_{ij} \phi_j + J(\phi) \phi + \sum_{\mu=\mu}^{\infty} \frac{1}{\mu_1} \lambda_{i\mu} \phi_{i\mu} \phi_{i\mu} \phi_{i\mu}$ $\therefore \ [(\varphi) = W(J(\varphi)) + J(\varphi) \cdot \varphi$ $= \frac{1}{2} \log \det \left(\frac{A}{2\pi}\right) + \frac{1}{2} \phi_i A_{ij} \phi_j - \sum_{\mu=1}^{\infty} \frac{1}{\mu_1} \lambda_{iPL} \phi_{in} \phi_{in}$ //

prost of (2) $-\Gamma(\Phi) - W(J(\Phi)) - J(\Phi) \cdot \Phi = e$ $= \int d\varphi' e^{-S(\varphi') + J(\varphi) \cdot \varphi' - J(\varphi) \cdot \varphi}$ $= \int d\varphi' e^{-S\varphi(\xi) + J(\varphi) \cdot \xi} - W^{\varphi}(J(\varphi))$ $= \int d\varphi \xi e^{-S\varphi(\xi) + J(\varphi) \cdot \xi} = e^{-W^{\varphi}(J(\varphi))}$ $= \int d\varphi' e^{-\int (\varphi') + \int (\varphi) \cdot (\varphi' - \varphi)} (\varphi' - \varphi)$ $= e^{-\mathcal{J}(\mathbf{P})\cdot\mathbf{\Phi}} \left(\langle \phi_i \rangle_{\tau(\mathbf{P})} - \phi_i \right) = \mathbf{D}$ Apply (A) to $\mathcal{J}(\phi)$ with $\mathcal{J}=\mathcal{J}(\phi)$: $-\left[\left(\varphi\right)=-W^{\varphi}(J(\varphi))\right]$ $\stackrel{(\bigstar)}{=} - \frac{1}{2} \log \det \left(\frac{A}{m}\right) - \frac{1}{2} \left(3; \stackrel{\bigstar}{J_{10}}\right) A_{ij} \left(3; \stackrel{\bigstar}{J_{10}}\right)$ + $J_{i}(\varphi)$ $(\xi_{i})^{\varphi}$ + $\sum_{n=s}^{\infty} \frac{1}{n!} \lambda_{1PL}^{pi_{i} \cdot c_{n}} (\xi_{i})^{\varphi}$

Only N=0 remains!

$$= -\frac{1}{2} \log \operatorname{dut} \left(\frac{A}{\upsilon c}\right) + \lambda_{1PI}^{\operatorname{vac} \phi}$$
sum of 1PI vacuum diagrams of $\mathcal{J}(\phi)$. //
proof of 3 (The case N=1 for simplicity)
 $S(\phi) = \frac{1}{2} (a+b) \phi^2 - P(\lambda, \phi)$ Polynomial of ϕ
with parameter λ
Perturbation theory P1: $S = \frac{1}{2} (a+b) \phi^2 - P(\lambda, \phi)$
 Vs Gree interaction
Perturbation theory P2: $S = \frac{1}{2} a \phi^2 + \frac{1}{2} b \phi^2 - P(\lambda, \phi)$
free interaction
In P1, $a+b \in C$, $R_s(a+b)s^0$, λ : formal parameters.
To P2, $a \in C$, $R_s(a)s^0$, $b \neq \lambda$: firmal parameters.
For comparison to make sense, $q, b \in C$, $|b| < \operatorname{Re} a$,
 $f(a+b) = (a+b)^T$ in P1 is regarded as
 $\sum_{m=0}^{\infty} \frac{1}{m!} f^{(m)}(a) b^m$ in P2.