Hermiticity of gauge fixed system

In real time, the Lagrangian of the gauge fixed Yang-Mills theory is

$$\widehat{\mathcal{L}} = -\frac{1}{4e^2} F^{\mu\nu} \cdot F_{\mu\nu} + \frac{e^2 }{2} B^2 - B \cdot J^{\mu} A_{\mu} - i \overline{c} \cdot J^{\mu} D_{\mu} C$$

and the BRST transformation is

$$d_B A_r = D_r c$$
, $d_B B = 0$, $d_B \bar{c} = i B$, $d_B c = -\frac{1}{2} (c, c)$

We would like to propose that the fields have the following reality/hermiticity

$$(\times)$$
 $A_{+}^{\mu} = A_{\mu}, B_{+} = B, \overline{C}_{+} = \underline{C}, C_{+} = C$

- () Show that $\widetilde{\mathcal{L}}$ is real under (*), $\mathcal{L}^* = \mathcal{L}$
- (2) The Noether charge Q_B of the BRST symmetry (= BRST charge) satisfy the Ward identity $\delta_B O_b = i [Q_B, O_b]$ if O_b is bosonic $\delta_B O_f = i \{Q_B, O_f\}$ if O_f is fermionic

Note that
$$(i[A,B])^{\dagger} = i[A^{\dagger},B^{\dagger}]$$

 $(i\{A,B\})^{\dagger} = -i\{A^{\dagger},B^{\dagger}\}.$

Therefore
$$(d_B \mathcal{O}_b)^{\dagger} = i [Q_B^{\dagger}, \mathcal{O}_b]$$

 $(d_B \mathcal{O}_f)^{\dagger} = -i \{Q_B^{\dagger}, \mathcal{O}_f\}$

Check that under (X), or

$$A_r^{\dagger} = A_r$$
, $B^{\dagger} = B$, $C^{\dagger} = C$, $C^{\dagger} = C$

in the operator version, the BRST transformation is compatible with hermiticity of the BRST charge:

$$O_{+}^{B} = O_{B}$$