$\underline{\text { LSZ for } m \rightarrow n \text { S-matrix }}$
In lecture 10, we obtained a formula for $2 \rightarrow n \quad S_{\text {-matrix. }}$ We would like to extend it to $m \rightarrow n S$-matrix for $m>2$.

For this, we need to know the limit of out $\left\langle g_{1}, \cdots, g_{n}\right| O_{f}(T)$ as $T \rightarrow+\infty$.

Claim when $g_{1}, \cdots, g_{n}$ has no overlap as $t \rightarrow+\infty$,

$$
\begin{aligned}
& \lim _{T \rightarrow+\infty} \text { ont }\left\langle g_{1}, \cdots, g_{n}\right| \bigcup_{f}(T) \\
& \quad! \\
& \stackrel{=}{=}\left\langle g_{1} \mid f\right\rangle \cdot_{\text {out }}\left\langle g_{2}, \cdots, g_{n}\right|+\cdots+\left\langle g_{n} \mid f\right\rangle \cdot_{\text {ont }}\left\langle g_{1}, \cdots, g_{n-1}\right|
\end{aligned}
$$

In particular, if $\left\langle g_{a} \mid f\right\rangle=0 \forall_{a}$,

$$
\lim _{T \rightarrow+\infty} \operatorname{ont}\left\langle g_{1}, \cdots, g_{n}\right| O_{f}(T) \stackrel{\emptyset}{=} 0
$$

This is like the second expressions for $\left|f_{1}, \cdots, f_{h}\right\rangle_{\text {in/out: }}$ This is physically reasonable but a mathematical proof is hard to find.

If we admit the Claim, the procedure used in Lecture 10 leads us to the formula for out $\left(g_{1}, \cdots, g_{n}\left|f_{1}, \cdots, f_{m}\right\rangle_{\text {in }}\right.$.

$$
\begin{aligned}
& X_{T_{1} \cdots T_{n}, T_{1}, \cdots, T_{m}}:= \\
& \prod_{i=1}^{n} \int_{-T_{i}}^{T_{i}} d^{d} y_{i} g_{i}\left(y_{i}\right)^{*} \frac{i}{\sqrt{z}}\left(\partial_{y_{i}}^{2}+m^{2}\right) \prod_{j=1}^{m} \int_{-T_{j}^{\prime}}^{T_{j}^{\prime}} d^{d} x_{j} f_{j}\left(x_{j}\right) \frac{i}{\sqrt{z}}\left(\partial_{x_{j}}^{2}+m^{2}\right) \\
& \\
& \xrightarrow{\langle 0| T O\left(y_{1}\right) \cdots O\left(y_{n}\right) O\left(x_{1}\right) \cdots O\left(x_{m}\right)|0\rangle} \\
& \begin{array}{ll}
T_{1}, \cdots, T_{n} \rightarrow \infty \\
\prod_{j=1}^{m} & \int_{-T_{j}^{\prime}}^{T_{j}^{\prime}} d^{d} x_{j} f_{j}\left(x_{j}\right) \frac{i}{\sqrt{z}}\left(\partial_{x_{j}}^{2}+m^{2}\right) \\
\left\langle g_{1}, \cdots, g_{n}\right| T O\left(x_{1}\right) \cdots O\left(x_{n}\right)|0\rangle
\end{array}
\end{aligned}
$$

First, let us consider the case $\left\langle g_{a} \mid f_{b}\right\rangle=0 \forall(a, b)$. By Claim, out $\left\langle g_{1}, \cdots, g_{n}\right| \mathcal{O}_{f_{a}}\left(T_{a}^{\prime}\right) \rightarrow 0$ as $T_{i}^{\prime} \rightarrow \infty$, and we obtain

$$
X_{T_{1} \cdots T_{n}, T_{1}^{\prime}-T_{n}^{\prime}} \xrightarrow{T_{1},-, T_{n}, T_{1}^{\prime},-, T_{m}^{\prime} \rightarrow \infty} \text { ont }\left\langle S_{1}, \cdots, S_{n} \mid f_{1}, \cdots, f_{n}\right\rangle_{i n}
$$

That is,

$$
\begin{aligned}
& \left.\left\langle g_{1}, \cdots, g_{n} \text { free }\right| S \mid f_{1},-, f_{m}, \text { free }\right\rangle \\
= & \prod_{i=1}^{n} \int d^{d} y_{i} g_{i}\left(y_{i}\right)^{*} \frac{i}{\sqrt{z}}\left(\partial_{y_{i}}^{2}+m^{2}\right) \prod_{j=1}^{m} \int d^{d} x_{j} f_{j}\left(x_{j}\right) \frac{i}{\sqrt{z}}\left(\partial_{x_{j}}^{2}+m^{2}\right) \\
& \langle 0| T \cup\left(y_{1}\right) \cdots \cup\left(y_{n}\right) \cup\left(x_{1}\right) \cdots O\left(x_{m}\right)|0\rangle
\end{aligned}
$$

Next, consider the general case where $\left\langle g_{a} \mid f_{b}\right\rangle$ may not be zero. Using the Claim, we fund

$$
\begin{aligned}
& \lim _{T_{1}-T_{n}, T_{1}^{\prime}, \cdots, T_{m}^{\prime} \rightarrow \infty} X_{T_{1}, \cdots, T_{n}, T_{1}^{\prime},-T_{m}^{\prime}} \\
& =\operatorname{out}\left\langle g_{1}, \cdots, g_{n} \mid f_{1}, \cdots, f_{m}\right\rangle_{\text {in }} \quad \text { omit } g_{a} \\
& \text { - } \underbrace{\text { omit } f_{b}} \\
& -\sum_{\substack{1 \leqslant a \leq n \\
1 \leqslant b \leq m}}\left\langle s_{a} \mid f_{b}\right\rangle_{\text {out }}\left\langle\cdots \hat{g}_{a} \cdots \mid \cdots \hat{f}_{b} \cdots\right\rangle_{\text {in }} \\
& +\sum_{\substack{1 \leqslant a_{1}<a_{2} \leqslant n \\
1 \leqslant b_{1}<b_{2} \leq m}}\left\langle g_{a_{1}}, g_{a_{2}} \mid f_{b_{1}}, f_{b_{2}}\right\rangle_{\text {out out }}\left\langle\cdots \hat{g}_{a_{1}}-\hat{\rho}_{a_{2}}-\cdots \mid \cdots \hat{f}_{b_{1}} \cdots \hat{f}_{b_{2}}-\cdots\right\rangle_{\text {in }} \\
& \text { - ... }
\end{aligned}
$$

Inverting the relation, we find

$$
\begin{aligned}
& \left.\left\langle g_{1}, \cdots, g_{n}, \text { free }\right|(S-1) \mid f_{1}, \cdots, f_{m}, \text { free }\right\rangle \\
& =\operatorname{LSZ}\left(g_{1}, \cdots, g_{n} \mid f_{1}, \cdots, f_{m}\right) \\
& \left.+\sum_{\substack{1 \leqslant a \leqslant n \\
1 \leqslant b \leqslant m}}\left\langle g_{a}, \text { free }\right| f_{b}, \text { free }\right\rangle L S Z\left(\ldots \hat{g}_{a}-\cdots \hat{f}_{6} \cdots\right)
\end{aligned}
$$

where $\operatorname{LS} Z\left(g_{1}, \cdots, g_{N} \mid f_{1}, \cdots, f_{M}\right)$

$$
\begin{gathered}
:=\prod_{i=1}^{N} \int d^{d} y_{i} g_{i}\left(y_{i}\right)^{*} \frac{i}{\sqrt{z}}\left(\partial_{y_{i}}^{2}+m^{2}\right) \prod_{j=1}^{M} \int d^{d} x_{j} f_{j}\left(x_{j}\right) \frac{i}{\sqrt{z}}\left(\partial_{x_{j}}^{2}+m^{2}\right) \\
\langle 0| T O\left(y_{1}\right) \cdots \cup\left(y_{N}\right) \cup\left(x_{1}\right) \cdots O\left(x_{m}\right)|0\rangle .
\end{gathered}
$$

