BRST cohomology of Maxwell theory

For a spatial momentum
$$P \neq 0$$
, a polarization \in is raid to
be transversal to P if $E^{\circ}=0$ and $\oplus P = 0$. A creation
operator $\in \cdot \operatorname{Cl}(P)^{\dagger}$ is transversal if \in is transversal to P .
We denote
 $\mathcal{H}_{\text{transv}} := \operatorname{Span}_{\mathbb{C}} \left\{ \operatorname{Product} of \operatorname{transversal} Q^{\dagger} s \text{ on } | 0 \right\} \right\}$
We would like to prove
Theorem
 $H^{i}(\mathcal{H}, Q_{B}) \cong \left\{ \begin{array}{c} \mathcal{H}_{\text{transv}} & i = 0 \\ 0 & i \neq 0 \end{array} \right.$

preparation

(a) Properties of Altransv (i) The inner product is positive definite on Himusu. (il) Atransu C Ker QB. (iii) Roman Im QB = 0.

(i) follows from
$$[a_{i}(\mathbf{R}), a_{j}(\mathbf{R})^{\dagger}] = \delta_{ij} \delta^{4}(\mathbf{R} - \mathbf{R}')$$
.
(ii) holds since $[\Theta_{\mathbf{R}} \in a(\mathbf{R})^{\dagger}] = 0$ if \mathcal{E} is transversel to \mathbf{R} .
To see (iii) take $\mathcal{V} \in \mathcal{P}(\mathsf{finnsv} \cap \mathsf{In} \Theta_{\mathbf{R}}, \mathsf{Then} \mathcal{V} = \Theta_{\mathbf{R}} \mathcal{V}$
for some $\mathcal{W} \in \mathcal{P}(\mathcal{P}, \mathsf{and})$
(i) $(\mathcal{V}, \mathcal{V}) = (\Theta_{\mathbf{R}} \mathcal{W}, \mathcal{V}) = (\mathcal{W}, \Theta_{\mathbf{R}} \mathcal{V}) = 0 \implies \mathcal{V} = 0$,
(b) $G_{\mathbf{L}} = G_{\mathbf{S}}$
(ii) $(\mathcal{V}, \mathcal{V}) = (\Theta_{\mathbf{R}} \mathcal{W}, \mathcal{V}) = (\mathcal{W}, \Theta_{\mathbf{R}} \mathcal{V}) = 0 \implies \mathcal{V} = 0$,
(b) $G_{\mathbf{L}} = G_{\mathbf{S}}$
for $\mathbf{R} \neq 0$, write $Q_{\mathbf{L}}(\mathbf{R}) := -\sum_{i} \mathcal{P}_{i} a_{i}(\mathbf{R}) - |\mathbf{P}| a_{i}(\mathbf{R}),$
 $G_{\mathbf{S}}(\mathbf{R}) := (-\sum_{i} \mathcal{P}_{i} a_{i}(\mathbf{R}) + |\mathbf{P}| a_{i}(\mathbf{R}))/2\mathbf{R}^{2}$.
They obey
 $(\Theta_{\mathbf{R}}, \delta_{\mathbf{S}}(\mathbf{R})^{\dagger}) = a_{\mathbf{L}}(\mathbf{R})^{\dagger}$ $[\Theta_{\mathbf{R}}, a_{\mathbf{L}}(\mathbf{R})^{\dagger}] = 0$,
 $(\Theta_{\mathbf{R}}, a_{\mathbf{S}}(\mathbf{R})^{\dagger}) = b\mathbf{P}_{\mathbf{T}}^{\dagger}$ $(\Theta_{\mathbf{R}}, b(\mathbf{R})^{\dagger}) = 0$
Note that $(a_{\mathbf{L}}(\mathbf{R})^{\dagger})_{\mathbf{N}=0}^{\dagger}$ is spanned by $a_{\mathbf{L}}(\mathbf{R})^{\dagger}, a_{\mathbf{S}}(\mathbf{R})^{\dagger}$ and
transversel $\in (\mathbf{a}(\mathbf{P})^{\dagger}(\mathbf{S}, \mathsf{Thus})$
 $\mathcal{H} = Spang \left\{ \begin{array}{c} \mathbf{P}_{\mathbf{N}} \mathbf{a}_{\mathbf{U}} \mathbf{a}_{\mathbf{T}}^{\dagger}, \mathbf{a}_{\mathbf{U}}^{\dagger}, \mathbf{a}_{\mathbf{S}}^{\dagger}, \mathbf{b}^{\dagger}, \mathbf{b}^{\dagger}, \mathbf{a}_{\mathbf{T}} \mathbf{A}_{\mathbf{T}}^{\dagger}, \mathbf{b}^{\dagger}, \mathbf{a}_{\mathbf{T}}^{\dagger} \mathbf{A}_{\mathbf{T}}^{\dagger} \right$

Proof of Theorem
Take any UE Ker QB.
By (b), U is a sum of products of transversel
$$\Omega(p^{+}s, \Omega_{L}(p^{+}s, \Omega_{S}(p^{+}s), B(p^{+}s, B(p^{+}s), F(p^{+}s)))$$
 operated
 $\cong |0\rangle$. We shall show that the sum of terms which
are not purely transversel is BRST exact.
Choose $P \neq 0$ and write Ω_{L}^{+} , Ω_{S}^{-} , B^{+} , B^{-} , B^{-} , $B(p^{+})^{-}$, $A_{S}(p^{+})^{-}$, $B(p^{+})^{-}$, $B($

Note that
$$Q_{B}V_{i}$$
, W_{i} , $Q_{B}W_{i}$ are free of $a_{L}^{+} e \overline{b}^{+}$. Thus,
 $Q_{B}V_{0} = 0$, $Q_{B}V_{i} + W_{i-1} = 0$ (i=1,2,--), $Q_{B}W_{i} = 0$ (i=0,1,-).
Thus, for i=1,2,--,
 $Q_{B}(\overline{b}^{+}a_{L}^{+i+}V_{i}) = a_{L}^{+i}V_{i} - \overline{b}^{+}a_{L}^{+i+}Q_{0}^{+}V_{i} = -W_{i-1}$
 $= a_{L}^{+i}V_{i} + \overline{b}^{+}a_{L}^{+i+}W_{i-1}$.
 $V = V_{0} + \sum_{i\geq 1} (a_{L}^{+i}V_{i} + \overline{b}^{+}a_{L}^{+i+}W_{i-1})$
 $= V_{0} + Q_{B}(\sum_{i\geq 1} \overline{b}^{+}a_{L}^{+i+}V_{i})$.
Next, expand V_{0} in powers of $a_{S}^{+} e \overline{b}^{+}$:
 $V_{0} = V_{00} + a_{S}^{+}V_{01} + a_{S}^{+2}V_{02} + \cdots$
 $+ \overline{b}^{+}W_{00} + \overline{b}^{+}a_{J}^{+}W_{01} + \cdots$
Unleve V_{0i} , W_{0i} are free of A_{S}^{+} and \overline{b}^{+} (and of A_{L}^{+} and \overline{b}^{+}).
 $0 = Q_{B}V_{0} = Q_{B}V_{00} + a_{S}^{+}Q_{B}V_{01} + a_{S}^{+2}Q_{B}V_{02} + \cdots$
 $+ \overline{b}^{+}V_{01} + 2\overline{b}^{+}a_{S}^{+}V_{02} + \cdots$
 $+ \overline{b}^{+}V_{01} + 2\overline{b}^{+}a_{S}^{+}V_{02} + \cdots$
 $-\overline{b}^{+}Q_{B}W_{00} - \overline{b}^{+}a_{S}^{+}Q_{B}W_{01} - \cdots$
Note that $Q_{0}V_{0i}$, V_{0i} , $Q_{B}W_{0i}$ are free of $b^{+} a a_{S}^{+}$. Thus,
 $\overline{Q_{B}}V_{0i} = 0$ (i=0,1,...), V_{0i} $-Q_{B}W_{0i} - \overline{b}$ (i=1,2,...).

Then, for
$$i = 1, 2, \cdots$$

 $\mathcal{O}_{B}(a_{s}^{+i} W_{bi-1}) = i b^{t} a_{s}^{+i-t} W_{bi-1} + a_{s}^{+i} \mathcal{O}_{B} W_{bi-1}^{-i}$
 $= i (a_{s}^{+i} V_{bi} + b^{t} a_{s}^{+i-1} W_{bi-1})$
 $\therefore V_{0} = V_{00} + \sum_{i \ge 1} (a_{s}^{+i} V_{bi} + b^{t} a_{s}^{+i-1} W_{bi-1})$
 $= V_{00} + \mathcal{O}_{B}(\sum_{i\ge 1} \frac{1}{i} a_{s}^{+i} W_{bi-1})$.
To summarize,
 $V = V_{00} + \mathcal{O}_{B}(\sum_{i\ge 1} \frac{1}{b} a_{L}^{+i-1} V_{i} + \sum_{i\ge 1} \frac{1}{i} a_{s}^{+i} W_{bi-1})$
where V_{00} is \mathcal{O}_{B} -closed and free of $a_{L}^{+}, a_{s}^{+}, b^{+}, \overline{b}^{+}$
Repeating this for all p's that appear in the expansion
of U by creation operators, we find
 $V = V_{transv} + \mathcal{O}_{B}(-)$, Uhansv e Hermin.
By $(a-iii)$, U_{transv} is uniquely determined by the \mathcal{O}_{B} -cohomology
cluss of U. Also, if U \in Hermin, then $V_{transv} = V$.
Thus, we obtained a linear isomorphism

 $\overline{\Phi}: \operatorname{Ker} \operatorname{OB}/\operatorname{Im} \operatorname{Op} \xrightarrow{\cong} \operatorname{H}_{\operatorname{Gransv.}}$ ghost # In the above construction, all the steps respect the legree? if VEH', VieH', WieK'+, VoieH', WoieH'. Hence, the isomorphism & resprects the degree. Thus it splits to degree-wise isomorphism $\overline{\Phi}^{i} : H^{i}(\mathcal{H}, Q_{B}) \xrightarrow{\cong} \mathcal{H}^{i}_{\text{transv}}$ Since Arnur consists only of ghost number 0, this is what we wanted to prove.