Computation in dimensional regularization
Here, we use dimensional regularization in the computation of one-loop amplitudes in QED.

Let us start from genera comments.
Gamma matrices

$$
\begin{aligned}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 \delta^{\mu \nu \nu} \\
& \gamma^{\mu} \gamma_{\mu}=\frac{1}{2} \delta_{\mu \nu}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-\delta_{\mu \nu} \delta^{\mu \nu}=-d \\
& \operatorname{tr}\left(\text { odd number of } \gamma^{\mu} / s\right)=0 \\
& \operatorname{tr} 1=?
\end{aligned}
$$

in $d=4, \quad$ or $1=4$
in a general even d, $\operatorname{tr} 1=2^{d / 2} \&$?
Which one should we take?
We could take any function $f(d)$ s. $f(4)=4$.
The result depends on the choice, but, as we will ree, the dependence disappears after renormalization.

So, for simplicity we take $\operatorname{tr} 1=4$.
(We shall comment what will happen for another choice.)

Momentum integrals
We shall encounter mementum integrals of the form

$$
\begin{aligned}
& I_{n}(f)=M_{D R}^{4-d} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{f(k)}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+\mu^{2}\right)^{n}} \\
& J_{n}(f)=M_{D R}^{4-d} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{f(k)}{\left((k+q)^{2}+m^{2}\right)\left(k^{2}+m^{2}\right)(h-p)^{2 n}}
\end{aligned}
$$

for a polynomial $f(h)$ of momenta $k^{\mu \prime} s$. We use

$$
\begin{aligned}
& \frac{1}{A B^{n}}=\int_{0}^{1} \frac{n x^{n-1} d x}{((1-x) A+x B)^{n+1}} \\
& \frac{1}{A B C^{n}}=\int_{\Delta} \frac{(n+1) n z^{n-1} d y d z}{((1-y-z) A+y B+z C)^{n+2}} \\
& \text { where }:=\left\{(y, z) \in \mathbb{R}^{2} \mid y \geqslant 0, z \geq 0, y+z \leqslant 1\right\}
\end{aligned}
$$

Computation goes as follows

$$
\begin{aligned}
I_{n}(f)=\mu_{D R}^{4-1} \int \frac{d^{2} h}{(2 \pi)^{d}} \int_{0}^{1} & \left.\frac{n x^{n-1} d x f(h)}{\left((1-x)\left(k^{2}+m^{2}\right)+x\left((h-p)^{2}+\mu^{2}\right)\right.}\right) \\
& \underbrace{n+1} \\
& =\underbrace{k^{2}-2 x p k+x p^{2}+(l-x) m^{2}+x \mu^{2}}_{l} \\
& =\underbrace{l-x p)^{2}}_{\Delta}+\underbrace{x(1-x) p^{2}+(1-x) m^{2}+x \mu^{2}}
\end{aligned}
$$

$$
=\int_{0}^{1} n x^{n-1} d x \mu_{D R}^{4-1} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{f(l+x \rho)}{\left(l^{2}+\Delta\right)^{n+1}}
$$

- We expand $f(l+x p)$ in $l^{m / s}$, drop odd power terms and replace even power terms by a function of l^{2}

$$
\begin{gathered}
\text { egg. } l^{\mu} l^{\nu} \rightarrow \frac{1}{d} \delta^{\mu \nu} l^{2} \\
f(l+x p) \rightarrow \tilde{f}\left(l^{2}, x p\right) \\
\text { - Use } \int \frac{d^{d} l}{(2 \pi)^{\alpha}} F\left(l^{2}\right)=\frac{V_{l} l\left(S^{d-1}\right)}{(2 \pi)^{d}} \int_{0}^{\infty} l^{d-1} d l F\left(l^{2}\right) \\
=\frac{V_{0} l\left(S^{d-1}\right)}{2(2 \pi)^{d}} \int_{0}^{\infty} l^{d-2} d l^{2} F\left(l^{2}\right) \\
=\frac{1}{(4 \pi)^{d / 2}} \Gamma(d / 2) \\
= \\
=\frac{\mu_{\rho R}^{4-d}}{(4 \pi)^{d / 2}} \Gamma(d / 2) \\
\int_{0}^{d} n x^{n-1} d x \int_{0}^{\infty} \frac{t^{\frac{d}{2}-1} d t F(t)}{(t+\Delta)^{n+1}}
\end{gathered}
$$

We may use $\int_{0}^{\infty} \frac{t^{p-1} d t}{(t+\Delta)^{p+1}}=\frac{B(p, q)}{\Delta^{q}}=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q) \Delta^{q}}$

In this way we find

$$
\operatorname{In}(f)=\frac{1}{(4 \pi)^{2}} \int_{0}^{1} \frac{x^{n-1} d x}{(n-1)!}\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \frac{\Gamma\left(n+1-\frac{d}{2}\right)}{\Delta^{n-1}} \hat{f}
$$

where $\Delta=x(1-x) p^{2}+(1-x) m^{2}+x \mu^{2}$ and

$$
\begin{aligned}
& \hat{1}=1, \quad \hat{k}^{\mu}=x p^{\mu} \\
& \widehat{k^{\mu} k^{\nu}}=\delta^{\mu \nu} \frac{\Delta}{2 n-d}+x^{2} p^{\mu} p^{\nu} \\
& \widehat{h^{\mu}(h-p)^{\nu}}=\delta^{\mu \nu} \frac{\Delta}{2 n-d}-x(1-x) p^{\mu} p^{\nu} \\
& \left(\widehat{h-p)^{\mu}(h-p)^{\nu}}=\delta^{\mu \nu} \frac{\Delta}{2 n-d}+(1-x)^{2} p^{\mu} p^{\nu}\right. \\
& J_{n}(g)=\frac{1}{(4 \pi)^{2}} \int \frac{z^{n-1} d y d z}{(n-1)!}\left(\frac{4 \pi / \mu_{p R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \frac{\Gamma\left(n+2-\frac{d}{2}\right)}{\Delta^{n}} \hat{g}
\end{aligned}
$$

where $\Delta=y(1-y) q^{2}+z(1-z) p^{2}+2 y z q p+(1-z) m^{2}$ and

$$
\begin{aligned}
& \hat{\imath}=1, \quad \widehat{h^{\mu}}=-y q^{\mu}+z p^{\mu} \\
& \widehat{h^{\mu} k^{\nu}}=\delta^{\mu \nu} \frac{\Delta}{2 n+2-d}+\left(-y q^{\mu}+z p^{\mu}\right)\left(-y q^{\nu}+z p^{\nu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{2}^{\mu \nu}(p)=-e^{2} \mu_{O R}^{4-d} \int \frac{d^{\alpha} h}{(2 \pi)^{d}}+r\left(\gamma^{\mu} \frac{1}{-k+m} \gamma^{\nu} \frac{1}{-(k \Gamma+m}\right) \\
& =-e^{2} \mu_{D R}^{4-d} \int \frac{d^{d} h}{(2 \pi)^{d}} \frac{\operatorname{tr}\left(r^{\mu}(k+m) r^{\nu}(k-T+m)\right)}{\left(h^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)} \\
& \text { numerator }=\operatorname{tr}\left(\gamma^{\mu} r^{\nu}\right) m^{2}+\operatorname{tr}\left(\gamma^{\mu} k \gamma^{\nu}(k-\rho)\right) \\
& \text { - } \operatorname{Tr}\left(\gamma^{\mu} r^{\nu}\right)=-\delta^{\mu \nu} \operatorname{Tr}(1) \\
& \text { - } \operatorname{tr}\left(\gamma^{\mu} \gamma^{\rho} \gamma^{\nu} \gamma^{\lambda}\right)=\left(\delta^{\mu \rho} \delta^{\nu \lambda}-\delta^{\mu \nu} \delta^{\rho \lambda}+\delta^{\mu \lambda} \delta^{\rho \nu}\right) \operatorname{Tr}(1) \\
& \text { let us use } \operatorname{tr}(1)=4 \text {. then } \\
& =4\left(-\delta^{\mu \nu}\left(m^{2}+k \cdot(k-p)\right)+k^{\mu}(h-p)^{\nu}+k^{\nu}(h-p)^{\mu}\right) \\
& =-4 e^{2} M_{D R}^{4-d} \int \frac{d^{2} k}{(2 \pi)^{d}} \frac{-\delta^{\mu \nu}\left(m^{2}+k \cdot(k-p)\right)+k^{\mu}(h-p)^{\nu}+k^{\nu}(h-p)^{\mu}}{\left(k^{2}+m^{2}\right)\left((h-p)^{2}+m^{2}\right)}
\end{aligned}
$$

Rok If we replace $\operatorname{tr}(1)=4 \rightarrow \operatorname{Tr}(1)=2^{d / 2}=4 \cdot 2^{\frac{d}{2}-2}$,
the effect is the same as $M_{D R}^{2} \rightarrow \frac{1}{2} M_{D R}^{2}$.
Since the physics does not depend on the chore of MOR, the convention of $\operatorname{Tr}(1)$ is irrelevant.

Thus, we find

$$
\delta_{p \lambda} h^{p}\left(h^{\lambda}-p^{\lambda}\right)
$$

$$
\prod_{2}^{\mu \nu}(p)=-4 e^{2} L_{1}\left(-\delta^{\mu \nu}\left(m^{2}+\widetilde{k \cdot(k-p)}\right)+k^{\mu}(k-p)^{\nu}+k^{\nu}(h-p)^{\mu}\right)
$$

(with $\mu=m ; \Delta=x(1-x) p^{2}+m^{2}$)

$$
\begin{aligned}
= & -\underbrace{-\frac{4 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \Gamma\left(2-\frac{d}{2}\right)}\left[-\delta^{\mu \nu} \mu^{2}\right. \\
& -\delta^{\mu \nu} d \frac{\Delta}{2-d}+\delta^{\mu \nu} x\left(\delta^{\mu \lambda} \frac{\Delta}{2-d}-x(1-x) p^{p} p^{\lambda}\right) \\
& \left.=2\left(\delta^{\mu \nu} \frac{\Delta}{2-d}-x(1-x) p^{\mu} p^{\nu}\right)\right] \\
& =\delta^{\mu \nu} \Delta \\
& =\delta^{\mu \nu}\left(x(1-x) p^{2}+p^{\mu}\right)
\end{aligned}
$$

$$
=-\frac{4 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{L}} \Gamma\left(2-\frac{d}{2}\right)\left[2 \delta^{\mu v} x(1-x) p^{2}-2 x(1-x) \rho^{\mu} \rho^{u}\right]
$$

$$
=-\frac{8 e^{3}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x)\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{1}{2}} \Gamma\left(2-\frac{1}{2}\right)\left(\delta^{h \nu} p^{2}-p^{\mu} p^{v}\right)
$$

$$
\left(\frac{4 \pi M_{D R}^{2}}{\Delta}\right)^{\frac{\epsilon}{2}} \Gamma\left(\frac{\epsilon}{2}\right)=\left(\frac{2}{\epsilon}-\gamma+\log \left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)+O(\epsilon)\right)
$$

$=\left(\delta^{\mu \nu} p^{2}-p^{\mu} p^{\nu}\right) \Pi_{2}(p) \quad$ where

$$
\Pi_{2}(p)=-\frac{8 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x)\left(\frac{2}{\epsilon}-r+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}+x(1-x) p^{2}}\right)+O(\epsilon)\right)
$$

$$
\begin{aligned}
& \sum_{2}(p)=-e^{2} \mu_{O R}^{4-d} \int_{(i \pi)^{d}}^{d^{4} k} \underbrace{\mu} \underbrace{\frac{1}{-k+m}}_{h-p} \gamma^{\nu}\left(\frac{\delta_{\mu-}}{(k-p)^{2}}+(\xi-1) \frac{(h-p)_{r}(h-p)_{\nu}}{(h-p)^{4}}\right) \\
& \frac{k+m}{k^{2}+m^{2}} \\
& \text { - } \gamma^{\mu}(k+m) \gamma_{\mu}=\underbrace{\left\{\gamma^{\mu}, k\right\} \gamma_{\mu}}_{-2 k^{\mu}}-k \underbrace{\gamma^{\mu} r_{\mu}}_{-d}+m \underbrace{\gamma^{\mu} \gamma_{\mu}}_{-d} \\
& =(d-2) K-d m \\
& \text { - (k-p) }(k+m)(k-p)=(k-p)(k-p+p+m)(k-p) \\
& =-(h-p)^{2}(k-p)+\underbrace{(h-p) p-(h-p)}-m(h-p)^{2} \\
& -2(h-p) \cdot p(h-p)+\not p(h-p)^{2} \\
& =(h-p)^{2}(-k+2 p-m)-2(h-1) \cdot p(h-p) \\
& =e^{2} \mu_{D R}^{4-1} \int \frac{d^{2} h}{(2 \pi)^{1}} \frac{1}{k^{2}+m^{2}}\left[\frac{-(1-2) k+d m}{(h-p)^{2}}+(1-\xi)\left(\frac{-\not k+2 \not p-m}{(h-p)^{2}}-\frac{2(k-p) \cdot \rho(h-p)}{(k-p)^{4}}\right)\right] \\
& =e^{2} I_{1}(-(d-2) K+d m+(1-\xi)(-K+2 \not x-m)) \\
& +e^{2} I_{2}\left(-2(1-\xi)(h-p)^{\mu} P_{\mu}(h-p)^{\nu} \gamma_{\nu}\right)
\end{aligned}
$$

(with $\mu=0 ; \Delta=x(1-x) p^{2}+(1-x) m^{2}$)

$$
\begin{aligned}
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi M_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \Gamma\left(2-\frac{d}{2}\right)[-(d-2) x \not p+d m+(1-\xi)(-x \not x+2 p-m)] \\
& +\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} x d x\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \frac{\Gamma\left(3-\frac{d}{2}\right)}{\Delta}\left[-2(1-\xi) P_{\mu} \gamma_{u}\left(\delta^{\pi \nu} \frac{\Delta}{4-d}+(1-x)^{2} p^{m} \rho^{\nu}\right)\right] \\
& \quad-\frac{\Gamma\left(3-\frac{d}{2}\right)}{\Delta} \frac{2 \Delta}{4-d}=\left(2-\frac{d}{2}\right) \Gamma\left(2-\frac{d}{2}\right) \frac{2}{4-d}=\Gamma\left(2-\frac{d}{2}\right)
\end{aligned}
$$

\therefore A part of the second line joins into the first line as

$$
\cdots\left[\left(2-\frac{d}{2}\right)[x \times(-(1-\xi) \not P)]\right.
$$

$$
\begin{aligned}
&=\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi M_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}}\left\{\Gamma\left(2-\frac{d}{2}\right)[-(d-2) x \not x+d m+(1-\xi)(-2 x \not x+2 \not x-m)]\right. \\
&\left.+\frac{\Gamma\left(3-\frac{d}{2}\right)}{\Delta}\left[-2(1-\xi) P^{2} \not x^{\prime} x(1-x)^{2}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Gamma\left(2-\frac{d}{2}\right) & (d-2)=\Gamma\left(2-\frac{d}{2}\right)\left(2-2\left(2-\frac{d}{2}\right)\right) \\
& =\Gamma\left(2-\frac{d}{2}\right) \cdot 2+\Gamma\left(3-\frac{d}{2}\right) \cdot(-2) \\
-\frac{x(1-x)^{2} p^{2}}{\Delta} & =\frac{(1-x) x p^{2}}{m^{2}+x p^{2}}=1-x-\frac{(1-x) m^{2}}{m^{2}+x p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi M_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}}\left\{\Gamma\left(2-\frac{d}{2}\right)[-2 x \not x+d m+(1-\xi)(-2 x(x+2 x p-m)]\right. \\
& \left.+\Gamma\left(3-\frac{d}{2}\right)\left[2 x \not x-2(1-\xi)(1-x) \not p+2(1-\xi) \frac{(1-x) m^{2}}{m^{2}+x p^{2}}\right]\right\} \\
& =A_{2}\left(p^{2}\right) \not \varnothing+B_{2}\left(p^{2}\right) m \quad \text { where } \\
& A_{2}\left(p^{2}\right)=\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}}\left\{\left(\Gamma\left(2-\frac{d}{2}\right)-\Gamma\left(3-\frac{d}{2}\right)\right)(-2 x+2(1-3)(1-x))\right. \\
& \left.+\Gamma\left(3-\frac{d}{2}\right) 2(1-z) \frac{(1-x) m^{2}}{m^{2}+x p^{2}}\right\} \\
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[\left(\frac{2}{\epsilon}-r-1+\log \left(\frac{4 \pi \mu_{0 n}^{2}}{\Delta}\right)\right)(-2 x+2(1-\xi)(1-x))\right. \\
& \left.+2(1-\xi) \frac{(1-x) m^{2}}{m^{2}+x p^{2}}+O(\epsilon)\right] \\
& B_{2}\left(p^{2}\right)=\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \Gamma\left(2-\frac{d}{2}\right)(d+3-1) \\
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[\left(\frac{2}{\epsilon}-\gamma+\log \left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)\right)(3+\xi)-2+O(\epsilon)\right]
\end{aligned}
$$

For $\Gamma_{2}^{\mu}(p, q)$, I am conticlent to make mistakes for $\xi \neq 1$.
Thus, I do the computation only for $\xi=1$.

$$
\begin{aligned}
& \Gamma_{2}^{\mu}(p, q)=e^{2} \mu_{D R}^{4 d} \int \frac{d^{d} h}{(2 \pi)^{d}} \gamma^{p} \frac{1}{-(k+q)+m} \gamma^{\mu} \frac{1}{-k+m} \gamma^{\lambda} \frac{\delta_{\rho \lambda}}{(k-p)^{2}} \\
& \quad=e^{2} \mu_{D R}^{4-d} \int \frac{d^{d} h}{(2 \pi)^{d}} \frac{\gamma^{p}(k+q+m) \gamma^{\mu}(k+m) \gamma_{p}}{\left((h+q)^{2}+m^{2}\right)\left(h^{2}+m^{2}\right)(h-p)^{2}}
\end{aligned}
$$

$$
\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \gamma^{r} \gamma_{\rho}=\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \underbrace{\left(\gamma_{\rho}, \gamma^{r}\right)}_{-2 \delta_{\rho}^{\sigma}}-\underbrace{\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \gamma_{p}}_{4 \delta^{\mu \nu}-(d-4) \gamma^{\nu} \gamma^{\mu}} \gamma^{\sigma}
$$

$$
=-2 \gamma^{\sigma} \gamma^{\nu} \gamma^{\mu}-4 \delta^{\mu \nu} \gamma^{\sigma}+(d-4) \gamma^{\nu} \gamma^{\mu} \gamma^{\sigma}
$$

$$
=2 r^{\sigma} \gamma^{\mu} \gamma^{\nu}+(d-4) \gamma^{\nu} \gamma^{\mu} \gamma^{\sigma}
$$

$$
\begin{aligned}
& \gamma^{\rho} \gamma^{\mu} \gamma_{\rho}=\underbrace{\left\{\gamma^{\rho}, \gamma^{\mu}\right.}_{-2 \delta^{\rho \mu}}\} \gamma_{\rho}-\underbrace{\gamma^{\mu}}_{-d} \underbrace{\rho}_{\rho} \gamma_{p}=2 \gamma^{\mu}+(d-4) \gamma^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& =-2 \delta^{\rho \nu} \gamma^{\mu} \gamma_{p}+2 \delta^{\rho \mu} \gamma^{\nu} \gamma_{p}-d \gamma^{\nu} \gamma^{\mu} \\
& =-2 \gamma^{\mu} \gamma^{\nu}+(2-d) \gamma^{\nu} \gamma^{\mu}=4 \delta^{\mu \nu}-(d-4) \gamma^{\nu} \gamma^{\mu}
\end{aligned}
$$

$$
\begin{array}{r}
\therefore \text { numerator }=2\left[k \gamma^{\mu}(k+q)+2 m(2 h+q)^{\mu}+m^{2} \gamma^{\mu}\right. \\
\left.\quad+\frac{d-4}{2}(k+\mu-m) \gamma^{\mu}(k-m)\right] \\
\begin{array}{r}
\Gamma_{2}^{\mu}(p, q)=
\end{array} \\
\quad 2 e^{2} J_{1}\left(k \gamma^{\mu}(k+\pi)+2 m(2 h+q)^{\mu}+m^{2} \gamma^{\mu}\right. \\
\left.=\frac{2 e^{2}}{(4 \pi)^{2}} \int_{\Delta}(k+\mu-m) \gamma^{\mu}(k-m)\right) \\
\quad d y d z\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}} \frac{\Gamma\left(3-\frac{d}{2}\right)}{\Delta}[\\
\quad r_{\rho} \gamma^{\mu} r_{\lambda}\left(\frac{\delta^{\rho \lambda} \Delta}{4-d}+(-y q+z p)^{\rho}((1-y) q+z \rho)^{\lambda}+\frac{d-4}{2}\left(\frac{\delta^{\rho \lambda} \Delta}{4-d}\right)\right) \\
\left.\quad+2 m(2(-y q+z \rho)+q)^{\mu}+m^{2} \gamma^{\mu}\right]+O(d-4)
\end{array}
$$

(where $\Delta=y(1-y) q^{2}+z(1-z) p^{2}+2 y z q p+(1-z) m^{2}$)

$$
\begin{aligned}
& \text { - } \gamma_{\rho} \gamma^{\mu} \gamma_{\lambda}\left(\frac{\delta^{\rho \lambda} \Delta}{4-d}+\frac{d-4}{2} \frac{\delta^{\rho x} \Delta}{4-d}\right)=\underbrace{\gamma_{\rho} \gamma^{\mu} \gamma^{\rho}}_{2 \gamma^{\mu}+(d-4) \gamma^{\mu}}\left(\frac{1}{4-d}-\frac{1}{2}\right) \Delta \\
& \quad=\left(\frac{2}{4-d}-2\right) \gamma^{\mu} \Delta+O(d-q)
\end{aligned}
$$

- Use $\frac{\Gamma\left(3-\frac{d}{2}\right)}{\Delta} \frac{2 \Delta}{4-d}=\Gamma\left(2-\frac{d}{2}\right)$ again.

$$
\begin{aligned}
& =\frac{2 e^{2}}{(4 \pi)^{2}} \int_{\Delta} d y d z\left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)^{2-\frac{d}{2}}\left\{\Gamma\left(2-\frac{d}{2}\right) \gamma^{\mu}-2 \Gamma\left(3-\frac{d}{2}\right) \gamma^{\mu}\right. \\
& +\frac{\Gamma\left(3-\frac{d}{2}\right)}{\Delta}\left[(-y q+z x) \gamma^{n}((1-y) q+z p)\right. \\
& \left.\left.+2 m(2(-y q+z \rho)+q)^{\mu}+m^{2} \gamma^{\mu}\right]\right\}+0(d-4) \\
& =\frac{2 e^{2}}{(4 \pi)^{2}} \int_{\Delta} d y d z\left[\left(\frac{2}{\epsilon}-\gamma-2+\log \left(\frac{4 \pi \mu_{D R}^{2}}{\Delta}\right)\right) \gamma^{\mu}+\frac{X^{\mu}}{\Delta}\right] \\
& +O(\epsilon) \text {. }
\end{aligned}
$$

After renormalization, either "on shell" or "another (μ) ", all the results from dimensional regularization match with those from the Pauli-Villars regularization.

