Canonical quantization of Maxwell theory

From Lecture 5: Maxwell theory in d-dimensions, with
Variable Am and action
$$S[A] = \int d^{1}x \left(-\frac{1}{16^{2}} E^{mv} F_{mv}\right) dS$$

equivalent to the theory of variable $(A, E; A_{0})$ with action
 $S[A, E; A_{0}] = \int d^{1}x \left(\sum i \in i = \sum_{i} - \frac{e^{x}}{2} \sum i = \sum_{i} \sum_{i=j}^{2} i \right)$
 $= \int d^{1}x \left(\sum i \in i A_{i} - \frac{e^{x}}{2} \sum i \sum_{i=j}^{2} - \frac{1}{16^{x}} \sum i \sum_{i=j}^{2} i \right)$
Note that EOM for E: is $E_{i} = \frac{1}{e^{x}} F_{0}z$.
Looking at the second expression for $S[A, E; A_{0}]$, we can
view this as a Hamiltonian system with Conjugate Unishlus
 (A, E) with 1st class constraint $\nabla \cdot E = 0$.
We may take Coulous sauge $\nabla \cdot A = 0$ for a slice.
Since $\{\nabla \cdot A^{(w)}, \nabla \cdot A_{(w)}\} = 0$, we may quantize the
System with conjugate variables (A, E) obeying $\nabla \cdot E = \nabla \cdot A = 0$.
Exercise () Carry out this quantization and find the space of states.
(2) Compute (o] $T E_{i}(x) E_{j}(y) | 0$, (o) $T E_{i}(x) F_{j}(x) F_{kx}(y)/2$)
and compare the visual with $(F_{m}(x) F_{pn}(y)) = (z) T F_{in}(x) F_{pn}(y)/2$.