$\underline{\sum_{2}(p) \text { with a general gauge parameter } \xi}$
In the lecture, we took $\xi=1$ to compute one-loop amplitudes. $\Pi_{2}^{\mu v}(q)$ is independent of ξ as $\psi \overline{\psi(x)} \bar{\psi}(y)$ is. But $\sum_{2}(p)$ and $P_{2}^{M}(p, q)$ do depend on ξ. Let us compute the former, and find the 1-loop expression for $\gamma_{4} \& \gamma_{m}$ for a general ξ.

For a general ξ, the free propagator of photon is

$$
A_{\mu} \stackrel{(x) A_{\nu}}{ }(y)=\int \frac{d^{4} h}{(2 \pi)^{4}} e^{-i h(x-y)}\left(\frac{\delta_{\mu \nu}}{h^{2}}+(\xi-1) \frac{h_{\mu} h_{L}}{\left(k^{2}\right)^{2}}\right) .
$$

Let us assume that the free propagator of the regulator B_{p} is

$$
B_{\mu}(x) B_{v}(y)=\int \frac{d^{4} h}{(2 \pi)^{4}} e^{-i h(x-y)}\left(\frac{\delta_{\mu v}}{h^{2}+\Lambda^{2}}+(\xi-1) \frac{h_{\mu} h_{\nu}}{\left(h^{2}+\Lambda^{2}\right)^{2}}\right)
$$

This is realized by the following kinetic term

$$
\begin{aligned}
\mathcal{L}_{B}^{k i n} & =\frac{1}{2} B_{\mu}\left(\delta^{\mu v}\left(-\partial^{2}+\Lambda^{2}\right)+(1-\xi) \partial^{\mu} \frac{-\partial^{2}+\Lambda^{2}}{-\xi \partial^{2}+\Lambda^{2}} \partial^{\nu}\right) B_{\nu} \\
& =\frac{1}{4} F_{B}^{\mu \nu} F_{\mu \nu}^{B}+\frac{\Lambda^{2}}{2} B^{2}+\frac{1}{2 \xi}(\partial \cdot B)^{2}-\frac{1}{2}\left(1-\frac{1}{\xi}\right)^{2} \Lambda^{2} B_{\mu} \frac{\partial^{\mu} J^{\nu}}{-\partial^{2}+\frac{1}{\xi} \Lambda^{2}} B_{\nu}
\end{aligned}
$$

This looks strange or at best complicated. If you do not like it, you may introduce an additional scalar P and wasider

$$
\begin{aligned}
\mathcal{L}_{k n}^{B, \phi}= & \frac{1}{4} F_{B}^{\mu \nu} F_{\mu \nu}^{B}+\frac{\Lambda^{2}}{2} B^{2}+\frac{1}{2 \xi}(\partial \cdot B)^{2} \\
& +\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2 \xi} \Lambda^{2} \phi^{2}-i\left(1-\frac{1}{\xi}\right) \Lambda \phi \partial \cdot B
\end{aligned}
$$

Integrating out ϕ, we obtain the above $\mathcal{L}_{\text {kin. }}^{B}$ In any case, we shall use the above $\vec{B}_{\sim}(x) B_{0}(y)$.

In this Pauli-Villars regularization,

$$
\sum_{2}^{p v}(p)=-e^{2} \int \frac{d^{4} k}{(2 \pi)^{2}} \gamma^{\mu} \frac{1}{-k h+m} \gamma^{v} \sum_{i=0,1} C_{i}\left(\frac{\delta_{\mu}}{(k-p)^{2}+\Lambda_{i}^{2}}+(\xi-1) \frac{(h-p)_{\mu}(h-p)_{0}}{\left((h-p)^{2}+\Lambda_{i}^{2}\right)^{2}}\right)
$$

where $\left(c_{0}, \Lambda_{0}\right)=(1,0)$ and $\left(c_{1}, \Lambda_{1}\right)=(-1, \Lambda)$
Note that $\frac{1}{-k+m}=\frac{\hbar+m}{k^{2}+m^{2}}$

$$
\begin{aligned}
& r^{\mu}(k+m) V^{2} \delta_{\mu \nu}=2 k-4 m \\
& =(k-p)(k+m)(k-p)=(k-p)(k<p+p+m)(k-p) \\
& -(k-p)^{2}(k-p)-\underbrace{(k-p) P(k<p)}_{-2(k-p) \cdot p(k-p)-p(k-p)^{2}}+\underbrace{m(k-p)^{2}}-m(k-p)^{2} \\
& =(h-p)^{2} \\
& \left.=(k-p)^{2}+n^{2}\right)(-k+2 \not k-m)-\Lambda^{2}(-k+2 p-m)-2(h-p) \cdot p(k-p)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{2}^{p V}(p)=e^{2} \int \frac{d^{4} h}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \sum_{i} c_{i}\left[\frac{-2 k+4 m}{(k-p)^{2}+\Lambda_{i}^{2}}+\left((-\xi) \frac{-\hbar+2 p-m}{(h-p)^{2}+\Lambda_{i}^{2}}\right.\right. \\
&\left.-(1-\xi) \frac{2(h-p) \cdot p(k-p)+\Lambda_{i}^{2}(-k+2 p-m)}{\left((h-p)^{2}+\Lambda_{i}^{2}\right)^{2}}\right]
\end{aligned}
$$

- As in the lecture,

$$
\begin{aligned}
& \int \frac{d^{4} h}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \sum_{i} c_{i} \frac{a k+b}{(h-k)^{2}+\Lambda_{i}^{2}} \\
& =\int \frac{d^{4} k}{(2 \pi)^{4}} \sum_{i} c_{i}(a k+b) \int_{0}^{1} \frac{d x}{\left((1-x)\left(h^{2}+m^{2}\right)+x\left((h-p)^{2}+\Lambda_{i}^{2}\right)\right)^{2}} \\
& k^{2}-2 x p k+x p^{2}+(1-x) m^{2}+x \Lambda_{i}^{2} \\
& =(\underbrace{h-x p}_{l})^{2}+\underbrace{x(1-x) p^{2}+(1-x) m^{2}+x \Lambda_{i}^{2}}_{\Delta_{i}} \\
& =\int_{0}^{1} d x \int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} c_{i} \frac{a(l+x p)+b}{\left(l^{2}+\Delta_{i}\right)^{2}} \\
& =\int_{0}^{1} d x \frac{1}{(4 \pi)^{2}} \int_{0}^{\infty} t d t \sum_{i} c_{i} \frac{a x p x+b}{\left(t+\Delta_{i}\right)^{2}} ; \quad \frac{t \Delta t}{\left(t+\Delta_{i}\right)^{2}}=d\left[\log \left(t+\Delta_{i}\right)+\frac{\Delta_{i}}{t+\Delta_{i}}\right] \\
& =\int_{0}^{1} d x \frac{1}{(4 \pi)^{2}}\left(a x \not \beta^{2}+b\right)\left[\sum_{i} C_{i}\left(\log \left(t+\Delta_{i}\right)+\frac{\Delta_{i}}{t+\Delta_{i}}\right)\right]_{0}^{\infty} \\
& =\int_{0}^{1} d x \frac{1}{(4 \pi)^{2}}(\operatorname{arx} x+b) \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \int \frac{d^{4} h}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \sum_{i} C_{i} \frac{(h-p) \cdot p(h-T)}{\left((h-p)^{2}+\Lambda_{i}\right)^{2}} \\
& =\int \frac{d^{4} h}{(2 \pi)^{4}}(h-p) \cdot p(h-p) \sum_{i} c_{i} \int_{0}^{1} \frac{2 x d x}{(\underbrace{(1-x)\left(h^{2}+m^{2}\right)+x\left((h-p)^{2}+\Lambda_{i}^{2}\right)}_{l})^{3}} \\
& =\int_{0}^{1} 2 x d x \int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} C_{i} \frac{(l-(1-x) p) \cdot p(\&-(1-x) p)}{\left(l^{2}+\Delta_{i}\right)^{3}} \\
& \text { - l.p } R=l^{\mu} \rho_{\mu} \gamma^{\nu} l_{\nu} \simeq \frac{1}{4} \delta_{v}^{\mu} l^{2} p_{\mu} \gamma^{\nu}=\frac{1}{4} l^{2} \phi \\
& =\int_{0}^{1} 2 x d x \int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} c_{i} \frac{\frac{1}{4} l^{2} P P+(1-x)^{2} p^{2} P}{\left(l^{2}+\Delta_{i}\right)^{3}} \\
& \frac{1}{(4 \pi)^{2}} \int_{0}^{\infty} t d t \sum_{i} c_{i} \frac{\frac{1}{4} t p+(1-x)^{2} p^{2} p}{\left(t+\Delta_{i}\right)^{3}} \\
& \text { - } \frac{t^{2} d t}{\left(t+\Delta_{i}\right)^{3}}=d\left(\log \left(t+\Delta_{i}\right)+\frac{2 \Delta_{i}}{t+\Delta_{i}}-\frac{1}{2} \frac{\Delta_{i}^{2}}{\left(t+\Delta_{i}\right)^{2}}\right) \\
& \text { - } \frac{t d t}{\left(t+\Delta_{i}\right)^{3}}=d\left(-\frac{1}{t+\Delta_{i}}+\frac{1}{2} \frac{\Delta_{i}}{\left(t+\Delta_{i}\right)^{2}}\right) \\
& =\int_{0}^{1} 2 x d x \frac{1}{(4 \pi)^{2}} \not \varnothing \sum_{i} c_{i}\left[\frac{1}{4}\left(-\log \Delta_{i}-2+\frac{1}{2}\right)+\frac{(1-x)^{2} p^{2}}{2 \Delta_{i}}\right] \\
& =\int_{0}^{1} x d x \frac{1}{(4 \pi)^{2}} \not p\left[\frac{1}{2} \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)+\frac{(1-x)^{2} p^{2}}{\Delta_{0}}\right]+O\left(\frac{p^{2}}{\Lambda^{2}}, \frac{m^{2}}{\Lambda^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\int \frac{d^{4} h}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \frac{\Lambda^{2}(-k+2 \not x-m)}{\left((h-p)^{2}+\Lambda^{2}\right)^{2}}=\int \frac{d^{4} k}{(2 a)^{4}} \int_{0}^{1} 2 x d x \frac{\Lambda^{2}(-\not k+2 p-m)}{((\underbrace{h-x p)^{2}}_{l}+\Delta_{1})^{3}} \\
& \quad=\int_{0}^{1} 2 x d x \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\Lambda^{2}(-\not x-x p+2 p x-m)}{\left(l^{2}+\Delta_{1}\right)^{3}} \\
& \quad=\int_{0}^{1} 2 x d x \frac{1}{(4 \pi)^{2}} \int_{0}^{\infty} t d t \frac{\Lambda^{2}((2-x) \not x-m)}{\left(t+\Delta_{1}\right)^{3}} \\
& \quad=\int_{0}^{1} 2 x d x \frac{1}{(4 \pi)^{2}} \frac{\Lambda^{2}((2-x) \not p-m)}{2 \Delta_{1}} \\
& \quad=\int_{0}^{1} d x \frac{1}{(4 \pi)^{2}}((2-x) p x-m)+O\left(\frac{p^{2}}{\Lambda^{2}}, \frac{m^{2}}{\Lambda^{2}}\right)
\end{aligned}
$$

Combining all, we find

$$
\begin{aligned}
& \sum_{2}^{P V}(p)=\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[\{(-2 x \not p+4 m)+(1-\xi)(-x \not P+2 \not P-m)\} \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)\right. \\
& -2(1-\xi) x \not p\left[\frac{1}{2} \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)+\frac{(1-x)^{2} p^{2}}{\Delta_{0}}\right]-(1-\xi)\{(2-x) \not(p-m\}] \\
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[\left\{(-2 x+2(1-\xi)(1-x) \not p+4 m-(1-\xi) m) \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)\right.\right. \\
& \left.-(1-\xi)\left\{2 \frac{x\left((1-x) p^{2}\right.}{m^{2}+x p^{2}}+2-x\right\} \not x+(1-\xi) m\right] \\
& 4-3 x-2 \frac{(1-x) m^{2}}{m^{2}+x p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sum_{2}(p)=A_{2}\left(p^{2}\right) \not \not+B_{2}\left(p^{2}\right) m \quad \text { where } \\
& A_{2}\left(\rho^{2}\right)=\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[(-2 x+2(1-\xi)(1-x)) \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)\right. \\
& \left.+(1-\xi)\left(-4+3 x+\frac{2(1-x) m^{2}}{m^{2}+x p^{2}}\right)\right] \\
& \beta_{2}\left(p^{2}\right)=\frac{e^{2}}{4 \pi} \int_{0}^{1} d x\left[(3+\xi) \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right)+1-\xi\right]
\end{aligned}
$$

On shall R.C.

$$
\begin{aligned}
\delta_{3}^{(1)} & =\Pi_{2}(0), \delta_{2}^{(1)}=A_{2}\left(-m^{2}\right), \delta_{m}^{(1)}=-B_{2}\left(-m^{2}\right) \\
\Pi^{(1)}\left(q^{2}\right) & =\frac{8 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \log \left(\frac{m^{2}+x(1-x) q^{2}}{m^{2}}\right)
\end{aligned}
$$

(same as $\xi=1$ case)

$$
\begin{aligned}
A^{(1)}\left(p^{2}\right) & =A_{2}\left(p^{2}\right)-A_{2}\left(-m^{2}\right) \\
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[(-2 x+2(1-\xi)(1-x)) \log \left(\frac{(1-x) m^{2}}{m^{2}+x p^{2}}\right)-2(1-\xi) \frac{x\left(m^{2}+p^{2}\right)}{m^{2}+x p^{2}}\right] \\
B^{(1)}\left(p^{2}\right) & =B_{2}\left(p^{2}\right)-B_{2}\left(-m^{2}\right) \\
& =\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x(3+\xi) \log \left(\frac{(1-x) m^{2}}{m^{2}+x p^{2}}\right)
\end{aligned}
$$

Another R.C.

$$
\begin{aligned}
& \delta_{j}^{(1)}=\Pi_{2}\left(\mu^{2}\right), \delta_{2}^{(1)}=A_{2}\left(\mu^{2}\right), \delta_{m}^{(1)}=-B_{2}\left(\mu^{2}\right) \\
& \beta^{(1)}\left.=\frac{1}{2} e \mu \frac{d}{d \mu} \delta_{3}^{(1)}=\frac{4 e^{3}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \frac{x(1-x) 2 \mu^{2}}{m^{2}+x(1-x) \mu^{2}}\right) \\
& \gamma_{4}^{(1)}= \quad \frac{1}{2} \mu \frac{d}{d \mu} \delta_{2}^{(1)} \quad \text { (same as } \xi=1 \text { case) } \\
&= \frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[(x-(1-\xi)(1-x)) \frac{x \mu^{2}}{m^{2}+x \mu^{2}}-(1-\xi) \frac{x(1-x) m^{2} \mu^{2}}{m^{2}+x \mu^{2}}\right] \\
& \gamma_{m}^{(1)}=\mu \frac{d}{d \mu}\left(\delta_{m}^{(1)}-\delta_{2}^{(1)}\right) \\
&=\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[(-2 x+2(1-\xi)(1-x)+3+\xi) \frac{x \mu^{2}}{m^{2}+x \mu^{2}}+2(1-\xi) \frac{x(1-x) m^{2} \mu^{2}}{m^{2}+x \mu^{2}} .\right.
\end{aligned}
$$

In the limit $m^{2} \rightarrow 0$ (or $\mu^{2} \gg m^{2}$),

$$
\begin{aligned}
& \beta^{(1)} \rightarrow \frac{4 e^{3}}{3(4 \pi)^{2}} \\
& \gamma_{4}^{(1)} \rightarrow \frac{e^{2}}{(4 \pi)^{2}} \xi \\
& V_{m}^{(1)} \rightarrow \frac{6 e^{2}}{(4 \pi)^{2}}
\end{aligned}
$$

