We set th=1 in this note. Ghost system Consider the mechanics of a pair of anticommutary variables C, E uith Lagrangian $L = i \overline{C} C - i \omega^{2} \overline{C} C \qquad (\omega \in \mathbb{R})$ • The system has two conserved charges : $E = i\dot{c}\dot{c} + i\omega^2 \bar{c}c$ energy, $N_{sh} = \tilde{C}\dot{C} - \dot{C}C$ ghost number. Show that E and $-iN_{gh}$ are the Noether charges for time translation symmetry and symmetry $C \rightarrow e^{d}C$, $\overline{C} \rightarrow e^{d}\overline{C}$. • The canonical commutation relation among C, E, È, È is $\{\hat{c}, \hat{c}\} = [\hat{c}, \hat{c}\} = -], all other anticommutators = 0.$ Show this using Ward identity. • Lagrangian is real $L^* = L$ under $C^* = C$, $\overline{C}^* = \overline{C}$. Accordingly, we'd like to find a representation with on inner product s.t. $\hat{c}^{\dagger} = \hat{c}$, $\hat{c}^{\dagger} = \hat{c}$, $\hat{c}^{\dagger} = \hat{c}$, $\hat{c}^{\dagger} = \hat{c}$.

· Define b and b by $\widehat{b} = \frac{1}{\sqrt{2}} \left(\sqrt{\omega} \,\widehat{c} + \frac{1}{\sqrt{\omega}} \,\widehat{c} \right), \quad \widehat{b}^{\dagger} = \frac{1}{\sqrt{2}} \left(\sqrt{\omega} \,\widehat{c} - \frac{1}{\sqrt{\omega}} \,\widehat{c} \right),$ $\widehat{\overline{b}} = \frac{-i}{\sqrt{2}} \left(\sqrt{\omega} \widehat{\overline{c}} + \frac{i}{\sqrt{\omega}} \widehat{\overline{c}} \right) \quad \widehat{\overline{b}}^{\dagger} = \frac{i}{\sqrt{2}} \left(\sqrt{\omega} \widehat{\overline{c}} - \frac{i}{\sqrt{\omega}} \widehat{\overline{c}} \right)$ We have also written \hat{b}^{\dagger} and \hat{b}^{\dagger} anticipating $\hat{C}^{\dagger} = \hat{c}$ etc. These four obey: $\{\hat{b}, \hat{b}^{\dagger}\} = \{\hat{b}, \hat{b}$ · Following again harmonic Oscillator, let us prepare a state 10> annihilated by b and b, and build other states by operating & and \$ on it. This gives an irreducible representation, spanned by four states $[0\rangle, \hat{b}^{\dagger}[0\rangle, \hat{b}^{\dagger}[0\rangle, \hat{b}^{\dagger}[0\rangle, \hat{b}^{\dagger}]$ Compute the inner products among these states. Observe that the inner product is not positive definite!

· As the operators corresponding to E and Ngh, we may take $\widehat{H} = i\widehat{\widehat{c}}\widehat{\hat{c}} + i\omega^{2}\widehat{\hat{c}}\widehat{\hat{c}} = \omega(\widehat{\hat{b}}^{\dagger}\widehat{\hat{b}} + \widehat{\hat{b}}^{\dagger}\widehat{\hat{b}} - i)$ $\widehat{N}_{gh} = \widehat{c} \widehat{c} - \widehat{c} \widehat{c} = \widehat{b}^{\dagger} \widehat{b} - \widehat{b}^{\dagger} \widehat{b}$ (There is an ordering ambiguing for Ngh but not for H.) The four states above are eigenstates of these : $\omega + \widehat{b}^{\dagger} \widehat{b}^{\dagger} \langle o \rangle$ Ê+107 6+10> -() 10> Ngh-value 1 \geq -1 0 Note that \widehat{N}_{gh} is antihermitian, $\widehat{N}_{gh} = -\widehat{N}_{gh}$, but has real eigenvalues 0, ±1. This is possible because the inner product is not positive definite.

We call this a ghost system as it will appear in modes of "Faddeev-Popov ghost" in gauge theory. What we have done here will be useful.