Recap

$$
\begin{aligned}
& S_{\Lambda}=\left[\int d^{4} x\left(\frac{1}{2}\left(\partial \phi_{0}\right)^{2}+\frac{m_{0}(\Lambda)^{2}}{2} \phi_{0}^{2}+\frac{\lambda_{0}(\Lambda)}{4!} \phi_{0}^{4}\right)\right]_{\Lambda \leftarrow \text { uv cato }}^{«{ }^{\text {vesularization }}} \\
& \phi_{0}=\sqrt{Z_{0}(\Lambda)} \phi \\
& =\left[\int d^{4} x\left(\frac{1}{2} Z_{0}(\Lambda)(\partial \phi)^{2}+\frac{m_{0}(\Lambda)^{2}}{2} Z_{0}(\Lambda) \phi^{2}+\frac{\lambda_{0}(\Lambda)}{4!} Z_{0}(\Lambda)^{2} \phi^{4}\right)\right]_{\Lambda} \\
& \left\{\begin{array}{l}
Z_{0}(\Lambda)=1+\lambda a_{1}(\Lambda)+\lambda^{2} a_{2}(\Lambda)+\cdots \\
m_{0}(\Lambda)^{2} Z_{0}(\Lambda)=m^{2}+\lambda b_{1}(\Lambda)+\lambda^{2} b_{2}(\Lambda)+\cdots \\
\lambda_{0}(\Lambda) Z_{0}(\Lambda)^{2}=\lambda+\lambda^{2} C_{1}(\Lambda)+\lambda^{3} C_{2}(\Lambda)+\cdots
\end{array}\right.
\end{aligned}
$$

Determine $a_{n}(\Lambda), b_{n}(\Lambda), c_{n}(\Lambda)$ so that

$$
\Gamma_{0}\left(\phi_{0}, m_{0}(\Lambda), \lambda_{0}(\Lambda) ; \Lambda\right)=\Gamma(\phi, m, \lambda ; \Lambda)
$$

is finite as a functional of $\phi, m, \lambda$ as $\Lambda \rightarrow \infty$.
To fix ambiguity, we need to impose renormalization condinon. (RC.)

$$
\begin{aligned}
\Gamma(\phi!) & =\Gamma(p, m, \lambda ; \Lambda) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \frac{d^{6} p_{i}}{(L \pi)^{4}} \widetilde{\phi}\left(p_{i}\right) \cdot(2 \pi)^{4} S^{(4)}\left(p_{1}+\cdots+p_{n}\right) \Gamma\left(p_{1}, \cdots, p_{n}\right)
\end{aligned}
$$

Examples of renormalization Conditions：

$$
\begin{aligned}
& \text { On shall R.C. }\left\{\begin{array}{l}
\left.\Gamma(-p, p)\right|_{p^{2}=-m^{2}}=0 \\
\left.\frac{d}{d p^{2}} P(-p, p)\right|_{p^{2}=-m^{2}}=1
\end{array}\right. \\
&\left.\Gamma\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right|_{p_{i} i \cdot \rho_{j}}= \begin{cases}-m^{2} & i=j \\
m^{2} / 3 & \text { i⿻二丨凵小}\end{cases}
\end{aligned}
$$

Intermediate $R . C .\left\{\begin{array}{l}\left.\Gamma(-p, p)\right|_{p^{2}=0}=m^{2} \\ \left.\frac{1}{l p^{2}} P(-p, p)\right|_{p^{2}=0}=1 \\ \left.\Gamma\left(p_{1}, \cdots p_{4}\right)\right|_{p_{i}, \rho_{j}=-}=\lambda\end{array}\right.$

$$
\text { another } R\left(.\left\{\begin{array}{l}
\left.\Gamma(-p, p)\right|_{\rho^{2}=\mu^{2}}=\mu^{2}+m^{2} \\
\left.\frac{d}{d p^{2}} P(-p, p)\right|_{p^{2}=\mu^{2}}=1 \\
\left.\Gamma\left(p_{1},-, p_{4}\right)\right|_{p_{i}, P_{j}}= \begin{cases}\mu^{2} & i=j \\
-\mu^{2} / 3 & i \neq j\end{cases}
\end{array}\right.\right.
$$

Solution to R.C. at L-loop
(1) momenten cutoff

$$
\begin{aligned}
\Gamma_{1}\left(-p_{1} p\right)=p^{2}+m^{2} & +\frac{\lambda m^{2}}{2(4 \pi)^{2}}\left(\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)-1+\gamma+O\left(\frac{m^{2}}{n^{2}}\right)\right) \\
& +\lambda a_{1}(\Lambda) p^{2}+\lambda b_{1}(\Lambda) \\
\Gamma_{1}\left(p_{1} ; 1 p_{4}\right)=\lambda & -\frac{\lambda^{2}}{2\left(\{\pi)^{2}\right.}\left[\log \left(\frac{\Lambda^{2}}{2 m^{2}}\right)-\gamma-1-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p_{12}^{2}}{m^{2}}\right)+O\left(\frac{l_{n}^{2}}{\Lambda^{2}}, \frac{m^{2}}{n^{2}}\right)\right] \\
& -(2 \Theta 3)-(2 \Theta 4) \quad p_{12}=p_{1}+p_{2} \text { er } \\
& +\lambda^{2} C_{1}(\Lambda) \quad
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}(\Lambda)=0 \\
& b_{1}(\Lambda)=\frac{m^{2}}{2(4 \pi)^{2}}\left[-\frac{\Lambda^{2}}{m^{2}}+\log \left(\frac{n^{2}}{m^{2}}\right)+1-r+O\left(\frac{m^{2}}{n^{2}}\right)\right] \\
& C_{1}(\Lambda)=\frac{3}{2(4 \pi)^{2}}\left[\log \left(\frac{\Lambda^{2}}{2 m^{2}}\right)-1-r-K+O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right]
\end{aligned}
$$

$$
K=\left\{\begin{array}{cc}
\int_{0}^{1} d x \log \left(1-\frac{4}{3} x(1-x)\right) & \text { Onshll R.C. } \\
0 & \text { intermedrute R.C. } \\
\int_{0}^{1} d x \log \left(1+x(1-x) \frac{4 \mu^{2}}{3 m^{2}}\right) & \text { another RC. }
\end{array}\right.
$$

(3) dim reg

$$
\begin{aligned}
\Gamma_{1}(-p, p)=p^{2}+m^{2} & -\frac{\lambda m^{2}}{2(4 \pi)^{2}}\left(\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)+1-r+o(\epsilon)\right) \\
& +\lambda a_{1}(\epsilon) p^{2}+\lambda b_{1}(\epsilon) \\
\Gamma_{1}\left(p_{1}, \cdots, p_{4}\right)=\lambda & \left.-\frac{\lambda^{2}}{2(4 \pi)^{2}}\left(\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-\gamma-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p_{12}^{2}}{m^{2}}\right)+a_{1} \epsilon\right)\right] \\
& -(2 \leftrightarrow 3)-(2 \leftrightarrow q) \\
& +\lambda^{2} C_{1}(\epsilon)
\end{aligned}
$$

$$
a_{1}(\epsilon)=0
$$

$$
b_{1}(\epsilon)=\frac{m^{2}}{2(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{p R}^{2}}{m_{2}}\right)+1-r+O(\epsilon)\right]
$$

$$
C_{1}(\epsilon)=\frac{3}{2(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{p R}^{2}}{m^{2}}\right)-\gamma-k+\alpha(\epsilon)\right]
$$

$$
K=\left\{\begin{array}{cc}
\int_{0}^{1} d x \log \left(1-\frac{4}{3} x(1-x)\right) & \text { on shell R.C } \\
0 & \text { inxesmedrate } \\
\int_{0}^{1} d x \log \left(1+x(1-x) \frac{4 M^{2}}{3 m^{2}}\right) & \text { another }
\end{array}\right.
$$

same as in 1

Computation of effective potential
The effective potential $\bigcup_{\text {eft }}(\phi)$ is defined by

$$
\Gamma(P)=\int d^{4} x \bigcup_{\text {eft }}(P) \quad \text { for constant } \phi
$$

Let us compute it to the (-loop level. Recall

$$
\Gamma(\phi)=S_{0}(\phi)+S_{1}(\phi)+\frac{1}{L} \log \operatorname{det} S_{0}^{\prime \prime}(\phi)+2 \text {-loop \& higher }
$$

For constant $\phi$,

$$
\begin{aligned}
& S_{0}(\phi)=\int d^{4} x U(P) ; \quad U(\phi)=\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \\
& S_{1}(\phi)=\int d^{4} x \quad \delta_{1} U(\phi): \quad \delta_{1} U(\phi)=\frac{\lambda b}{2} \phi^{2}+\frac{\lambda^{2} c_{1}}{4!} \phi^{4} \\
& \frac{1}{2} \log \operatorname{det} S^{\prime \prime}(\phi)=\frac{1}{2} \operatorname{Tr} \log \left(-\partial^{2}+U^{\prime \prime}(\phi)\right) \\
& =\frac{1}{2} \int d^{4} x \sum_{h} \varphi_{h}(x)^{k} \log \left(-\partial^{2}+U^{\prime \prime}(\varphi)\right) \varphi_{h}(x)<\varphi_{h}(x) \sim e^{i h x} \\
& =\int d^{4} x \frac{1}{L} \int \frac{d^{4} h}{(2 \pi)^{4}} \log \left(h^{2}+U^{\prime \prime}(P)\right) \\
& \therefore U_{\text {ext }}(\phi)=U(p)+\delta_{1} U(p)+\frac{1}{2} \int \frac{d^{4} h}{(2 \sqrt{4})^{4}} \log \left(h^{2}+U^{\prime \prime}(\phi)\right)+2 \text { loop higher } \\
& =: U_{1}(P)
\end{aligned}
$$

Let us compute $U_{1}(\phi)$ via (1) momentum cutoff
\& (3) dimensional regularization.
(1) momentum cut-off

$$
U_{1}=\frac{1}{2} \int \frac{d^{4} h}{(2)^{4}} \log \left(h^{h^{2}+m^{2}}+\frac{\lambda \phi^{2}}{2}\right) \quad \frac{h^{2}+m^{2}}{e^{-\left(h^{2}+m^{2}\right) / \Lambda^{2}}}\left(\frac{h^{2}+m^{2}}{\left.e^{-\left(h^{2}+m^{2}\right) /\left(n^{2}\right.}\right)+\log \left(1+\frac{e^{-\left(h^{2}+m^{2}\right) / \Lambda^{2}}}{h^{2}+m^{2}} \frac{\lambda \phi^{2}}{2}\right)}\right.
$$

Constant $\rightarrow$ drop

$$
\begin{aligned}
U_{1}^{\infty}= & \frac{1}{2} \int \frac{d^{4} k}{(2 q)^{4}} \log \left(1+\frac{e^{-\frac{k^{2}+m^{2}}{\Lambda^{2}}}}{k^{2}+m^{2}} \frac{\lambda \phi^{2}}{2}\right) \\
& {\left[\frac{V_{0}\left(S^{3}\right)}{2(2 \pi)^{4}}=\frac{1}{(4 \pi)^{2}}, h^{2}+m^{2}=\Lambda^{2} t\right.} \\
= & \frac{m^{4}}{2(4 \pi)^{2}} \int_{\Delta}^{\infty}\left(\frac{t}{\Delta^{2}}-\frac{1}{\Delta}\right) d t \log \left(1+\frac{e^{-t}}{t} \Delta \cdot \frac{\lambda \phi^{2}}{2 m^{2}}\right) \\
\vdots & =A \\
= & \frac{m^{4}}{2(4 \pi)^{2}}\left[\frac{1}{2}(1+A)^{2} \log (1+A)+\left(\frac{1}{\Delta}+\log \Delta+r-\frac{3}{2}\right) A\right. \\
& \left.+\frac{1}{2}\left(\log (2 \Delta)+r-\frac{1}{2}\right) A^{2}\right]
\end{aligned}
$$

Using the expressions for $b_{1}(\Lambda) \& c_{1}(\Lambda)$ :

$$
\begin{aligned}
\delta_{1} U^{0}= & \frac{\lambda m^{2}}{2} \cdot \frac{1}{2(4 \pi)^{2}}\left(-\frac{\Lambda^{2}}{m^{2}}+\log \left(\frac{\Lambda^{2}}{m^{2}}\right)+1-r+O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \phi^{2} \\
& +\frac{\lambda^{2}}{4!} \frac{3}{2(4 \pi)^{2}}\left(\log \left(\frac{n^{2}}{2 m^{2}}\right)-1-r-k+O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \phi^{4} \\
= & -\frac{m^{4}}{2(4 \pi)^{2}}\left\{\left(\frac{1}{\Delta}+\log \Delta-1+r+O(\Delta)\right) A \quad\left(\begin{array}{l}
\Delta=\frac{m^{2}}{\Lambda^{2}} \\
A=\frac{\lambda \phi^{2}}{2 m^{2}} \\
\\
\end{array}+\frac{1}{2}(\log (2 \Delta)+1+\gamma+k+O(\Delta)) A^{2}\right\}\right.
\end{aligned}
$$

$$
U_{\text {eft }}=U+\underbrace{\delta_{1} U^{0}+U_{1}^{0}}_{\text {divergence cancel ! }}+\text { higher loop }
$$

$\wedge \rightarrow \infty$

$$
\longrightarrow U+\frac{m^{4}}{2(4 \pi)^{2}}\left\{\frac{1}{2}(1+A)^{2} \log (1+A)-\frac{1}{2} A-\frac{1}{2}\left(\frac{3}{2}+K\right) A^{2}\right\}
$$

+ higher loop

$$
\begin{aligned}
= & \frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \\
+ & \frac{1}{4(4 \pi)^{2}}\left\{\left(m^{2}+\frac{\lambda \phi^{2}}{2}\right)^{2} \log \left(1+\frac{\lambda \phi^{2}}{2 m^{2}}\right)\right. \\
& \left.\quad-\frac{1}{2} \lambda m^{2} \phi^{2}-\left(\frac{3}{2}+k\right) \frac{1}{4} \lambda^{2} \phi^{4}\right\}
\end{aligned}
$$

+ higher loop
(3) Dimensional regularization

$$
\begin{aligned}
& U_{1}^{(3)}=\frac{M_{P R}^{4-d}}{2} \int \frac{d^{2} k}{(2 \pi)^{2}} \log \left(h^{2}+U^{\prime \prime}(\phi)\right) \quad U^{\prime \prime}(\phi)=m^{2}+\frac{x \phi^{2}}{2} \\
& \vdots \\
&=-\frac{M_{P R}^{4-d}}{2(4 \pi)^{1 / 2}}\left(U^{\prime \prime}(\phi)\right)^{\frac{J}{2}} P\left(-\frac{d}{2}\right) \quad \\
& d=4-\epsilon \\
&=-\frac{\left(U^{\prime \prime}(\Phi)\right)^{2}}{4(4 \pi)^{2}}\left(\frac{2}{\epsilon}-\log \left(\frac{U^{\prime \prime}(P)}{4 \pi \mu_{P R}^{2}}\right)+\frac{3}{2}-\gamma+O(\epsilon)\right) \\
&=\frac{\left(m^{2}+\frac{\lambda \phi^{2}}{2}\right)^{2}}{4(4 \pi)^{2}}\left(-\frac{2}{\epsilon}+\log \left(1+\frac{x P^{2}}{2 m^{2}}\right)-\log \left(\frac{4 \pi \mu_{P R}^{2}}{m^{2}}\right)-\frac{3}{2}+\gamma+O(\epsilon)\right)
\end{aligned}
$$

Using the expressions for $b_{1}(\epsilon) \& C_{1}(\in)$

$$
\begin{aligned}
\delta_{1} J^{3}= & \frac{\lambda m^{2}}{2} \cdot \frac{1}{2(4 \pi)^{2}}\left(\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)+1-\gamma+O(\epsilon)\right) \phi^{2} \\
& +\frac{\lambda^{2}}{4!} \frac{3}{2(4 \pi)^{2}}\left(\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-V-K+O(\epsilon)\right) \phi^{4} \\
= & \frac{1}{4(4 \pi)^{2}}\left(\lambda m^{2} \phi^{2}+\frac{\lambda^{2} \phi^{4}}{4}\right)\left(\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-\gamma+O(\epsilon)\right) \\
& +\frac{1}{4(4 \pi)^{2}}\left(\lambda m^{2} \phi^{2}-\frac{K}{4} \lambda^{2} \phi^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
U_{\text {eft }}= & U+\delta_{1} U^{B}+U_{1}^{3}+\text { higher loop } \\
= & \left.\frac{m^{4}}{4(4 \pi)^{2}}\left(-\frac{2}{\epsilon}-\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-\frac{3}{2}+\gamma+O(\epsilon)\right)\right] \text { constant } \\
+ & \rightarrow d r o p \\
4(4 \pi)^{2} & \left(m^{2}+\frac{\lambda p^{2}}{2}\right)^{2} \log \left(1+\frac{\lambda p^{2}}{2 m^{2}}\right) \\
& \left.-\frac{1}{2} \lambda m^{2} \phi^{2}-\left(\frac{3}{2}+K\right) \frac{\lambda^{2}}{4} \phi^{4}+O(\epsilon)\right]
\end{aligned}
$$

+ higher loop

After dropping the constant term

$$
\begin{aligned}
& \xrightarrow{\epsilon \rightarrow 0} \quad \frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \\
& +\frac{1}{4(4 \pi)^{2}}\left[\left(m^{2}+\frac{\lambda \phi^{2}}{2}\right)^{2} \log \left(1+\frac{\lambda \phi^{2}}{2 m^{2}}\right)\right. \\
& \\
&
\end{aligned}
$$

+ higher loop,

The results for (1) \& (3) agree for each renormalization condition.

Physical meaning of the effective potential
Hamiltonian density
$\underline{F A C T} U_{\text {eff }}(\varphi)=\langle\psi| \mathcal{H}^{\prime}|\psi\rangle \quad$ for a state $|\psi\rangle$ that extremizes $\langle\psi| \mathscr{X}|\psi\rangle$ under the condition
(1) $\langle\psi \mid \psi\rangle=1$
(2) $\langle\psi| \phi|\psi\rangle=\varphi$
$\because$ in Q.M. for simplicity.
Extremization problem:

$$
\begin{aligned}
& f\left(|\psi\rangle, \lambda_{1}, \lambda_{2}\right):=\langle\psi| H|\psi\rangle-\lambda_{1}(\langle\psi \mid \psi\rangle-1)-\lambda_{2}(\langle\psi| \phi|\psi\rangle-\varphi) \\
& \partial_{\lambda_{1}} f=\partial_{\lambda_{2}} f=0 \Rightarrow \text { (1) } 22 \\
& \delta_{|\psi\rangle} f=0 \Rightarrow\left(H-\lambda_{1}-\lambda_{2} \phi\right)|\psi\rangle=0
\end{aligned}
$$

Recall the def of $\Gamma[\varphi]$ (Notation here: $\mathscr{\varphi}=(\varphi(t))$ etc)

$$
\begin{gathered}
e^{-W[J]}=\int D \phi e^{-S[\phi]+\int d t J(t) \phi(t)} \text { only here } \\
-\frac{\delta}{\delta J(t)} W[J] \stackrel{!}{=} \varphi(t) \stackrel{\text { soln }}{\rightarrow} J=J[\varphi] \\
\Gamma[\varphi]:=W[J(\varphi]]+\int d t J[\varphi](t) \varphi(t)
\end{gathered}
$$

Consider the case $-\frac{T}{2} \leqslant t \leqslant \frac{T}{2}, T \rightarrow \infty$.
For $J(t) \equiv J$ constant (write: $J \equiv J$ )
$\left.W[J]\right|_{J \equiv J}=T \cdot E(J)$ where
$E(J)$ is the energy of the ground state $|0\rangle_{\mathrm{J}}$ of the system with Hamiltonian $H-J \Phi$

$$
\begin{aligned}
& (H-J \phi)|0\rangle_{J}=E(J)|0\rangle_{J} . \\
& \Rightarrow E(J)={ }_{J}\langle 0|(H-J \cdot \phi)|0\rangle_{J} \\
& \frac{\partial}{\partial J} E(J)=-\int_{J}\langle 0| \phi|0\rangle_{J}+\frac{\partial}{\partial J} S 0 \left\lvert\, \frac{(H-J \cdot \phi)|0\rangle_{J}}{E(J)|0\rangle_{J}}+\underbrace{\langle 0| E(J)}_{J}\left\langle(H-J \cdot \phi)^{(H J} \mid 0\right\rangle_{J}\right. \\
& =-{ }_{J}\langle 0| \phi|0\rangle_{J}+E(J) \frac{\partial}{\partial J}\langle 0 \mid 0\rangle_{J} \\
& =-{ }_{J}\langle 0| \phi|0\rangle_{J}
\end{aligned}
$$

If $J(\varphi)$ is a solution to $\frac{\partial}{\partial J} E(J)=-\varphi$, the state $|\psi\rangle=|0\rangle_{J(\varphi)}$ solves the extremization problem with $\lambda_{1}=E(J(\varphi)), \quad \lambda_{2}=J(\varphi)$.

The extremum is

$$
\begin{aligned}
\left\langle_{J(\varphi)}^{\langle 0|} H \mid 0\right\rangle_{J(\varphi)} & ={ }_{J(\varphi)}\langle 0|(E(J(\varphi))+J(\varphi) \phi)|0\rangle_{J(\varphi)} \\
& =E(J(\varphi))+J(\varphi) \cdot \varphi
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& J=J(\varphi) \\
& \left.\frac{\delta}{\delta J(t)} W[J]\right|_{J \equiv J}=\frac{\partial}{\partial J} E(J) \stackrel{\downarrow}{=}-\varphi \\
& \Rightarrow J(\varphi)=\left.J[\varphi]\right|_{\varphi \equiv \varphi}
\end{aligned}
$$

$$
\begin{aligned}
& T U_{\text {ell }}(\varphi)=T E(J(\varphi)) \\
& \therefore U_{\text {eft }}(\varphi)=E(J(\varphi))+J(\varphi) \cdot \varphi
\end{aligned}
$$

Combining,
$U_{\text {eft }}(\varphi)=\underset{J(\varphi)}{\langle 0| H|0\rangle_{J(\varphi)} \text {, the extremum. }}$

Claim "extremize" can be replaced by "minimize":

$$
\begin{aligned}
U_{\text {eft }}(\varphi) \stackrel{!}{\doteq} & \text { minimum of }\langle\psi| H|\psi\rangle \\
& \text { for }\langle\psi \mid \psi\rangle=1, \quad\langle\psi| \phi|\psi\rangle=\varphi
\end{aligned}
$$

This is indeed the case for $\varphi=\langle 0| \phi|0\rangle=\phi_{*}$, the $V E U$.

$$
\begin{aligned}
& \because e^{-W[0]}=\int D \notin e^{-S[\phi]}=e^{-T E_{0}} \\
& J\left[\phi_{*}\right]=0 \rightarrow \mathbb{U}=e^{-T\left[\phi_{k}\right]}=\frac{\text { et t }\left(\phi_{*}\right)}{\therefore U_{\text {eft }}\left(\phi_{*}\right)=E_{0}=\text { the ground state energy. }}
\end{aligned}
$$

And we know for $\forall|\psi\rangle$ st. $\langle\psi \mid \psi\rangle=1$,

$$
\langle\psi| H|\psi\rangle \geqslant E_{0} .
$$

By continuity, this holds as $\varphi$ is moved from $\phi_{*}$ as long as level crossing does not occur.

Anyhow, the VEV $\langle 0| \phi|0\rangle=\phi_{*}$ minimizes $U_{\text {lt }}(\varphi)$ and $U_{\text {eff }}\left(\phi_{x}\right)$ is the ground state energy.
(energy density in QFT)
In other words, $U_{\text {eft }}(\varphi)$ can be used to find the VEV of $\phi$.


