Recap $\mathcal{M} = \{ \text{ field configuration } (A_{\mu}(x), \varphi(x), \psi(x), \cdots) \} \longrightarrow \mathcal{M}^{n}$ G = { G-valued function g(x) } - G^{du} -Slile S $= \{ \chi(\varphi) = \circ \}$ Sauge fix hy condition MA $Z(f) = \int [a\phi] e^{-S_{\varepsilon}(\phi)} f(p)$ $= \int d\rho \ e^{-S_{E}(\varphi)} \int (\chi(\rho)) \ d_{ut}(\delta \chi(\rho)) f(\varphi)$ M $\chi(\rho) - \omega \qquad F.P. \ det$ $= \underbrace{\left(\frac{1}{2\pi 5}\right)^{a_{\mu}}}_{M_{x}} \int d\varphi \, d\omega \, e^{-\int \varepsilon(\varphi) - \frac{1}{25}\omega^{2}} \int (\chi(\varphi) - \omega) \, d\omega + \left(\int \chi(\varphi)\right) f(\varphi)$ $= \underbrace{\left(\underbrace{\lambda_{5}}_{N} \right)^{\lambda_{6}} \int_{M} d\varphi \ e^{-\int_{E} \left(\varphi \right) - \frac{1}{25} \chi(\varphi)^{2}} d\mu \left(\int_{M} \chi(\varphi) \right) f(\varphi)$

diace - E.S.X(P) C, C: F. P. shost,

 $= \frac{1}{(2\pi)^{d_{G}}} \int dP \, dB \, d\bar{c} \, ac \, e^{-\tilde{S}_{E}(P, B, \bar{c}, c)}$ $M_{\times} \mathcal{Y}_{L} \times \mathcal{Y}_{L}$

 $\widetilde{S}_{\varepsilon}(\mathbf{P}, \mathbf{B}, \boldsymbol{\zeta}, \boldsymbol{c}) = S_{\varepsilon}(\mathbf{P}) + \frac{3}{2} \mathbf{B}^{2} - i \mathbf{B} \cdot \boldsymbol{\chi}(\mathbf{P}) + \boldsymbol{\varepsilon} \cdot \boldsymbol{S}_{\varepsilon} \boldsymbol{\chi}(\mathbf{P})$

gunge fixed action

The gauge fixed system has a symmetry
$$\delta_{B}$$
 called
BRST symmetry
 $\delta_{0} \varphi = \delta_{C} \varphi$
 $\delta_{0} \varphi = \delta_{C} \varphi$
 $\delta_{0} B = 0$
 $\delta_{B} B = 0$
 $\delta_{B} B = 0$
 $\delta_{B} C = iB$
 $\delta_{B} C = -\frac{1}{2} [C, C]$
 $\delta_{C} \alpha = -\frac{1}{2} f^{\alpha} C C_{A}$
 $\delta_{C} \alpha = -\frac{1}{2} f^{\alpha} C C_{A}$
It is a fedmionic symmetry $\begin{cases} \delta_{B} bosonic & is fermionic \\ \delta_{B} fermionic & is bosonic. \end{cases}$
 $\delta_{B} (0, O_{L}) = \delta_{B} (O_{1} \cdot O_{L} + (-1)^{(O_{1})} O_{1} \cdot \delta_{B} O_{2})$
 $\delta_{B} \overline{S} E = \delta_{C} E(\varphi) - i B \cdot \delta_{C} X(\varphi) + i B \cdot \delta_{C} X(\varphi)$
 $-\overline{c} \delta_{C} \delta^{\alpha} X(\varphi) + \overline{c} C_{A} \delta^{\beta} \delta^{\alpha} X(\varphi)$
 $-\frac{1}{2} \int_{a}^{bA} C_{C} C_{A} = d^{b} \delta^{A} X - \delta^{A} \delta^{b} X (:: rigt+ action)$
 $(\int_{a}^{bA} \int_{a}^{a} \chi = d^{b} \delta^{A} X - \delta^{A} \delta^{b} X (:: rigt+ action)$
 $= \frac{1}{2} \overline{c} C_{b} C_{A} (d^{b} \delta^{A} - d^{A} d^{b}) \chi(\varphi) + \overline{c} C_{a} C_{b} \delta^{b} \delta^{a} \chi(\varphi) = 0.$

$$\frac{\text{Remarks}}{\delta_{B} \circ \delta_{B} = 0} \quad (\text{Recruise})$$

$$(0 \text{ is said to be } \frac{\text{BRST closed}}{\text{BRST exact}} \quad \text{when } \delta_{B}(0 = 0)$$

$$\frac{\text{BRST exact}}{\text{BRST exact}} \quad \text{when } (0 = \delta_{B}(-)).$$

$$\delta_{D} \delta_{0} \circ \delta_{B} = 0, \quad \text{BRST exact} \Rightarrow \text{BRST closed}.$$

$$(\delta_{E} = S_{E} - \delta_{B} (\overline{c} \cdot (\chi(e) - \frac{i}{2} B)))$$

$$\cdots \text{The gauge fixing term is BRST exact.}$$

$$(\delta_{B}h) = 0 \quad \text{by ward identity.}$$

$$(\delta_{B}h) = 0 \quad \text{by ward identity.}$$

$$(\delta_{B}h) = (-i)^{4} \langle \delta_{B} (f \cdot h) \rangle = 0.$$

$$\ln \text{ particular, if } f_{i}, \dots, f_{n} \text{ are BRST closed,}$$

$$(f_{i} \cdots f_{n}) \text{ does not change under change of } f_{i} \cdot s$$

$$\text{by BRST exact ones } f_{i} \rightarrow f_{i} + \delta_{B}h;$$

These motivate us to consider BRST cohomology: HBRST = { BRST closed } / { BRST exact } A proposal : Physical observables are BRST cohomology classes. (states) (states) There is another symmetry: ghost number Ngh
 P
 B
 こ
 C

 Nっい
 い
 い
 い
 1
 OB increases Non by 1, [Ngu, do] = 1 f' = { Observable of Ngh = i } $\Rightarrow \delta_{R}: \mathcal{F}^{i} \to \mathcal{F}^{i+1}$ HBRST (F) = Ker(de: F'→ F'')/In(de: F'-F')

We may also integrate - out B:

$$Z = \frac{1}{(2\pi s)^{4i/2}} \int dp \, d\bar{c} \, dc = e^{-\tilde{S}_{E}}(\phi, \bar{c}, c)$$

$$M \times g \times g$$

$$S_{E} = S_{E}(\phi) + \frac{1}{2s} \chi(\phi)^{2} + \bar{c} \cdot \delta_{C} \chi(\rho)$$
This is also obtained directly from (1) e (2).
This system also has BRST symmetry

$$\delta_{0} \phi = \delta_{C} \phi,$$

$$\delta_{1} \bar{c} = -\frac{1}{2} \chi(\phi) \qquad \leftarrow \text{ from } EOM: B = \frac{1}{2} \chi(\rho)$$

$$d_{0} C = -\frac{1}{2} [C, C].$$
But $\delta_{B} \circ \delta_{B} = o$ holds only on-shell

$$(EOM \quad \delta_{C} \chi(\phi) = o \text{ is needed}).$$

Back to the case of gauge theory:

$$M \sim \mathcal{M} = \{(A_{\mu}(u), \varphi(u), \psi(u), \dots) \text{ Sield config.}\}$$

$$G \sim G = \{g(u) \mid G \text{-valued function }\}$$

$$J \sim \text{Lie}(G) = \{ E(x) \mid J \text{-valued function }\}$$
As gauge fixing function, we can take
$$\chi [A](x) = \Im^{n}A_{\mu}(x) \quad \text{Lorentz gauge}$$

$$\delta_{e}\chi(A](u) = \Im^{n}D_{\mu}E(u)$$

$$gauge fixed \text{Lagrangian}$$

$$\widetilde{\mathcal{L}}_{E} = \mathcal{L}_{E} + \frac{3}{2}B^{2} - iB \Im^{n}A_{\mu} + \overline{C} \Im^{n}D_{\mu}C$$

$$\text{Twerse Wick rotation to real time}$$

$$(\text{with } B \rightarrow iB, \ \overline{C} \rightarrow i\overline{C} \ a \ \overline{S} \rightarrow e^{2}\overline{S} \ \text{for convenience})$$

$$\widetilde{\mathcal{L}} = (G + \frac{e^{2}\overline{S}}{2}B^{2} - B \Im^{n}A_{\mu} - i\overline{C} \Im^{n}D_{\mu}C$$

BRST symmetry: $\delta_{B}A_{\mu} = D_{\mu}C$, $\delta_{B}\Phi = -C\Phi$, $\delta_{B}\Psi = -C\Psi$ $\delta_{B} \beta = 0$ $d_{B}\bar{C} = iB$ $\delta_{B} C = -\frac{L}{2} [C, C]$ The version where B is integrated out: $\int = \int -\frac{1}{2e^{i\frac{\pi}{2}}} \left(\partial^{n}A_{r}\right)^{2} - i\overline{C} \cdot \partial^{n}D_{r}C$ $\delta_{B}\overline{C} = \frac{\iota}{\rho^{2}\xi} \partial^{r}A_{r},$ fo(others) = same as above. ≥ ∈ (0,∞) is called the "gauge parameter". physics should not depend on its value. (3 vo is also considered)

We may use this as the new starting point for quantization.
For example, we may convert this via Legendre transform
to Hamiltonian formulation and then perform the
operator quantization.
[X: This is now possible thanks to
$$-\frac{1}{2r^{5}}\left(\partial^{n} A_{p}\right)^{2}$$
:
Without that, Ao would have no kinetic term
and hence no conjugate momentum.
However Ao has wrong sign kinetic term (note 3>0)
 $-\frac{1}{2e^{5}}(A_{0})^{2}$ which yields negative norm states.
Also the ghoster with kivetic term i \vec{C} also yield
Zevo k negative horm states. [Lee 3, Exercise (c)]
As the existence of such negative/zero norm states
indicates, the gauge fixed system has a huge number
of unphysical degrees of freedom.

This is the quantum counterport of the huge gauge
symmetry in the classical system : the gauge
transformations
$$(A, P, 4, ...) \mapsto (A^3, P^3, 4^3, ...)$$
 are
regarded as unphysiscal change of field configuration.
The proposal is to take the **BRST cohomology** to
select physical degrees of freedom.
For example, the space of physical states is
the BRST cohomology of states
 $H_{phys} := H_{BRST} (Je).$
It is expected that this consists of positive vorum
states only.

Hamiltonian formulation of gauge theories

Consider the system without matter fields for simplicity.

$$S[A] = \int -\frac{1}{4e^{2}} E^{\mu\nu} F_{\mu\nu} d^{4}x$$

$$= \int d^{4}x \left(\frac{1}{2e^{4}} \sum F_{0i}^{2} - \frac{1}{2e^{4}} \sum F_{ij}^{2} \right)^{-ij=1,\cdots,d-1}$$
The system is equivalent to

$$S[A, E: A_{0}] = \int d^{4}x \left(\sum E_{i} F_{0i} - \frac{e^{4}}{2} \sum E_{i}^{2} - \frac{1}{2e^{4}} \sum F_{ij}^{2} \right)$$
Integrating out $E = (E_{i})_{i=1}^{d+1}$, we obtain the system of
 $(A, A_{0}) = (A_{\mu\nu})$ with action $S[A]$.
Integrating $F_{0i} = A_{i} - \partial_{i}A_{0} + [A_{0}, A_{i}] = A_{i} - D_{i}A_{0}$
and doing partial integration,

$$S[A, E: A_{0}] = \int d^{4}x \left(\sum E_{i}A_{i} - \frac{e^{4}}{2} \sum E_{i}^{2} - \frac{1}{2e^{4}} \sum F_{ij}^{2} + A_{0}D_{i}E_{i} \right)$$
Abolds) is a Lagrange multiplier imposing a constraint
 $D \cdot E = 0$ Gauss law.

$$E_{i}(x) \text{ is the Conjugate momentum of } A_{i}(x).$$
Their components have Poisson bracket
$$\left\{A_{ia}(x), E_{jb}(y)\right\} = \delta_{ij} \delta_{ab} \delta(x - y).$$

$$Ham_{i}(tonian is)$$

$$H(E,A) = \int d^{b}x \left(\frac{e^{x}}{2} \sum E_{i}(x)^{2} + \frac{1}{2e^{x}} \sum F_{ij}(x)^{2}\right)$$
Let us study the construct
$$\overline{\Phi}(x) := D \cdot E = D_{i} E_{i} = D_{i} E_{i} + [A_{i}, E_{i}] = 0.$$
For a g-valued function $E(x) + x$, put
$$\overline{\Phi}(E) := \int d^{a}x \in (x) \cdot \overline{\Phi}(x) = -\int d^{a}x D \in (x) \cdot E.$$

$$\left\{\overline{\Phi}(E), A(x)\right\} = [D \in (x) \quad (use this expression))$$

$$\left[\overline{\Phi}(E), E(x)\right] = \left\{\int d^{a}y \in (y) \cdot [A_{i}, E_{i}](y), E(x)\right\}$$

$$= [E, E](x)$$

 $\overline{\mathcal{D}}(\varepsilon)$ generates the gauge transformation by $\varepsilon(*)$. In particular, since H is gauge invariant, $\left\{ \Phi(\epsilon), H \right\} = 0.$ Also, as $\Phi = D \cdot E$ is covariant, $\langle \overline{\Phi}(\epsilon), \overline{\Phi}(s) \rangle = \left[\overline{\Phi}, \epsilon \right](s),$ and hence $\{ \overline{\Phi}(\epsilon_i), \overline{\Phi}(\epsilon_i) \} = \{ \overline{\Phi}(\epsilon_i), \left\{ d \stackrel{\leftarrow}{\ast} \in_2(\ast) \cdot \overline{\Phi}(\ast) \} \}$ $\stackrel{\bullet}{=} \left(d^{\bullet} \times \mathcal{E}_{2}(\times) \cdot \left[\overline{\mathcal{Q}}, \epsilon, \right](\times) \right)$ $[\in [, \in] (x) \cdot \overline{\Phi}(x)$ $= \Phi([\epsilon_1, \epsilon_2])$ The Humiltonian system of this type is Called the system with a first class constraint.

Constraints on the phase space

$$M = phase space = \left(\left(q^{1}, ..., q^{n}, P_{1}, ..., P_{n}\right)\right)$$

$$\frac{1}{2}$$

$$P$$
A constraint $(\rightarrow) (q, p)$ is allowed to be
only in a submanifold N C M
Locally, it is defined by constraint equations

$$g^{n}(q, p) = o \quad a = 1, ..., m \leq 2n$$
N has dimension $2n-m$.

$$eg. For M = R^{2n},$$

$$@ g = P_{n} : N = \left\{\left(q^{1}, ..., q^{n}, P_{1}, ..., P_{n-1}, O\right)\right\} \cong R^{2n-1}.$$

$$@ g = e_{n}^{n}, P^{2} = P_{n} : N = \left\{\left(q^{1}, ..., q^{n}, P_{1}, ..., P_{n-1}, O\right)\right\} \cong R^{2n-2}.$$

$$@ g = \sum_{i=1}^{n} \left(\left(q^{i}\right)^{2} + \left(P_{i}\right)^{2}\right) - r : N \cong S^{2n-1}.$$
The constraint is consistent with the dynamics if the
time evolution sends N to itself. That is, if the
Starting point is in N, it remains so afterwards.

This requires

$$\frac{d 9^{\circ}}{At} = \{9^{\circ}, H\} \text{ vanishes on N}$$

$$(\Rightarrow \{9^{\circ}, H\} = \sum_{k} C_{k} 9^{k}$$
For since function $C_{k}^{\circ} = C_{k}^{\circ}(9, p)$

$$(\text{ at least in a neighborhood of N}).$$
Two typical cases:
A constraint of first class:

$$(9^{\circ}, 9^{\circ}) = 0 \text{ on N}$$
A constraint of second class:

$$(\{6^{\circ}, 9^{\circ}\}) = 0 \text{ on N}$$
A constraint of second class:

$$(\{6^{\circ}, 9^{\circ}\}) = 0 \text{ on N}$$

$$i.e. det\{9^{\circ}, 9^{\circ}\} \neq 0 \text{ on N}.$$
Eg. (at class, (b) and class, (c) are class.
Our main target is first class constraint, but let us study
the treatment of and class (which will be used also for a treater).

Treatment of 2nd class constraint

For a 2nd class constraint, the submanifold N itself can
be regarded as a phase space, with
Poisson bracket := the Dirac bracket:
For functions
$$f, g = N$$
, take any extensions \tilde{f}, \tilde{g} to a
neighborhood of N in M and put
 $\{f, g\}_N := (\{\tilde{f}, \tilde{g}\} - (\tilde{f}, \varphi^*) D_{ab} \{\varphi^b, \tilde{g}\})|_N$
where D_{ab} is the inverse matrix of $\{\varphi^q, \varphi^a\}|_N$.
• This does not depend on the choice of extensions.
• Another choice $\tilde{f}' = \tilde{f} + \delta \tilde{f}$; $\delta \tilde{f} |_N = 0$.
 $\Rightarrow \Delta \tilde{f} = \sum_n f_n \varphi^n$ for some finits
 $\Delta \{f, g\}_N = (\{\delta \tilde{f}, \tilde{g}\} - (\delta \tilde{f}, \varphi^b) D_{bc} \{\varphi^c, \tilde{g}\})|_N$
 $= \sum_n f_n (\{\varphi^a, \tilde{g}\} - (\varphi^a, \varphi^b) D_{bc} \{\varphi^c, \tilde{g}\})|_N$

• $\{f, H|_N\}_N = \{\tilde{f}, H\}|_N$ Thus, the time evolution is generated by HIN in the constrained phase space (N, E,), . The constrained system can be quantized in the operator formalism in the standard way: $[\widehat{\mathcal{O}}_{1},\widehat{\mathcal{O}}_{2}] = i\hbar (\widehat{\mathcal{O}}_{1},\widehat{\mathcal{O}}_{2},\widehat{\mathcal{O}}_{N})$ To be precise, one needs to check that the Dirac bracket {, YN has the properties required for Poisson bracket: (i) antisymmetry: $(f, g)_N = -\{g, f\}_N$ (ii) derivation: $\{f, gh\}_N = \{f, g\}_N h + g\{f, h\}_N$ (iii) Jacob: identity: {f, [g, h }) + cyclic = 0 (iv) non-degeneracy: for any local coordinates $(\chi^r)_{r=1}^{2n-n}$ on N, {x^r, x^s}_N is invertible.

You may try to show these directly. However, there is a conceptually clearer picture in which this is automatic. It is to view phase spaces as symplectic manifolds: If w is the symplectic form on M corresponding to the Poisson bracket $\{, \}, and if q'=\dots=q^m=o$ is a 2nd cluss constraint, then, w restricted to N = { q'=== q^m= > } is non-degenerate, and hence is a symplectic form on N. The Dirac bracket {, JN is nothing but the Poisson bracket corresponding to WIN. To summarize, ---- symplectic manifold Phase space (M, W) (M, {, }) $(N, \omega|_N)$. $(N, \{\cdot, \gamma_N\})$ \longleftrightarrow Given this, the Dirac bracket E. Jr automatically has

the required properties (i) (ii), (iii), (iv).

Reduced phase space for 1st class constraint

Now let us consider the system with a lat class constraint

$$\begin{aligned}
\mathcal{G}^{c}(q,p) &= D \qquad a=1,...,m,, \\
\begin{cases}
\{H, \varphi^{c}\} &= \sum_{b} C_{b}^{a} \varphi^{b}, \\
\{\varphi^{a}, \varphi^{b}\} &= \sum_{c} C_{c}^{a} \varphi^{c}, \\
\{\varphi^{a}, \varphi^{b}\} &= \sum_{c} C_{c}^{a} \varphi^{c}, \\
\\
\text{Introducing a Legrange multiplier } \lambda_{a}(t), \text{ the action may be} \\
\text{written as} \\
S &= \int_{t_{i}}^{t_{i}} \exists t \left(\sum_{i} P_{i} \dot{q}^{i} - H(q, p) + \sum_{a} \lambda_{a} \varphi^{c}(q, p)\right) \\
\begin{bmatrix}
e_{S}, Y_{aug} \text{ Mills phases} \\
P_{i} \to E(w), q^{i} - A(w), \lambda_{a} \to A_{b}(w), \varphi^{a} \to \overline{\Phi}(w) = D \cdot E(w) \\
\end{bmatrix} \\
\hline
\text{Equations of motion } \left(\text{EL eq for } q(t_{i}), q(t_{i}), f_{i} \text{ set}\right): \\
\begin{pmatrix}
q^{i} &= \frac{\partial H}{\partial P_{i}} + \sum_{a} \lambda_{a} \frac{\partial \varphi^{a}}{\partial q_{i}} \\
p_{i} &= -\frac{\partial H}{\partial q_{i}} - \sum_{a} \lambda_{a} \frac{\partial \varphi^{a}}{\partial q_{i}} \\
\end{bmatrix}
\end{aligned}$$

Rinks
()
$$\mathcal{G}^{*}(1,p) = o$$
 is consistently preserved on $\mathbb{N} = \{\mathcal{G}^{*} \ge \mathcal{G} \land \mathcal{G}^{*} :$
 $\mathcal{G}^{*} = \hat{\xi}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}_{1}^{*}} + \hat{\xi}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}_{1}^{*}} = \{\mathcal{G}^{*}, \mathbb{H}\} + \sum_{b} \mathcal{F}_{a}^{*}, \mathcal{G}^{*}, \mathbb{G}^{b}\}$
 $\mathcal{G}^{*} = \hat{\xi}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}_{1}^{*}} + \hat{\xi}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}_{1}^{*}} = \{\mathcal{G}^{*}, \mathbb{H}\} + \sum_{b} \mathcal{F}_{b}^{*}, \mathbb{G}^{b}\}$
 $\mathcal{G}^{*} = \hat{\xi}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}_{1}^{*}} + \hat{\xi}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}_{1}^{*}} = \{\mathcal{G}^{*}, \mathbb{G}^{*}\} + \sum_{b} \mathcal{G}^{*} \mathcal{G}^{*} = \{\mathcal{G}^{*}, \mathbb{G}^{*}\}$
 $\mathcal{G}^{*} = \mathbb{G}^{*} \frac{\mathcal{G} \varphi^{*}}{\mathcal{G}^{*}} = \{\mathcal{G}^{*}, \mathbb{G}^{*}\} + \sum_{b} \mathcal{G}^{*} \mathcal{G}^{*} = \{\mathcal{G}^{*}, \mathcal{G}^{*}\}, \quad \mathcal{G}^{*} = \{\mathcal{G}^{*}, \mathcal{G}^{*}\} = \{\mathcal{G}^{*}, \mathcal{G}^{*}\}, \quad \mathcal{G}^{*} = \{\mathcal{G}^{*$

Physical observables are functions of
$$(q', \gamma, q^{n-1}, P_1, \gamma, q_{n-1})$$

Physical observables are functions of $(q', \gamma, q^{n-1}, P_1, \gamma, q_{n-1})$

Define the reduced phase space
$$M^* = N/n$$

 $\chi \sim g \Leftrightarrow \chi$ and g are related by a gauge transformation.
Functions on $M^* = gauge invariant functions on N$
 $=$ functions \tilde{f} on a neighborhood of N in M
 $nt. \{\tilde{f}, \varphi^n \} = f_n^* \varphi^n$
modulo addition of functions vanishing on N.
Theorem $M^* = N/n$ has a Poisson bracket :
 f, g functions on M^*
 $\sim \tilde{f}, \tilde{s}$ sit. $(\tilde{f}, \varphi^n) = f_n^* \varphi^n, (\tilde{g}, \varphi^n) = \tilde{g}_n^* \varphi^n$
 $\{f, g\}_{M^*}$ is represented by $\{\tilde{f}, \tilde{g}\}$.
Proof Check points :
 (\tilde{f}, \tilde{f}) defines a function on M^* .
 (\tilde{f}, \tilde{g}) defines a function on M^* .
 \tilde{g} independent of the choice of \tilde{f}, \tilde{s} .
 \tilde{g} $\{f, g\}_{M^*}$ has required properties for Poisson bracket.

 $\bigcirc \left\{ \left\{ \tilde{f}, \tilde{g} \right\}, \varphi^{n} \right\} = \left\{ \left\{ \left\{ \tilde{f}, \varphi^{n} \right\}, \tilde{g} \right\} + \left\{ \tilde{f}, \left\{ \tilde{g}, \varphi^{n} \right\} \right\} \right\}$ $= \{\{f_{b}, \tilde{g}\} \varphi^{b} + f_{b}^{a} \{\{\varphi^{b}, \tilde{g}\}\} + \{\{\tilde{f}, g^{c}\}\} \varphi^{b} + j_{b}^{a} \{\{\tilde{f}, \varphi^{c}\}\}$ - gb 4c f^b, y^c $= (\{f_{6},\tilde{9}\} - f_{c}^{*}\}_{6}^{*} + (\tilde{f},\tilde{9}_{6}^{*}) + \tilde{9}_{c}^{*}f_{6}^{*})\varphi^{*} \vee$ (2) $\tilde{f} \rightarrow \tilde{f} + \Delta \tilde{f}$; $\Delta \tilde{f} = f_a \varphi^a$ $\Delta\left(\widetilde{f},\widetilde{g}\right) = \left\{f_{a}\varphi^{a},\widetilde{g}\right\} = \left\{f_{a},\widetilde{g}\right\}\varphi^{*} + f_{a}\left(\varphi^{a},\widetilde{g}\right)$ 59 yb $= \left(\left\{ f_a, \tilde{q} \right\} + f_b \mathcal{J}_a^b \right) \mathcal{Y}^a \vee$ (3) Take a (local) slice S_{χ} of $N \rightarrow N/\sim$ defined by equations $\chi_a(q, p) = o$, a = 1, ..., m, in addition to $\mathcal{Y}^{q}(q,p)=0$, q=1,..,m. N $-\varphi = 0$ $\chi = 0$

Since the equations $X_1 = \cdots = X_m = 0$ must be maximally Violated by the gauge transformations {-, 9ª}, det $(\chi_a, \varphi^b) \neq o$ on S_{χ} . Write $\left(\Phi^{A} \right)_{A=1}^{2m}$ for $\left(\chi_{a} \right)_{a=1}^{m} \cup \left\{ \varphi^{a} \right\}_{a=1}^{m}$. $\left\{ \left. \begin{array}{c} \left. \left\{ \left. \begin{array}{c} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \\ \left. \left\{ \left. \left\{ \left. \begin{array}{c} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \\ \left. \left\{ \left. \left\{ \left. \begin{array}{c} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \\ \left. \left. \left\{ \left. \begin{array}{c} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \left. \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \\ \left. \left. \left\{ \left. \begin{array}{c} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \left. \left[\left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \\ \left. \left. \left[\left\{ \left. \left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \left. \left[\left\{ \chi_{a}, \chi_{b} \right\} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left. \left\{ \varphi^{a}, \chi_{b} \right\} \right\} \left\{ \left. \left[\left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \left. \left[\left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \varphi^{b} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \right\} \\ \left. \left[\left\{ \left\{ \chi_{a}, \chi_{b} \right\} \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \right\} \\ \left. \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left. \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right\} \right\} \\ \left\{ \left\{ \chi_{a}, \chi_{b} \right$ is invertible as $Y_a^b = (\chi_a, \varphi^b)|_{S_X}$ is invertible. This means that $S_{\chi} = \{ \overline{\Phi}^A = 0, A = 1, ..., 2m \}$ is a 2nd class constraint. In particular, the Dime bracket (, is defined on Sx. $\frac{Claim}{S_{X}} \{ , \}_{S_{X}} = \{ , \}_{M^{*}} \text{ under } S_{X} \cong M^{*}.$ () Let fing be functions on Sx. They can be extended to gauge invaliant functions on N and Hen to functions F g defined on a neighborhood of N in M st.

 $\{\tilde{f}, \varphi^{n}\} = \tilde{f}_{n} \varphi^{b}$ and $\{\tilde{g}, \varphi^{n}\} = \tilde{g}_{b} \varphi^{b}$. Then $\{f, g\}_{S_{\mathcal{X}}} = \left(\{\tilde{f}, \tilde{g}\} - \{\tilde{f}, \tilde{\Phi}^{\mathsf{A}}\} D_{\mathsf{A}\mathcal{B}} \left(\Phi^{\mathsf{B}}, \tilde{g}\}\right) \Big|_{S_{\mathcal{X}}}$ $\left| \left(\widehat{f}, \varphi^{a} \right) \right|_{S_{\chi}} = \left\{ \varphi^{b}, \widehat{g} \right\} \right|_{S_{\chi}} = o$ $= \left(\{\widetilde{f}, \widetilde{g}\} - \{\widetilde{f}, \chi_{a}\} D_{\chi_{a}\chi_{b}} \{\chi_{b}, \widetilde{g}\} \right) \Big|_{S_{x}}$ $\begin{pmatrix} X & Y \\ -Y^{\mathsf{T}} & 0 \end{pmatrix}^{-\mathsf{T}} \begin{pmatrix} O \\ -Y^{\mathsf{T}} & Y \end{pmatrix}^{-\mathsf{T}} = \begin{pmatrix} O \\ -Y^{\mathsf{T}} & Y^{\mathsf{T}} & Y^{\mathsf{T}} \end{pmatrix}$ $\Rightarrow D_{\chi_{u}\chi_{b}} = 0$ $= \{\overline{f}, \overline{9}\}|_{S_{\chi}}.$ On the other hand, (f. g) represents (f, g) M*. // Since (,) 52 has the properties required for Poisson brucket, {,) Mr also does. V Q.E.D.

Once again, viewing phase spaces as symplectic manifold makes things more transparent. A phase space (M, [, }) with a 1st class constraint $\gamma^{l} = \dots = \gamma^{m} = 0$ (with some assumption) is a symplectic manifold (M, w) with an action of a Lie group G with a "moment map pe." The reduced phase space corresponds to the symplectic quotient pi'(0)/G. There is no need of extension of functions f in f nor choice of local slice Sx. ____ 0 _____ o ____

Now, the system can be quantized in the operator formalisn: $[\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}] = i \hbar \{ \widehat{\mathcal{O}}_{1}, \widehat{\mathcal{O}}_{2} \}_{M^{*}}.$ If we can find a global slice Sx, we just have to quantize Sx with its Divic bracket (,) ; $[\widehat{\mathcal{O}}_{1}, \widehat{\mathcal{O}}_{2}] = i\hbar \{\widehat{\mathcal{O}}_{1}, \widehat{\mathcal{O}}_{2}\}_{S_{x}}$ The case $\{X_a, X_b\} = 0$ In this case, we may find canonical coordinates of M in which the latter m p-coordinates are X1, -; Xm: $(q^{1}, ..., q^{n-m}, q^{n-m+1}, ..., q^{n}, P_{1}, ..., P_{n-m}, P_{n-m+1}, ..., P_{n})$ ×, ··· ×m Then, $\left(\varphi^{4}, \chi_{6}\right) = \frac{\partial \varphi^{4}}{\partial q^{i}} \frac{\partial \chi_{1}}{\partial P_{i}} - \frac{\partial \varphi^{4}}{\partial P_{i}} \frac{\partial \chi_{b}}{\partial q^{i}} = \frac{\partial \varphi^{4}}{\partial q^{n-m+b}}$ $I \in a \leq m$ $\int_{n-m+b}^{i} D \qquad I \leq a \leq m$ $n-m+I \leq n-m+b \leq n$ Since this is invertible, we may take (q', -, qn-m, q', -, pm, Pi, -, Pn-m, X, -, Xm)

as (not necessarily canonical) coordinates of M.
Then, as coordinates of
$$S_{\chi} = \{P^{n} = \chi_{1} = \dots = \chi_{n} = n\}$$
,
we may take $(q^{1}, \dots, q^{n-m}, P_{1}, \dots, P_{n-m})$.
(laim These are canonical wordinates of S_{χ} with
respect to the Dirac bracket $\{\cdot, \cdot\}_{S_{\chi}}$.
() Let f, g be hunctions on S_{χ} and as their
extensions \tilde{f}, \tilde{S} to M, let us take
 $\tilde{f}(q, p) = f(q^{1}, \dots, q^{n-m}, P_{1}, \dots, P_{n-m})$
 $\tilde{f}(q, p) = f(q^{1}, \dots, q^{n-m}, P_{1}, \dots, P_{n-m})$
 $\tilde{f}(q, p) = g(q^{1}, \dots, q^{n-m}, P_{1}, \dots, P_{n-m})$
 $\{f, g\}_{S_{\chi}} = (\xi \tilde{f}, \tilde{g}) - \{\tilde{f}, \Phi^{A}\} D_{AB} \{\Phi^{B}, \tilde{g}\})|_{S_{\chi}}$.
As $[\chi_{a}, \chi_{b}] = o, D = (O^{-(\chi^{-1})^{T}}),$
but $(\tilde{f}, \chi_{a}) = \{\chi_{b}, \tilde{g}\} = 0$.
 $\therefore \{f, g\}_{S_{\chi}} = \xi \tilde{f}, \tilde{f}\}|_{S_{\chi}} = \sum_{r=1}^{n} \frac{2f}{2q^{r}} \frac{2g}{2P_{r}} - \frac{2f}{2P_{r}} \frac{2g}{2q^{r}} / /$

In this case, the operator quantization takes a
particularly simple form:

$$\left[\hat{q}^{r}, \hat{p}_{s}\right] = ik \delta_{s}^{r}$$
 (SV, SSN-M.
 $\left[\hat{q}^{r}, \hat{q}^{s}\right] = \left[\hat{p}_{r}, \hat{p}_{s}\right] = o$
Example Maxwell theory (free U(i) gauge theory)
The Gauss law conservant is
 $\overline{\Phi}(\mathbf{x}) = \nabla \cdot \mathbf{E}(\mathbf{x}) = o$.
As the slice, we can take the Coulomb gauge
 $\chi(\mathbf{x}) = \nabla \cdot \mathbf{A}(\mathbf{x}) = o$,
which does satisfy { $\chi(\mathbf{x}), \chi(\mathbf{y}), \zeta = o$. Then
the modes of $\mathbf{E}(\mathbf{x})$ and $\mathbf{A}(\mathbf{x})$ satisfying Gauss law
 $\nabla \cdot \mathbf{E}(\mathbf{x}) = o$ and Coulomb gauge $\nabla \cdot \mathbf{A}(\mathbf{x}) = o$ form
cunonical way.

We may also do path-integral quantization:
Notation
$$Q^{*} = (\hat{q}^{i}, ..., \hat{q}^{nm}), P^{*} = (P_{1}, ..., P_{n-n})$$

 $q^{i} = (\hat{q}^{nmi}, ..., \hat{q}^{n}), P^{i} = (P_{nmis}, ..., P_{n}) = (\chi_{i}, ..., \chi_{m}) = \chi$
 $(\hat{q}^{*}, \hat{l}^{*}) \in S_{\chi}$ betwrites the value of q^{i}
 $\Rightarrow q^{i} = q^{i}(\hat{q}^{*}, P^{*}).$
 $Z(t_{i}, \hat{q}^{*}_{i}; t_{i}, \hat{q}^{*}_{i}) = \int \mathcal{D}\hat{q}^{*} \mathcal{D}P^{*} e^{\frac{i}{\hbar}} \int_{t_{i}}^{t_{i}} dt (\hat{P}, \hat{q}^{*} - H|_{S_{\chi}})$
 $\hat{q}^{i}(t_{i}) = \hat{q}^{i}, \hat{q}^{*}(t_{i}) = \hat{\xi};$
 $= \int \mathcal{D}\hat{q}^{*} \mathcal{D}P^{*} \mathcal{D}q^{i} \prod \mathcal{O}(\hat{P}^{i}_{\chi}) \mathcal{O}(\hat{q}^{i}_{\chi}) - \hat{q}^{i}(\hat{q}^{*}_{\chi}), P^{*}_{\chi})$
 $\hat{\xi}(t_{i}) = \hat{t}^{*}_{i}, \hat{q}^{*}(t_{i}) = \hat{q}^{*}_{i}, \chi(\hat{q}_{\chi}), P_{\chi}) \int det(\frac{\partial \mathcal{G}^{n}}{\partial q^{nmi}} \mathcal{O}(\hat{p}^{i}_{\chi}), \hat{q}^{*}_{\chi})$
 $= \int \mathcal{D}\hat{q} \mathcal{D}\hat{P} \mathcal{D}\hat{\chi} \prod \mathcal{O}(\chi(\hat{q}_{\chi}), P_{\chi}) dut((\mathcal{G}^{*}, \chi_{u})(\hat{q}_{\chi}), P_{\chi}))$
 $\hat{\xi}(t_{i}) = \hat{t}^{*}_{i}, \hat{q}^{*}(t_{i}) = \hat{\xi};$
 $= \int \mathcal{D}\hat{q} \mathcal{D}\hat{P} \mathcal{D}\hat{\chi} \prod \mathcal{O}(\chi(\hat{q}_{\chi}), P_{\chi}) dut((\mathcal{G}^{*}, \chi_{u})(\hat{q}_{\chi}), P_{\chi}))$
 $\hat{\xi}(\hat{q}_{i}) = \hat{\xi}^{*}_{i}, \hat{q}^{*}(t_{i}) = \hat{\xi};$
 $\hat{\xi} \int_{\xi_{i}}^{t_{i}} dt (\hat{P}, \hat{\xi}^{*} - H(\hat{P}, \xi) + \lambda_{u} \mathcal{Y}^{*}(q, \hat{P}))$
 $\hat{\xi}(\hat{q}_{i}) = \hat{\xi}^{*}_{i}, \hat{q}^{*}(t_{i}) = \hat{\xi};$
 $\hat{\xi} \int_{\xi_{i}}^{t_{i}} dt (\hat{P}, \hat{\xi}^{*} - H(\hat{P}, \xi) + \lambda_{u} \mathcal{Y}^{*}(q, \hat{P}))$

Yong-Mills theory M = { (Aia(*), Eia(*)) } $H = \int d^{4-i} \times \left(\frac{e^2}{2} \sum_{i,a} E_{ia}(x)^2 + \frac{1}{2e^2} \sum_{i=j} F_{ija}(x)^2 \right)$ $\mathcal{G}(A, \mathbb{E})^{a}(\mathbb{X}) = (\mathbb{D} \cdot \mathbb{E})_{a}(\mathbb{X})$ $\chi(A,E)_{\alpha}(*) = (\nabla \cdot A)_{\alpha}(*)$ $\{ \varphi^{\mathfrak{n}}(\mathfrak{X}), \chi_{\mathfrak{b}}(\mathfrak{Y}) \} = (\mathcal{V} \cdot \mathcal{D} \delta(\mathfrak{X} - \mathfrak{Y}))_{\mathfrak{b}}^{\mathfrak{n}}$ $\{\chi_{a}(x),\chi_{s}(y)\}=0$ V. $Z = \int \Im A \Im E dA_{0} \prod_{t} \left(\prod \mathcal{J} \left(\nabla \cdot A(t, \mathbf{x}) \right) \cdot det \left(\nabla \cdot \mathcal{D} \mathcal{J}(\mathbf{x} - \mathbf{y}) t \right) \right)$ $\exp\left(\frac{i}{\pi}\int dx\left(E\cdot\dot{A}-\frac{e^{2}}{2}E^{2}-\frac{1}{2e^{2}}\sum_{j}F_{ij}^{2}+A_{o}D\cdot E\right)\right)$ integrate out $= \int \partial A \, \tau \, \delta(\nabla \cdot A(x)) \, det(\nabla \cdot D \, \delta(x-y)) \, e^{\frac{1}{t} \, S[A]}$... agrees with the carlier result with gauge fixing condition X = W.A.