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Lorentz gauge

Back to the case of gauge theory :
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As gauge fixing function
,
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gange fixed Lagrangian
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the gauge fixed system has a huge number

unphysical degrees of freedom.of



select physical degrees of freedom.

The proposal is to take the BRST cohomology to



Hamiltonian formulation of gauge theories

Gauss law





first class constraint



Constraints on the phase space



first class

second class



Dirac bracket

Treatment of 2nd class constraint





symplectic manifolds



Reduced phase space for 1st class constraint
Now letas consider the system with a 1st class constraint
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Inroducing a Lagrange multiplier Xalt) , the action may be
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& There is an ambiguity----xact) is not fixed.

Different xacts's my different trajectories ES

-> We regard them all physically equivalent.

Physical Observables f(9 , 1) are those which do not change
under the change ofXact),
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reduced phase space
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Since the equations X 1
=- - =Xm= O must be maximally

violated by the gauge transformations &- , 4),
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We
may

also do path-integral quantization :
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