Correlation functions vs vacuum expectation values
Recall $Z\left(t_{f}, q_{;} ; U_{1}\left(t_{1}\right) U_{2}\left(t_{1}\right) ; t_{1}, q_{i}\right)$

$$
\begin{aligned}
& :=\int_{q\left(t_{t}\right)=q_{t}, q\left(t_{i}\right)=q_{i}} \theta q e_{t_{i}}^{c_{f}} d t L(q, \dot{q}) O_{1}\left(t_{1}\right) O_{2}\left(t_{2}\right) \\
& =\left\{\begin{array}{l}
\left\langle q_{t}\right| e^{-i\left(t_{+}-t_{1}\right) \hat{H}} \hat{O}_{1} e^{-i\left(t_{1}-t_{2}\right) \hat{H}} \hat{O}_{2} e^{-i\left(t_{2}-t_{i}\right) \hat{H}}\left|q_{i}\right\rangle \\
\left\langle q_{t}\right| e^{-i\left(t_{+}-t_{2}\right) \hat{H}} \hat{O}_{2} e^{-i\left(t_{2}-t_{1}\right) \hat{H}} \hat{O}_{1} e^{-i\left(t_{1}-t_{i}\right) \hat{H}}\left|q_{i}\right\rangle \\
\\
\text { if } \left.t_{2}\right\rangle t_{1}
\end{array}\right. \\
& =:\left\langle q_{f}\right| e^{-i t_{f} \hat{H}} \cdot \underbrace{T}_{\text {time ordered product }} \widehat{O_{1}\left(t_{1}\right)} \widehat{O_{2}\left(t_{2}\right)} \cdot e^{i t_{i} \hat{H}}\left|q_{i}\right\rangle
\end{aligned}
$$

where $\widehat{O}(t):=e^{i t \hat{H}} \hat{O} e^{-i t \hat{H}}$
Simililary

$$
\begin{aligned}
& Z\left(t_{t}, q_{f} ; O_{1}\left(t_{1}\right) \cdots O_{s}\left(t_{s}\right) ; t_{i}, q_{i}\right) \\
& =\left\langle q_{f}\right| e^{-i t_{f} \hat{H}} \cdot T \widehat{O_{1}\left(\tau_{1}\right) \cdots \widehat{O_{s}\left(t_{s}\right)} \cdot e^{i t_{i} \hat{H}}\left|q_{i}\right\rangle .}
\end{aligned}
$$

Let us take the limit $T \rightarrow e^{-i \epsilon}(+\infty)$ in

$$
\begin{aligned}
& Z\left(T, q_{f} ; \mathcal{O}_{1}\left(t_{1}\right) \cdots \hat{O}_{s}\left(t_{s}\right),-T, q_{i}\right) \\
= & \left\langle q_{f}\right| e^{-i T \hat{H}} \cdot T \widehat{O_{1}\left(t_{1}\right)} \cdots \widehat{\hat{O}_{s}\left(t_{s}\right)} \cdot e^{-i T \hat{H}}\left|q_{i}\right\rangle \\
= & \sum_{n, m}\left\langle q_{f}\right| e^{-i T E_{n}}|n\rangle\langle n| T \widehat{\mathcal{O}_{1}\left(t_{1}\right)} \cdots \widehat{O_{s}\left(t_{s}\right)} \\
& e^{-i T E_{m}}|m\rangle\left\langle m \mid q_{i}\right\rangle
\end{aligned}
$$

where $\{|n\rangle\} \subset \mathscr{H}$ is a basis consisting of
Hamiltonian eigenstates $\hat{H}|n\rangle=E_{n}|n\rangle$.
Let us assume that $|n\rangle$ with label $n=0$ is the unque ground state, the vacuum state $|0\rangle$.

Then, for $n \neq 0, E_{n}>E_{0}$ and

$$
e^{-i T\left(E_{n}-E_{0}\right)}=e^{-i e^{-i \epsilon}|T|\left(E_{n}-E_{0}\right)} \searrow 0 \text { as }|T| \rightarrow \infty
$$

Thus, as long as $\left\langle q_{f} \mid 0\right\rangle \neq 0$ and $\left\langle 0 \mid q_{i}\right\rangle \neq 0$,
the term $n=m=0$ is dominant, and the other terms are exponentially small,

$$
\begin{aligned}
& Z\left(T, q_{t} ; \cup_{1}\left(t_{1}\right) \cdots U_{s}\left(t_{s}\right) ;-T, q_{i}\right) \\
& =e^{-2 i T E_{0}}\left\{\left\langle q_{f} \mid 0\right\rangle\langle 0| T \widehat{U_{1}\left(t_{1}\right) \cdots \widehat{O_{s}\left(t_{s}\right)}|0\rangle\left\langle 0 \mid q_{i}\right\rangle}\right. \\
& +\sum_{m, n \neq 0} \underbrace{e^{-i T\left(E_{n}-E_{0}\right)} e^{-i T\left(E_{m}-E_{0}\right)}}_{\rightarrow 0 \text { as }|T| \rightarrow \infty} \text { m }_{n, m}\} \\
& \left\langle ण_{(}\left(t_{1}\right) \cdots ण_{s}\left(t_{s}\right)\right\rangle_{T, q_{f} i-T, q_{i}} \\
& =\frac{Z\left(T, q_{f} ; O_{1}\left(t_{1}\right) \cdots O_{s}\left(t_{s}\right) ;-T, q_{i}\right)}{z\left(T, q_{f} ;-T, q_{i}\right)} \\
& =\frac{e^{-2 i E_{0} T}\left\{\left\langle q_{f} \mid 0\right\rangle\langle 0| T \widehat{\left.\left.O_{1}\left(t_{1}\right)-\widehat{O_{s}\left(t_{s}\right)}|0\rangle\langle 0| q_{1}\right)+\cdots\right\}}\right.}{e^{-2 i E_{0} T}\left\{\left\langle q_{f} \mid 0\right\rangle\left\langle 0 \mid q_{i}\right\rangle+\cdots\right\}} \\
& =\langle 0| T \widehat{O_{1}\left(t_{1}\right)} \cdots \widehat{\mathcal{O}_{s}\left(t_{s}\right)}|0\rangle+\cdots \\
& \xrightarrow{T \rightarrow e^{-i \epsilon} \infty}\langle 0| T \widehat{U_{1}\left(\tau_{1}\right)} \cdots \widehat{\Theta_{s}\left(t_{s}\right)}|0\rangle
\end{aligned}
$$

The vacuum expectation value of the time ordered product.

Remarks (i) In a potential theory, $\mathcal{L}=\frac{m}{2} \dot{q}^{2}-U(\varepsilon)$, with $U(q) \rightarrow \infty$ as $|q| \rightarrow \infty$, there is a unique ground state $|0\rangle$ and
 say, $q_{i}=q_{f}=0$, or $q_{i}=q_{f}=a$ minimum of $U(\varepsilon)$.
(ii) In general, there can be more than one ground states $\left|O_{I}\right\rangle(I=1,2,3, \cdots)$ and/or an appropriate boundary condition needs to be specified at $t_{f}=T$ and $t_{i}=-T$. Showing the dependence on the bounding condition as a superscript, we have

$$
\lim _{T \rightarrow e^{-i \epsilon} \infty}\left\langle\hat{O}_{1}\left(t_{1}\right) \cdots ण_{s}\left(t_{s}\right)\right\rangle_{T i-T}^{I}=\left\langle 0_{I}\right| T \widehat{O_{1}\left(t_{1}\right)} \cdot \widehat{ण_{s}\left(\tau_{s}\right)\left|0_{I}\right\rangle . . . ~}
$$

(iii) We may consider, not \hat{j} us $t_{i} \& t_{f}$, but all τ_{1}, \cdots, t_{s} to lie on $e^{-i \epsilon} \mathbb{R}$ and then take the limit $\epsilon>0$ after the computation. Then, the LHS (before E๖0) can be regarded as the correlation function of a slightly Wrack
rotated theory, or equivalently, the real time limit of the reverse Wick rotation of the Euclidean theory

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0}\left\langle O_{1}\left(e^{-i \epsilon} t_{1}\right) \cdots O_{s}\left(e^{-i \epsilon} t_{s}\right)\right\rangle^{I} e^{-i \epsilon} \mathbb{R} \\
& =\lim _{\in \partial 0} \lim _{T \rightarrow \infty}\left\langle O_{1}\left(e^{-i \epsilon} t_{1}\right) \cdots U_{s}\left(e^{-i \epsilon} t_{s}\right)\right\rangle^{I}\left[-e^{-i \epsilon} T, e^{-i \epsilon} T\right] \\
& =\left\langle O_{I}\right| T \widehat{\left.O_{1}\left(t_{1}\right) \cdots \widehat{O_{s}\left(t_{s}\right)} \mid O_{I}\right) .}
\end{aligned}
$$

(iv) The same holds in QFT in $d>1$:

$$
\begin{aligned}
& \lim _{\in Y_{0}}\left\langle O_{1}\left(x_{1}^{\epsilon}\right) \cdots O\left(x_{s}^{\epsilon}\right)\right\rangle^{I} e^{-i \epsilon} \mathbb{R} \times \mathbb{R}^{d-1} \\
& \left.=\left\langle 0_{I}\right| T \widehat{O_{1}\left(x_{1}\right)} \cdots \widehat{\bigcup_{n}\left(x_{j}\right)}| |_{I}\right\rangle
\end{aligned}
$$

where $x^{\epsilon}=\left(e^{-i t} t, x\right)$ for $x=(t, x)$.
Note that an appropriate boundary condition at spatial infinity $|x| \rightarrow \infty$, that defends on the ground site $\left|0_{L}\right\rangle$, also needs to be specified.

In the Endidean theory, where there is no time-space distinction, the boundary conditions at space a time ∞ 's may be unified, and we may say

$$
\left\langle\bigcup_{1}\left(x_{1}^{E}\right) \cdots U_{s}\left(x_{s}^{E}\right)\right\rangle_{\mathbb{R}_{E}^{d}}^{I}
$$

Mintonski limit

$$
\xrightarrow{\text { Minkonski limit }}\left\langle 0_{I}\right| T O_{1}\left(x_{1}\right) \cdots U_{s}\left(x_{s}\right)\left|0_{I}\right\rangle \text {. }
$$

We shall mostly consider theories with a unglue ground state and suppress the label I of boundary condition.

To avoid cluttering the notation, we may simply write

$$
\left\langle\bigcup_{1}\left(x_{1}\right) \cdots \bigcup_{s}\left(x_{s}\right)\right\rangle:=\lim _{\in \Psi_{0}}\left\langle\bigcup_{1}\left(x_{1}^{\epsilon}\right) \cdots \bigcup_{s}\left(x_{s}^{\epsilon}\right)\right\rangle_{e^{-i \epsilon} \mathbb{R}^{\prime} \times \mathbb{R}^{d-1}}
$$

for the Minkowsk: limit. Then, our conclusion is

$$
\left\langle\bigcup_{1}\left(x_{1}\right) \cdots \bigcup_{s}\left(x_{1}\right)\right\rangle=\langle 0| T \Theta_{1}\left(x_{1}\right) \cdots \Theta_{s}\left(x_{j}\right)|0\rangle
$$

Free field theories
A theory is said to be free when the action is quadratic in variables.
e.s. n real variables $\phi=\left(\phi_{1}, \cdots, \phi_{n}\right)$

$$
\begin{gathered}
S_{E}(\phi)=\frac{1}{2} \sum_{i, j=1}^{n} \phi_{i} A_{i j} \phi_{j} \quad A_{i j}=A_{j i} \text { symmetric, } \\
d^{n} \phi=d \phi_{1} \cdots d \phi_{n} \\
Z=\int d^{n} \phi e^{-S_{E}(\phi)}=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} A}} \\
\left\langle\phi_{i_{1}} \cdots \phi_{i s}\right\rangle=\frac{1}{Z} \int d^{n} \phi e^{-S_{E}(\phi)} \phi_{i_{1}} \ldots \phi_{i s}=?
\end{gathered}
$$

A trick:

$$
\begin{aligned}
& f(A, J):=\int d^{n} \phi e^{-S_{E}(\phi)+\sum_{i=1}^{n} J_{i} \phi_{i}} \\
& \frac{\partial}{\partial J_{i}} \cdots \frac{\partial}{\partial J_{i s}} f(A, J)=\int d^{n} \phi e^{-S_{E}(\phi)+\sum_{i} J_{i} \phi_{i}} \phi_{i,} \cdots \phi_{i s} \\
& \xrightarrow{J} \rightarrow 0 \\
&\left.Z \phi_{i}, \cdots \phi_{i s}\right\rangle
\end{aligned}
$$

But $f(A, J)$ can be computed as

$$
\begin{aligned}
f(A, J) & =\int d^{n} \phi e^{-\frac{1}{2}\left(\phi-A^{-1} J\right) \cdot A\left(\phi-A^{-1} J\right)+\frac{1}{2} J \cdot A^{-1} J} \\
& =\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} A}} e^{\frac{1}{2} J \cdot A^{-1} J}=z \cdot e^{\frac{1}{2} J \cdot A^{-1} J} \\
\therefore\left\langle\phi_{i_{1}} \cdots \phi_{i s}\right\rangle & =\left.\underbrace{\frac{1}{z} \frac{\partial}{\partial J_{i 1}} \cdots \frac{\partial}{\partial J_{i s}} f(A, J)}\right|_{J=0} \\
& =\left.\underbrace{\frac{\partial}{\partial J_{i 1}} \cdots \underbrace{\frac{\partial}{\partial J}}_{i s} e^{\frac{1}{2} J \cdot A^{-1} J}}\right|_{J=0}
\end{aligned}
$$

\rightarrow Terms where $\frac{\partial}{\partial J}$ hits only one of the two J 's in $\frac{1}{2} J A^{-1} J$ vanish as $J=0$. Terms that survive are those where both J's in $\frac{1}{2} J A^{-1} J$ are hit by $\frac{\partial}{\partial J} s$.

Thus, the result is the sum of terms where the derivatives $\frac{\partial}{\partial J_{i 1}}, \cdots, \frac{\partial}{\partial J_{i s}}$ form pairs, which is possible Only when S is even, each pair $\left\{\frac{\partial}{\partial J_{i a}}, \frac{\partial}{\partial J_{i b}}\right\}$ producing
$\frac{\partial}{\partial J_{i a}} \frac{\partial}{\partial J_{i b}}\left(\frac{1}{2} J \cdot A^{-1} J\right)=A_{i a i b}^{-1}$. It is the sum of pairwise contractions, called Wick contractions:

$$
\begin{aligned}
& \left\langle\phi_{i}\right\rangle=0, \\
& \begin{aligned}
\left\langle\phi_{i} \phi_{j}\right\rangle & =\phi_{i} \phi_{j}=A_{i j}^{-1} \\
\left\langle\phi_{i} \phi_{j} \phi_{h}\right\rangle & =0, \\
\left(\phi_{i} \phi_{j} \phi_{h} \phi_{l}\right) & =\phi_{i} \phi_{j} \phi_{h} \phi_{l}+\sqrt[\phi_{i} \phi_{j} \phi_{h}]{ } \phi_{l}+\phi_{i} \phi_{j} \phi_{h} \phi_{l} \\
& =\hat{A}_{i j} A_{h l}^{-1}+A_{i h}^{-1} A_{j l}^{-1}+A_{i l}^{-1} A_{j h}^{1}
\end{aligned}
\end{aligned}
$$

- We see that everything is determined by the two point function

$$
\left\langle\phi_{i} \phi_{j}\right\rangle=\overleftarrow{\phi_{i} \phi_{j}}=A_{i j}^{-1}
$$

- The logic holds also when $n=\infty$, ie. in QFT in dimension $d \geqslant 1$. We now apply this to important examples. The focus will be two point functions.
e.g. real scalar field in d dimensions
variable: $\phi(x)$ a function of $x \in \mathbb{R}_{E}^{d}$

$$
\begin{aligned}
& S_{E}[\phi]=\int d^{d} x_{E}\left(\frac{1}{2} \partial \phi \cdot \partial \phi+\frac{m^{2}}{2} \phi^{2}\right) \\
& =\frac{1}{2} \int d^{d} x_{E} \phi\left(x_{E}\right)\left(-\partial^{2}+m^{2}\right) \phi\left(x_{E}\right) \\
& \left\langle\phi\left(x_{E}\right) \phi\left(y_{E}\right)\right\rangle_{\mathbb{R}_{E}^{d}}=\left(-\partial^{2}+m^{2}\right)_{x_{E} y_{E}}^{-1}=\int \frac{d^{d} P_{E}}{(2 \pi)^{d}} \frac{e^{-i P_{E} \cdot\left(x_{E}-y_{E}\right)}}{P_{E}^{2}+m^{2}} \phi \partial_{n} p \rightarrow 0 \text { ar partid in } \\
& \\
& =\int \frac{d^{d-1} \mathbb{P} d P_{d}}{(2 \pi)^{d}} \frac{e^{-i \mathbb{P} \cdot(x-y)-i P_{d}\left(x^{4}-y^{d}\right)}}{\mathbb{P}^{2}+P_{d}^{2}+m^{2}}
\end{aligned}
$$

reverse Wick rotation

$$
\rightarrow \int_{\mathbb{R}^{\alpha-1} \times C} \frac{d^{d-1} \mathbb{P}\left(-i d P_{0}\right)}{(2 \pi)^{d}} \frac{e^{-i \mathbb{P} \cdot(x-y)-i P_{0}\left(x^{0}-y^{0}\right)}}{\mathbb{P}^{2}-P_{0}^{2}+m^{2}}
$$

$$
\langle\phi(x) \phi(y)\rangle=\int_{\mathbb{R}^{d-1} \times C} \frac{d^{d-1} \mathbb{P} d p_{0}}{(2 \pi)^{d}} \frac{i e^{-i p \cdot(x-y)}}{p_{0}^{2}-\mathbb{P}^{2}-m^{2}}-\sqrt{\mathbb{P}^{2}+n^{2}} C
$$

Equivalently, slightly moving the poles,

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\int_{\mathbb{R}^{d}} \frac{d^{d} p}{(2 \pi)^{d}} \frac{i e^{-i p \cdot(x-y)}}{p^{2}-m^{2}+i \cdot 0} \\
p^{2}:=\eta^{\mu u} p_{\mu} p_{u}=p_{0}^{2}-\mathbb{P}^{2}\binom{O_{u r} \text { convention: }}{\eta_{00}=1, \quad \eta_{i j}=-\delta_{i j}}
\end{gathered}
$$

This is the inverse of the Kinetic operator in the Minkowski action (x i from $e^{i S[\phi]}$)

$$
\begin{aligned}
S[\phi] & =\int d^{d} x\left(\frac{1}{2} \eta^{\mu u} \partial_{\mu} \phi \partial_{u} \phi-\frac{m^{2}}{2} \phi^{2}\right) \\
& =\frac{1}{2} \int d^{d} x \phi(x)\left(-\eta^{\mu \nu} \partial_{\mu} \partial_{u}-m^{2}\right) \phi(x)
\end{aligned}
$$

with the prescription $\frac{1}{p^{2}-m^{2}} \rightarrow \frac{1}{p^{2}-m^{2}+i \cdot 0}$ to avoid poles.

Let us continue the computation. Defining

$$
\begin{aligned}
& \omega_{\mathbb{P}}:=\sqrt{\mathbb{P}^{2}+m^{2}}, \\
& \langle\phi(x) \phi(y)\rangle \\
& =\int_{\mathbb{R}^{d-1}} \frac{d^{d-1} \mathbb{P}}{2 \pi} \int^{d-1} \int_{C} \frac{d p_{0}}{2 \pi} \frac{i e^{-i P_{0}\left(x^{0}-y^{0}\right)-i \mathbb{P} \cdot(x-y)}}{\left(p_{0}-\left(\omega_{\mathbb{P}}\right)\left(p_{0}+\omega_{\mathbb{P}}\right)\right.}-\omega_{\mathbb{P}}
\end{aligned}
$$

We may perform the p_{0}-integration
... Look at $e^{-i p_{0}\left(x^{0}-y^{0}\right)}$
$x^{0}-y^{0}>0$: close the contour as

$x^{0}-y^{0}<0$: close the contour as
Pick this pole

The result

$$
\langle 中(x) \phi(y)\rangle=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}} e^{-i \omega_{\mathbb{R}} \mid x^{0}-y^{0}(-i p \cdot(x-y)}
$$

Comparison with operator result

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2} \partial^{m} \phi \partial_{\mu} \phi-\frac{m^{2}}{2} \phi^{2} \\
& \phi(x)=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}} e^{i \mathbb{P} \cdot x} \phi(\mathbb{P}), \quad \phi(\mathbb{P})^{*}=\phi(-\mathbb{P}) \\
& L=\int d^{\alpha-1} * \mathcal{L} \\
& =\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}}\{\frac{1}{2} \dot{\phi}(-\mathbb{P}) \dot{\phi}(\mathbb{P})-\frac{1}{2} \underbrace{\left(\mathbb{P}^{2}+m^{2}\right)}_{\omega^{2}} \phi(-\mathbb{P}) \phi(\mathbb{P})\} \\
& \pi(\mathbb{P})=\frac{\delta L}{\delta \dot{\phi}(\mathbb{P})}=\frac{1}{(2 \pi)^{\alpha-1}} \dot{\phi}(-\mathbb{P}), \quad \pi(\mathbb{P})^{*}=\pi(-\mathbb{P}) \\
& H=\int d^{d-1} \mathbb{P}(\mathbb{P}) \dot{\phi}(\mathbb{P})-L \\
& =\int d^{k-1} \mathbb{P}\left\{\frac{(2 \pi)^{d-1}}{2} \pi(\mathbb{P}) \pi(-\mathbb{P})+\frac{\omega_{\mathbb{P}}^{2}}{2(2 \pi)^{d-1}} \phi(-\mathbb{P}) \phi(\mathbb{P})\right\}
\end{aligned}
$$

Let us quantize the system.
(We omit hat \wedge for operators.)
By the reality of variables, $\quad \phi\left((\mathbb{P})^{\dagger}=\phi(-\mathbb{P}), \pi(\mathbb{P})^{\dagger}=\pi(-\mathbb{P})\right.$.

Canonical commutation relation is

$$
\begin{aligned}
& {\left[\phi\left(\mathbb{P}_{1}\right), \pi\left(\mathbb{P}_{2}\right)\right]=i \delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{2}\right)} \\
& {\left[\phi\left(\mathbb{P}_{1}\right), \phi\left(\mathbb{P}_{2}\right)\right]=\left[\pi\left(\mathbb{P}_{1}\right), \pi\left(\mathbb{P}_{2}\right)\right]=0}
\end{aligned}
$$

Looking at H, we see that the system is just the sum of copres of harmonic oscillators. This motivates us to take

$$
\begin{aligned}
& a(\mathbb{P}):=\sqrt{\frac{\omega_{\mathbb{P}}}{2(2 \pi)^{d-1}}} \phi(\mathbb{P})+i \sqrt{\frac{(2 \pi)^{d-1}}{2 \omega_{\mathbb{R}}}} \pi(-\mathbb{P}) \\
& a(\mathbb{P})^{+}=\sqrt{\frac{\omega_{\mathbb{P}}}{2(2 \pi)^{d-1}}} \phi(-\mathbb{P})-i \sqrt{\frac{(2 \pi)^{d-1}}{2 \omega_{\mathbb{R}}}} \pi(\mathbb{P})
\end{aligned}
$$

Then,

$$
\begin{aligned}
& {\left[a\left(\mathbb{P}_{1}\right), a\left(\mathbb{P}_{2}\right)^{+}\right]=d^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{2}\right)} \\
& {\left[a\left(\mathbb{P}_{1}\right), a\left(\mathbb{P}_{2}\right)\right]=\left[a\left(\mathbb{R}_{1}\right)^{\top}, a\left(\mathbb{P}_{2}\right)^{+}\right]=0} \\
& H=\int d^{d-1} \mathbb{P} \omega_{\mathbb{P}}\left(\frac{1}{2} a\left(\mathbb{P}^{+} a(\mathbb{P})+\frac{1}{2} a(-\mathbb{P}) a(-\mathbb{P})^{+}\right)\right. \\
& \quad=\int d^{d-1} \mathbb{P} \omega_{\mathbb{P}}\left(a(\mathbb{P})^{+} a(\mathbb{P})+\frac{1}{2} \delta^{d-1}(0)\right)
\end{aligned}
$$

$$
[H, a(\mathbb{p})]=-\omega_{\mathbb{p}} a(\mathbb{p}),\left[H, a(\mathbb{p})^{\top}\right]=\omega_{\mathbb{p}} a(\mathbb{p})^{\top}
$$

Thus, $a(\mathbb{P})^{+} / a(\mathbb{P})$ are indeed creation/ annihilation operators.
The state $|0\rangle$ annihilated by all $G(\mathbb{P})$ is the unique ground state with energy $E_{0}=\int d^{d-1} p \frac{1}{2} \omega_{\mathbb{p}} \underbrace{\delta^{d-1}(0)}_{\uparrow}$.
best understood by putting the system in a finite volume
Other states are obtained from $|0\rangle$ by operating $A(\mathbb{P})^{\dagger}$'s.
Each operation increases the energy by ω_{p}.

$$
\begin{aligned}
\phi(x) & =\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}} e^{i \mathbb{P} \cdot x} \sqrt{\frac{(2 \pi)^{d-1}}{2 \omega_{\mathbb{R}}}}\left(a(\mathbb{p})+a(-\mathbb{P})^{+}\right) \\
& =\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}}}\left(e^{i \mathbb{P} \cdot x} a(\mathbb{P})+e^{-i \mathbb{P} \cdot x} a(\mathbb{P})^{+}\right) \\
\phi(t, x) & =e^{i t H} P(x) e^{-i t H} \\
& =\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{d-1} 2 \omega_{\mathbb{P}}}}\left(e^{i \mathbb{P} \cdot x} e^{-i \omega_{\mathbb{p}} t} a(\mathbb{P})+e^{-i \mathbb{P} \cdot x+i \omega_{\mathbb{p}} t} a(\mathbb{P})^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle 0| T \phi(x) \phi(y)|0\rangle \\
& x^{0}>y^{0} \\
& =\langle 0| \phi(x) \phi(y)|0\rangle \\
& =\int \frac{d^{d-1} \mathbb{p}_{1} d^{d-1} \mathbb{p}_{2}}{(2 \pi)^{d-1} 2 \sqrt{\omega_{\mathbb{p}_{1}} \omega_{\mathbb{R}_{2}}}}\langle\underbrace{\left.i \|\left|e^{i \mathbb{R}_{1} *-i \omega_{\mathbb{R}_{1}} x^{0}} a\left(\mathbb{P}_{1}\right) e^{-i \mathbb{P}_{2} \cdot \psi+i \omega_{\mathbb{R}_{2}} y^{0}} a\left(\mathbb{R}_{2}\right)^{+}\right| 0\right)} \\
& e^{-i \omega_{\mathbb{P}_{1}} x^{0}+i \omega_{\mathbb{R}_{2}} y^{0}+i \mathbb{P}_{1} \cdot x-i \mathbb{P}_{2} \cdot y} \delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{2}\right) \\
& =\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{a-1} 2 \omega_{\mathbb{P}}} e^{-i \omega_{\mathbb{P}}\left(x^{2}-y^{0}\right)+i \mathbb{P} \cdot(x-y)} \\
& y^{0}>x^{0} \\
& \begin{array}{l}
>x \\
=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{\alpha-1} 2 \omega_{\mathbb{p}}} e^{-i \omega_{\mathbb{P}}\left(y^{0}-x^{0}\right)+i \mathbb{P} \cdot(y-x)}
\end{array}
\end{aligned}
$$

In eigther cuse

$$
\begin{aligned}
& \langle 0| T \phi(x) \phi(y)|0\rangle \\
& \quad=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}} e^{-i \omega_{\mathbb{R}}\left|x^{0}-y^{0}\right|-i \mathbb{P} \cdot(x-y)}
\end{aligned}
$$

It matches with $\langle\phi(x) \phi(y)\rangle$.
e.g. A part of gauge fixed Maxwell theory

$$
\tilde{\mathcal{L}}_{E}=\frac{1}{4 e^{2}} \sum_{\mu, \nu} F_{\mu \nu}^{2}+\frac{e^{2} \xi}{2} B^{2}-i B \cdot \partial^{\mu} A_{\mu}+\bar{C} \cdot \partial^{2} C
$$

(Eliminate B

$$
\tilde{\mathcal{L}}_{E}=\frac{1}{4 e^{2}} \sum_{r, v} F_{\Gamma u}^{2}+\frac{1}{2 e^{2} \xi}(\partial \cdot A)^{2}+\bar{c} \cdot \partial^{2} c
$$

consider this part

$$
\begin{aligned}
& S_{E}[A]=\int d^{d} x_{E}\left(\frac{1}{4 e^{2}} \sum_{\mu, v} F_{\mu \nu}^{2}+\frac{1}{2 e^{2}}(\partial \cdot A)^{2}\right) \\
& =\int d^{2} x_{E} \frac{1}{2 e^{2}} \sum_{\mu, \nu} A_{\mu}\left(x_{E}\right)\left(-\delta_{\mu \nu} \partial^{2}+\partial_{\mu} \partial_{\nu}-\frac{1}{\xi} \partial_{\mu} \partial_{\nu}\right) A_{\nu}\left(x_{E}\right)
\end{aligned}
$$

$$
=: \frac{1}{2} A \cdot \Delta A
$$

The boundary condition at $\left|X_{E}\right| \rightarrow \infty$ must allow this partial integration. e. $5 F_{\mu \nu} \rightarrow 0$ at ∞ does.

$$
\begin{aligned}
& \left\langle A_{\mu}\left(x_{E}\right) A_{\nu}(y E)\right\rangle_{\mathbb{R}_{E}^{d}}=\Delta_{\left(\mu, x_{E}\right),\left(\nu, y_{E}\right)}^{-1} \\
& \quad=e^{2} \int \frac{d^{d} P_{E}}{(2 \pi)^{d}} \frac{e^{-i P_{E}(x-y)}}{P_{E}^{2}}\left(\delta_{\mu \nu}+(\xi-1) \frac{P_{\mu}^{E} P_{\nu}^{5}}{P_{E}^{2}}\right)
\end{aligned}
$$

reverse Wick rotation: $x^{d} \rightarrow i x^{0} ; P_{d} \rightarrow-i P_{0}$

$$
\left.\begin{array}{rl}
A_{d}\left(x_{E}\right) & \rightarrow-i A_{0}(x) \\
\delta_{00} & \rightarrow-1 \\
\delta_{i j} & \rightarrow \delta_{i j}
\end{array}\right\} \quad \delta_{\mu \nu} \rightarrow-\eta_{\mu \nu} .
$$

The result depends on $\} \longleftrightarrow A_{\mu}$ is not physical,

$$
\begin{aligned}
& \left\langle F_{\mu \nu}(x) F_{\rho_{\lambda}}(y)\right\rangle=? \\
& \left\langle\delta_{B} A_{\mu}=\partial_{\mu} C \neq 0 .\right. \\
& \quad=e^{2} \int_{\nu} \frac{d^{d} p}{(2 \pi)^{d}} \frac{\left.i \partial_{\rho} A_{\lambda}(y)\right\rangle}{e^{-i \rho(x-y)}}(-P_{\mu} P_{\rho} \eta_{\nu \lambda}-(\xi-1) \underbrace{\frac{P_{\mu} P_{\nu} P_{\rho} P_{\lambda}}{p^{2}+i \cdot 0}})
\end{aligned}
$$

Symmetric in $(\mu \nu),(\rho \lambda)$

$$
\begin{aligned}
& \left\langle F_{\mu \nu}(x) F_{p \lambda}(y)\right\rangle \\
& =e^{2} \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{i e^{-i \rho(x-y)}}{p^{2}+i \cdot 0} \\
& \quad\left(-p_{\mu} p_{\rho} \eta_{\nu \lambda}+p_{\nu} p_{\rho} \eta_{\mu \lambda}+p_{\mu} p_{\lambda} \eta_{\nu \rho}-p_{\nu} p_{\lambda} \eta_{\mu \rho}\right)
\end{aligned}
$$

This is the full correlation function of the gauge fixed theory:

$$
\left\langle F_{\mu v}(x) F_{\rho_{\lambda}}(y)\right\rangle_{\text {full }}=\text { the same }
$$

Since the ghost path-integral simply produces

$$
\frac{\int \partial \bar{c} \theta c e^{\int d^{2} x \bar{c} \partial^{2} c}}{\int \partial \bar{c} \theta c e^{\int d^{2} x \bar{c} \partial^{2} c}=1}
$$

Since $F_{\mu \nu}$ is physical, $\delta_{B} F_{\mu \nu}=0$, this is a physically meaningful result. Indeed, there is no ξ-dependence.

Exercise Compute the same in the Canonical quantization of Maxwell theory, and Compare.

Remark The expression for $\left\langle A_{\mu}(x) A_{\nu}(y)\right\rangle$ simplifies at $\xi=1$ called Feynman gauge:

$$
\left\langle A_{\mu}(x) A_{\cup}(y)\right\rangle=e^{2} \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{i e^{-i p(x-y)}}{p^{2}+i \cdot 0}\left(-\eta_{\mu \nu}\right)
$$

(Simplification at $\xi=1$ is obvious in $S[A]$.)
Of course, the physics (of the full gauge fixed system, with "physical $=$ BRST cohomology" taken into account) should not clepend on \mathcal{G}. In other words, $\xi=1$ is a Convenient choice.

Let us continue with the computation of $\left\langle A_{\mu}(x) A_{u}(y)\right\rangle$.
As it simplifies at $\xi=1$, we just use it. Then, we can borrow the result for real scalar and find

$$
\begin{aligned}
& \left\langle A_{\mu}(x) A_{\nu}(y)\right\rangle \\
& =-e^{2} \eta_{\mu \nu} \int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2|\mathbb{P}|} e^{-i| | \mathbb{P}|\cdot| x^{0}-y^{0}(-i \mathbb{P} \cdot(x-y)}
\end{aligned}
$$

Let us compare this with operator result (continuing with $\}=1$).

$$
\begin{aligned}
& S[A]=\int d^{d} x\left(-\frac{1}{4 e^{2}} F^{\mu \nu} F_{\mu \nu}-\frac{1}{2 e^{2}}\left(\partial^{n} A_{\mu}\right)^{2}\right) \\
& =\int d^{d} x \frac{1}{2 e^{2}} A_{r}(x) \eta^{\mu \nu} \partial^{2} A_{v}(x) \\
& L=\int d^{d-1} \times\left[-\frac{1}{2 e^{2}} \dot{A}_{0}^{2}+\frac{1}{2 e^{2}}\left(\nabla A_{u}\right)^{2}+\frac{1}{2 e^{2}} \sum_{i}\left(\dot{A}_{i}^{2}-\left(\nabla A_{i}\right)^{2}\right)\right] \\
& A_{\mu}(x)=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}} e^{i \mathbb{P} \cdot x} A_{\mu}(\mathbb{P}), \quad A_{\mu}(\mathbb{P})^{*}=A_{\mu}(-\mathbb{P}) \\
& L=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}}\left[-\frac{1}{2 e^{2}} \dot{A}_{0}(-\mathbb{P}) A_{0}(\mathbb{P})+\frac{\mathbb{p}^{2}}{2 e^{2}} A_{0}(-\mathbb{P}) A_{0}(\mathbb{P})\right. \\
& \left.+\frac{1}{2 e^{2}} \sum_{i}\left(\hat{A}_{i}(-\mathbb{R}) A_{i}(\mathbb{R})-\mathbb{P}^{2} A_{i}(-\mathbb{P}) A_{i}(\mathbb{P})\right)\right] \\
& \Pi^{0}(\mathbb{P})=-\frac{1}{(2 \pi)^{d-1} e^{2}} \dot{A}_{0}(-\mathbb{P}), \quad \Pi^{i}(\mathbb{R})=\frac{1}{(2 \pi)^{\alpha-1} e^{2}} \dot{A}_{i}(-\mathbb{P}), \\
& \pi^{\mu}(\mathbb{P})^{*}=\Pi^{\mu}(-\mathbb{l}), \\
& H=\int \mathbb{Q}^{\alpha-1} \mathbb{P}\left[-\frac{(2 \pi)^{\alpha-1} e^{2}}{2} \Pi^{0}(\mathbb{P}) \pi^{0}(-\mathbb{P})-\frac{\mathbb{P}^{2}}{2(2 \pi)^{\alpha-1} e^{2}} A_{0}(-\mathbb{P}) A_{0}(\mathbb{P})\right. \\
& \left.+\sum_{i}\left(\frac{(2 \pi)^{d-1} e^{2}}{2} \Pi^{i}(\mathbb{P}) \Pi^{i}(-\mathbb{P})+\frac{\mathbb{p}^{2}}{2(2 \pi)^{n-1} e^{2}} A_{i}(-\mathbb{p}) A_{i}(\mathbb{p})\right)\right]
\end{aligned}
$$

Quantization

$$
\begin{aligned}
& A_{\mu}(\mathbb{P})^{+}=A_{r}(-\mathbb{P}), \quad \Pi^{\mu}(\mathbb{P})^{+}=\Pi^{\mu}(-\mathbb{P}) \\
& {\left[A_{r}\left(\mathbb{P}_{1}\right), \Pi^{u}\left(\mathbb{P}_{2}\right)\right]=i \delta_{\mu}^{u} \delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{2}\right)} \\
& {\left[A_{\mu}\left(\mathbb{P}_{1}\right), A_{u}\left(\mathbb{P}_{2}\right)\right]=\left[\pi^{\mu}\left(\mathbb{P}_{1}\right), \Pi^{\mu}\left(\mathbb{P}_{2}\right)\right]=0}
\end{aligned}
$$

If we put

$$
\begin{aligned}
& Q_{\mu}(\mathbb{P}):=\sqrt{\frac{\| \mathbb{P} \mid}{2(2 \pi)^{\alpha-1} e^{2}}} A_{\mu}(\mathbb{P})+i \sqrt{\frac{(2 \pi)^{\alpha-1} e^{2}}{2 \mathbb{P})} \Pi^{\mu}(-\mathbb{P})} \\
& a_{\mu}(\mathbb{P})^{+}=\sqrt{\frac{\| \mathbb{P} \mid}{2(2 \pi)^{2-1} e^{2}}} A_{\mu}(-\mathbb{P})-i \sqrt{\frac{(2 \pi)^{d-1} e^{2}}{2 \mathbb{P} \mid} \Pi^{\mu}(\mathbb{P})}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& {\left[a_{\mu}\left(\mathbb{P}_{1}\right), a_{\nu}\left(\mathbb{P}_{2}\right)^{+}\right]=\delta_{\mu, \nu} \delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{2}\right)} \\
& {\left[a_{\mu}\left(\mathbb{P}_{1}\right), a_{\nu}\left(\mathbb{P}_{2}\right)\right]=\left[a_{\mu}\left(\mathbb{P}_{1}\right)^{+}, a_{\nu}\left(\mathbb{P}_{2}\right)^{+}\right]=0}
\end{aligned}
$$

$$
\begin{aligned}
& H=\int d^{d-1} \mathbb{P}[-|\mathbb{P}|\left(a_{0}(\mathbb{P})^{+} a_{0}(\mathbb{P})+\frac{1}{2} \delta^{d+1}(0)\right) \\
&\left.+\sum_{i}|\mathbb{P}|\left(a_{i}(\mathbb{P})^{\dagger} a_{i}(\mathbb{P})+\frac{1}{2} \delta^{d-1}(0)\right)\right] \\
& {\left[H, a_{0}(\mathbb{P})\right]=|\mathbb{P}| a_{0}(\mathbb{P}), \quad\left[H, a_{0}(\mathbb{P})^{\top}\right]=-|\mathbb{P}| a_{0}(\mathbb{P})^{+} } \\
& {\left[H, a_{i}(\mathbb{P})\right]=-\mathbb{P}\left|a_{i}(\mathbb{P}), \quad\left[H, a_{i}(\mathbb{P})^{+}\right]=\mathbb{P}\right| a_{i}(\mathbb{P})^{+} }
\end{aligned}
$$

$a_{0}(\mathbb{P}), a_{i}(\mathbb{p})^{+}$: creation operators
$a_{0}\left(\mathbb{P}^{\dagger}\right)^{\dagger}, a_{i}(\mathbb{P})$: annihilation operators

The state $|0\rangle$ annihilated by $A_{0}(\mathbb{P})^{\dagger}$ and $a_{i}(\mathbb{P})$ is the unique ground state, with energy

$$
E_{0}=\int d^{d-1} \mathbb{P} \frac{d}{2}|\mathbb{P}| d^{d-1}(0) .
$$

Other states are obricined from (0) by operating $a_{0}(\mathbb{p}) \& a_{!}(\mathbb{p})^{+}$ each operation increasing energy by $|\mathbb{P}|$.
e.g. The 1 st excitate states:

$$
|\mathbb{P} ; 0\rangle=a_{0}(\mathbb{P})|0\rangle, \quad|\mathbb{P} ; i\rangle=a_{i}(\mathbb{P})^{+}|0\rangle
$$

Note: assummy $\langle 0 \mid 0\rangle=1$,

$$
\begin{aligned}
\left\langle\mathbb{P}_{1} ; i \mid \mathbb{P}_{2} ; j\right\rangle & =\langle 0| Q_{i}\left(\mathbb{P}_{1}\right) a_{j}\left(\mathbb{P}_{2}\right)^{+}|0\rangle \\
& =\delta_{i j} \delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{2}\right), \text { this is normal. } \\
\left\langle\mathbb{P}_{1} ; 0 \mid \mathbb{P}_{2} ; 0\right\rangle & =\langle 0| a_{0}\left(\mathbb{P}_{1}\right)^{+} a_{0}\left(\mathbb{P}_{2}\right)|0\rangle
\end{aligned}
$$

$=-\delta_{i j} \delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{R}_{2}\right)$, negative norm states!

$$
\begin{aligned}
& A_{\mu}(x)=e \int \frac{d^{d-1} \mathbb{P}}{\sqrt{\left.(2 \pi)^{d-1} 2 \mid \mathbb{P}\right)}} e^{i \mathbb{P} \cdot \boldsymbol{x}}\left(a_{\mu}(\mathbb{\mathbb { }})+a_{\mu}(-\mathbb{P})^{+}\right) \\
& =e \int \frac{d^{2-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1} 2|\mathbb{P}|}}\left(e^{i \mathbb{P} \cdot \boldsymbol{X}} a_{\mu}(\mathbb{P})+e^{-i \mathbb{P} \cdot \boldsymbol{X}} a_{\mu}(\mathbb{P})^{+}\right) \\
& A_{\mu}(t, x)=e^{i t H} A_{\mu}(x) e^{-i t H} \\
& =\left\{\begin{array}{l}
e \int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{n-1} 2|\mathbb{P}|}}\left(e^{-i \| \mathbb{P} \mid t+i \mathbb{P} \cdot *} a_{i}(\mathbb{P})+e^{i \| \mathbb{P} \mid t-i \mathbb{P} \cdot *} a_{:}(\mathbb{P})^{+}\right) \quad \mu=i \\
e \int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{n-1} 2 \| \mathbb{P} \mid}}\left(e^{i \| \mathbb{P} \mid t+i \mathbb{P} \cdot x} a_{0}(\mathbb{P})+e^{-i|\mathbb{P}| t-i \mathbb{P} \cdot *} a_{0}(\mathbb{P})^{+}\right) \quad \mu=0
\end{array}\right. \\
& \langle 0| T A_{i}(x) A_{j}(y)|0\rangle \\
& =e^{2} \delta_{i j} \int \frac{d^{d-1} \mathbb{P}}{\left.(2 \pi)^{d-1} 2 U P\right)} e^{-i \| \mathbb{P} \mid\left(x^{0}-y^{0} \mid-i \mathbb{P} \cdot(x-y)\right.} \\
& \langle 0| T A_{0}(x) A_{0}(y)|0\rangle \\
& =-e^{2} \int \frac{d^{d-1} \mathbb{P}}{\left.(2 \pi)^{d-1} 2 \| \mathbb{P}\right)} e^{-i\|\mathbb{P}\| x^{0}-y^{0} \mid-i \mathbb{p} \cdot(x-y)}
\end{aligned}
$$

... match with

$$
\left\langle A_{r}(x) A_{\nu}(y)\right\rangle=-e^{2} \eta_{\mu \nu} \int \frac{d^{d-1} \mathbb{p}}{\left(\left.2 \pi\right|^{d-1} 2 U \mathbb{P}\right)} e^{-i| | \mathbb{P}| | x^{0}-y^{0} \mid-i \mathbb{P} \cdot(x-y)}
$$

