One thing I forgot to say in the last lecture. particle interpretation.

For a real scalar field, we have seen that the state $|0\rangle$ annihilated by all $a(\mathbb{l})^{\prime}$'s is the unique ground state and other states are obtained from $|0\rangle$ by operating $a(\mathbb{P})^{\dagger}$'s, each increasing the energy by $\omega_{\mathbb{p}}=\sqrt{\mathbb{P}^{2}+m^{2}}$.

Interpretation
10) ... the vacuum
$Q(I p)^{\dagger} \cdots$ creation of a particle of mass m and momentum $\mathbb{P} \quad\left(\Rightarrow\right.$ energy $\left.\sqrt{\mathbb{P}^{2}+m^{2}}\right)$
es.
$a(\mathbb{P})^{+}|0\rangle \ldots$ a one particle state
$a\left(\mathbb{P}_{1}\right)^{+} a\left(\mathbb{P}_{2}\right)^{\dagger}|0\rangle \ldots$ a two particle state
$a\left(\mathbb{P}_{1}\right)^{+} a\left(\mathbb{P}_{2}\right)^{+} a\left(\mathbb{P}_{b}\right)^{+}|0\rangle \ldots$ a three particle stare

These respectively have

$$
\begin{array}{cc}
\text { momentum } & \text { energy }-E_{0} \\
\hline \mathbb{P} & \sqrt{\mathbb{P}^{2}+m^{2}} \\
\mathbb{P}_{1}+\mathbb{P}_{2} & \sqrt{\mathbb{P}_{1}^{2}+m^{2}}+\sqrt{\mathbb{P}_{2}^{2}+m^{2}} \\
\mathbb{P}_{1}+\mathbb{R}_{2}+\mathbb{P}_{3} & \sqrt{\mathbb{P}_{1}^{2}+m^{2}}+\sqrt{\mathbb{P}_{2}^{2}+m^{2}}+\sqrt{\mathbb{P}_{3}^{2}+m^{2}}
\end{array}
$$

Plot of momentum -energy spectrum

Free fermions
A finite system: n pairs of anticommuting variables

$$
\begin{aligned}
& \psi_{1}, \bar{\Psi}^{\prime}, \psi_{2}, \bar{\psi}^{2}, \cdots, \psi_{n}, \bar{\psi}^{n} \\
& S_{E}=\sum_{i, j} \bar{\psi}^{i} A_{i}^{j} \psi_{j} \\
& d \bar{\psi} d \psi=d \bar{\psi}^{n} \cdots d \bar{\psi}^{\prime} d \psi_{1} \cdots d \psi_{n}=d \bar{\Psi}^{\prime} d \psi_{1} \cdots d \bar{\psi}^{n} d \psi_{n}
\end{aligned}
$$

Partition function is

$$
Z=\int d \bar{\psi} d \psi e^{-\delta_{E}}=\operatorname{det} A
$$

To compare correlation functions, let us introduce

$$
f(A, \bar{\eta}, \eta):=\int d \bar{\psi} d \psi e^{-S_{E}+\sum_{i}\left(\bar{\eta}^{i} \psi_{i}+\bar{\psi}^{i} \eta_{i}\right)}
$$

Note

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{\eta}^{i}} \frac{\partial}{\partial \bar{\eta}^{i}} \cdots \frac{\partial}{\partial \bar{\eta}^{i s}} e^{\bar{\eta} \psi+\bar{\psi} \eta} \stackrel{\leftarrow}{\frac{\partial}{\partial \eta_{j 1}} \frac{\partial}{\partial \eta_{j 2}} \cdots \frac{\zeta}{\partial \eta_{j t}}} \\
& \quad=e^{\bar{\eta} \psi} \psi_{i 1} \cdots \psi_{i s} \bar{\psi}^{j i} \ldots \bar{\psi}^{j t} e^{\bar{\psi} \eta}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{\eta}^{i 1}} \frac{\partial}{\partial \bar{\eta}^{i}} \cdots \frac{\partial}{\partial \bar{\eta}^{i s}} f\left(A_{1} \bar{\eta}, \eta\right) \frac{\left.\stackrel{\zeta}{\partial \eta_{j 1}} \frac{\zeta}{\partial \eta_{j 2}} \cdots \frac{\tilde{\partial}}{\partial \eta_{j t}}\right|_{\bar{\eta}=\eta=0}}{\quad=z\left\langle\psi_{i 1} \cdots \psi_{i s} \bar{\psi}^{j i} \ldots \bar{\psi}^{j t}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& f(A, \bar{\eta}, \eta)=\int d \bar{\psi} d \psi e^{-\left(\bar{\psi}-\bar{\eta} A^{-1}\right) A\left(\psi-A^{-1} \eta\right)+\bar{\eta} A^{-1} \eta} \\
&=z e^{\bar{\eta} A^{-1} \eta} \\
& \therefore\left\langle\psi_{i 1} \cdots \psi_{i,} \bar{\psi}^{j_{1}} \cdots \bar{\psi}^{j_{t}}\right\rangle \\
&=\frac{\partial}{\partial \bar{\eta}^{i 1}} \frac{\partial}{\partial \bar{\eta}^{i_{2}}} \cdots \frac{\partial}{\partial \bar{\eta}^{i s}} e^{\bar{\eta} A^{-1} \eta} \frac{\leftarrow}{\left.\frac{\partial}{\eta_{j 1}} \frac{\partial}{\partial \eta_{j 2}} \cdots \frac{\partial}{\partial \eta_{j t}} \right\rvert\, \bar{\eta}=\eta=0} \\
& \quad=\left(A^{-1} \eta\right)_{i_{1}} \cdots\left(A^{-1 \eta}\right)_{i s} \frac{\leftarrow}{\left.\frac{\partial}{\eta_{j 1}} \frac{\zeta}{\partial \eta_{j 2}} \cdots \frac{\partial}{\partial \eta_{j t}}\right|_{\eta=0}}
\end{aligned}
$$

This is non-zero only if $s=t$.
e.g. $\left\langle\psi_{i} \bar{\psi}^{j}\right\rangle=\underbrace{\left(A^{-1} \eta\right)_{i}} \frac{\overleftarrow{\partial}}{\partial \eta_{j}}=A_{i}^{-1}$

$$
A_{i}^{-1} \eta_{h}
$$

$$
\begin{aligned}
\left\langle\psi_{i} \psi_{j} \bar{\psi}^{k} \Psi^{l}\right\rangle & =\left(A^{-1} \eta\right)_{i}\left(A^{-1} \eta\right)_{j} \frac{\varsigma}{\partial \eta_{k}} \frac{\delta}{\partial \eta_{l}} \\
& =A_{i}^{-1}{ }^{l} A_{j}^{-1}-A_{i}^{-1} A_{j}^{-1} l
\end{aligned}
$$

$\frac{\delta}{\partial \eta_{k}}$ parses through $\eta_{\text {in }}\left(A^{-1} \eta\right)_{j}$

The result can also be presented ar the sum of Wick contractions, with the understanding that a (-1) is produced each time two fermionic objects are swapped:

$$
\begin{aligned}
\left\langle\psi_{i} \bar{\Psi}^{j}\right\rangle=\psi_{i} \bar{\Psi}^{j} & =A_{i}^{-j} \\
\left\langle\psi_{i} \psi_{j} \bar{\psi}^{k} \bar{\psi}^{l}\right\rangle & =\psi_{i} \bar{\psi}_{j} \bar{\psi}^{k} \bar{\psi}^{l}+\sqrt[\psi_{i} \psi_{j} \bar{\psi}^{k}]{\psi^{l}} \\
& =\psi_{i} \bar{\psi}^{l} \psi_{j} \bar{\psi}^{k}-\sqrt[\psi_{i}]{\bar{\psi}^{k}} \overleftarrow{\psi}_{j} \bar{\psi}^{l} \\
& =A_{i}^{-1} A^{-1}{ }^{k}-A_{i}^{-1} A_{j}^{-1} l
\end{aligned}
$$

- We see that everything is determined by the two point functions

$$
\left\langle\psi_{i} \bar{\psi}^{j}\right\rangle=\bar{\psi}_{i} \bar{\Psi}^{j}=\vec{A}_{i}^{-}
$$

- The logic holds also when $n=\infty$, c.g. in QFT in dimension $d \geq 1$. We now apply this to important examples. The focus will thus be two point functions.

Dirac fermions in d dimensions
Gamma matrices
The algebra over \mathbb{C} generated by $\gamma^{0}, \cdots, \gamma^{d-1}$ with relation

$$
\begin{aligned}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \\
& \text { ie. }\left\{\begin{array}{l}
\left(\gamma^{0}\right)^{2}=1, \quad\left(\gamma^{i}\right)^{2}=-1 \text { for } i=1, \cdots, d-1, \\
\gamma^{\mu} \gamma^{\nu}=-\gamma^{\nu} \gamma^{\mu} \text { for } 0 \leq \mu<\nu \leq d-1
\end{array}\right.
\end{aligned}
$$

..... Called the Clifford algebra in dimension $(d-1,1)$ has an irreducible representation on a vector space S of dimension

$$
d_{S}=2^{[d / 2]}=2^{n} \begin{cases}d=2 n & \text { even } \\ d=2 n+1 & \text { odd. }\end{cases}
$$

- S has a positive definite hermitian inner product sit. $\gamma^{0+}=\gamma^{0}$ hermitian, $\gamma^{i t}=-\gamma^{i}$ autihermitian.
- $\operatorname{tr}_{S}\left(r^{\mu_{1}} \ldots r^{\mu_{l}}\right)=0$ for distinct μ_{1}, \cdots, μ_{l} 's

Except $l=d=2 n+1$.
In particular, $\operatorname{tr}_{S} \gamma^{\mu}=0$ if $d>1$.

- S is a representation of Lorentz group $S O(d-1,1)\binom{$ to be precise }{$\operatorname{Spin}(d-1,1)}$

$$
e^{\omega} \in S O(d-1,1): \varphi \in S \longmapsto e^{\frac{1}{2} \gamma(\omega)} \varphi \in S
$$

where $\gamma(\omega):=\frac{1}{2} \omega_{\mu \nu}\left[\gamma^{\mu}, \gamma^{\nu}\right]=: \omega_{\mu \nu} \gamma^{\mu^{\nu}}$.
$\left\{\begin{array}{l}d \text { odd: irreducible } \\ d \text { even: Splits to two irreducibles, distinguished by the action }\end{array}\right.$ of $\gamma^{0} \gamma^{1} \cdots \gamma^{d-1}$.

- For $\varphi \in S$, define $\bar{\varphi} \in S^{*}$ by

$$
\bar{\varphi} \varphi^{\prime}:=\varphi^{t} \gamma^{0} \varphi^{\prime} \quad \text { for } \varphi^{\prime} \in S
$$

Then, $\bar{\varphi} \varphi^{\prime}$ is a Lorentz scalar and
$\bar{\varphi} \gamma^{\mu} \varphi^{\prime}$ is a Loren $1 z$ vector.

$$
\begin{aligned}
& \because\left(\gamma^{0} \gamma^{i}\right)^{t}=-\gamma^{i} \gamma^{0}=\gamma^{0} \gamma^{i}, \quad\left(\gamma^{i} \gamma^{j}\right)^{t}=\gamma^{j} \gamma^{i}=-\gamma^{i} \gamma^{j} \quad i \neq j \\
& \therefore\left(\gamma^{\mu \nu}\right)^{+} \gamma^{0}=-\gamma^{0} \gamma^{\mu \nu} \quad \therefore\left(e^{\frac{1}{2} \gamma(\omega)}\right)^{+} \gamma^{0}=\gamma^{0} e^{-\frac{1}{2} \gamma(\omega)} . \\
& \begin{aligned}
{\left[\frac{1}{2} \gamma(\omega), \gamma^{\mu}\right] } & =\frac{1}{4} \omega_{\rho \lambda}\left(\gamma^{\rho} \gamma^{\lambda}, \gamma^{\mu}\right]=\frac{\left.\gamma^{\rho} \frac{1}{\gamma} \gamma^{\lambda}, \gamma^{\mu}\right\}}{2 \eta^{\lambda / \mu}}-\frac{\left\{\gamma^{\rho}, \gamma^{\mu}\right\}}{2 \eta^{\rho}} \gamma^{\lambda} \\
& =-\omega_{\nu}^{\mu} \gamma^{\nu} .
\end{aligned} \\
& \therefore e^{-\frac{1}{2} \gamma(\omega)} \gamma^{r} e^{\frac{1}{2} V(\omega)}=\left(e^{\omega}\right)^{\mu} \gamma^{\nu} \text {. }
\end{aligned}
$$

The system
Variable: an S-valued anticommuting function $\Psi(x)$ of d dimensional space time.

Lagrangian: $\mathcal{L}=i \bar{\psi} \varnothing \psi-m \bar{\psi} \psi$
where $\not \partial:=\gamma^{\mu} \partial_{\mu}$

- m is a real parameter $m^{*}=m$.
- \mathcal{L} is real modulo total derivative

$$
\begin{aligned}
& \mathcal{L}^{*}=-i \partial_{\mu} \psi^{+} \underbrace{\left(\gamma^{0} \gamma^{\mu}\right)^{+}}_{\gamma^{0} \gamma^{\mu}} \psi-i \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi \psi^{+} \gamma^{\gamma^{+}} \psi \\
& \psi
\end{aligned}
$$

- The system has Poincare symmerry (translations x Lorentz). and phase rotation symmetry $\psi \rightarrow e^{-i \alpha} \psi$.
Charge densities for translations a phase rotation are

$$
\begin{aligned}
& T_{0}^{0}=-i \bar{\psi} \gamma \cdot \nabla \psi+m \bar{\psi} \psi, \quad T_{j}^{0}=i \psi^{+} \partial_{j} \psi \\
& J^{0}=\psi^{+} \psi
\end{aligned}
$$

Wick rotation $x^{0} \rightarrow-i x^{d}$

$$
\begin{gathered}
\gamma^{0} \rightarrow-i \gamma_{E}^{d}, \gamma_{E}^{i}:=\gamma^{i} \quad i=1, \cdots, d-1 \\
\left\{\gamma_{E}^{\mu}, \gamma_{E}^{v}\right\}=-2 \delta^{m, v} \quad 1 \leqslant M, u \leqslant d \\
\mathcal{L}_{E}=-i \bar{\Psi} \gamma_{E}^{m} \partial_{\mu} \psi+m \bar{\psi} \psi=\bar{\psi}\left(-i \varnothing_{E}+m\right) \psi \\
\langle\psi(x) \bar{\psi}(y)\rangle_{E}=\left(-i \phi_{E}+m\right)_{x y}^{-1} \\
=\int \frac{d^{d} P_{E}}{(2 \pi)^{d}} \frac{e^{-i P_{E}(x-y)}}{-P_{E}+m} \\
{[}
\end{gathered}
$$

Here, we regard $\langle\psi(x) \bar{\Psi}(y)\rangle_{E}$ as $E_{n d}(S)$ valued function. In components with respect to a basis $\left\{e^{\alpha}\right\} C S$, it reads

$$
\left\langle\psi_{\alpha}(x) \bar{\Psi}^{\beta}(y)\right\rangle_{E}=\int \frac{d^{\alpha} P_{E}}{(2 \pi)^{l}} \frac{e^{-\left(P_{E}(x-y)\right.}}{P_{E}^{2}+m^{2}} \underbrace{\left(X_{E}+m\right)_{\alpha}^{\beta}}_{\left(\gamma_{E}^{\mu}\right)_{\alpha}^{\beta} P_{E_{\mu}}+m \delta_{\alpha}^{\beta}}
$$

Minkowski limit
Proceeding just as in the case of the scalar field, we find that under the reverse Wick rotation

$$
x^{d} \rightarrow i x^{0}, \quad p_{d} \rightarrow-i p_{0}, \quad \gamma^{d} \rightarrow i \gamma^{0},
$$

$\langle\psi(x) \bar{\psi}(y)\rangle_{E}$ goes to:

$$
\langle\psi(x) \bar{\psi}(s)\rangle=\int_{\mathbb{R}^{\alpha-1} \times C} \frac{d^{\alpha-1} \mathbb{P} d p_{0}}{(2 \pi)^{d}} \frac{i e^{-i \mid p \cdot(x-y)-i p_{0}\left(\alpha^{0} s^{0}\right)}}{\left(p_{0}-\omega_{\mathbb{P}}\right)\left(p_{0}+\omega_{\mathbb{p}}\right)}(\underline{p}+m)
$$

where $\omega_{\mathbb{p}}=\sqrt{\mathbb{P}^{2}+m^{2}}$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { or } \\
\quad \int \frac{d^{2} p}{(2 \pi)^{1}} \frac{i e^{-i p(x-y)}}{p^{2}-m^{2}+i \cdot 0}(\not p+m) \\
=\int \frac{d^{\alpha-1} \mathbb{p}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}} e^{-i \omega_{\mathbb{p}}\left|x^{0}-y^{0}\right|-i \mathbb{P} \cdot(x-y)}\left(\operatorname{sgn}\left(x^{0}-y^{0}\right) \omega_{\mathbb{p}} \gamma^{0}+\gamma \cdot p+m\right)
\end{array}
\end{aligned}
$$

Canonical quantization $(d>1)$

$$
\begin{aligned}
& \psi(x)=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}} e^{i \mathbb{P} \cdot *} \psi(\mathbb{P}) \\
& L=\int d^{d-x}\left(i \psi^{+}\left(\partial_{0}+\gamma^{0} \gamma \cdot \nabla\right) \psi-m \bar{\psi} \psi\right) \\
& =\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}}\left(i \psi(\mathbb{P})^{+} \dot{\psi}(\mathbb{P})-\psi(\mathbb{P})^{+} \gamma^{0}(\gamma \cdot \mathbb{P}+m) \psi(\mathbb{P})\right) \\
& \Delta_{\mathbb{P}}:=\gamma^{0}(\gamma \cdot \mathbb{P}+m): S \rightarrow S
\end{aligned}
$$

- It is hermitian, hence diagonalizable

$$
\begin{aligned}
\cdot \Delta_{\mathbb{P}}^{2} & =\gamma^{0}(\gamma \cdot \mathbb{P}+m) \gamma^{0}(\gamma \cdot \mathbb{P}+m) \\
& =\underbrace{\gamma^{0} \gamma^{0}}_{1} \underbrace{(-\gamma \cdot \mathbb{P}+m)(\gamma \cdot \mathbb{P}+m)}_{\mathbb{R}^{2}+m^{2}}=\mathbb{P}^{2}+m^{2}=\omega_{\mathbb{P}}^{2}
\end{aligned}
$$

Thus, eigenvalues of $\Delta_{\mathbb{P}}$ are $\pm \omega_{\mathbb{p}}$

- $\operatorname{tr}_{S} \Delta_{\mathbb{P}}=0$ since $\operatorname{tr}_{S}\left(\gamma^{0} \gamma^{i}\right)=\operatorname{tr}_{S}\left(\gamma^{i} \gamma^{0}\right)=-\operatorname{tr}_{S}\left(\gamma^{0} \gamma^{i}\right)$

$$
k \operatorname{tr}_{S} \gamma^{\circ}=0
$$

Thus, half of the eigenvalues are $+\omega_{\mathbb{P}}$ and the other halves are $-\omega_{\mathbb{p}}$.

Let $S_{ \pm}(\mathbb{P}) \subset S$ be the $\pm \omega_{\mathbb{p}}$ eigen space of $\Delta \mathbb{p}$.
Then $S=S_{+}(\mathbb{P})+S_{-}(\mathbb{P})$ orthogonal decomposition, and

$$
d / m S_{+}(\mathbb{P})=\operatorname{dim} S_{-}(\mathbb{P})=\frac{1}{2} \operatorname{dim} S=\frac{1}{2} d S=2^{[d / 2]-1}
$$

Let $\left\{u_{ \pm}^{s}(\mathbb{P})\right\}_{s=1}^{d s / 2} C S_{ \pm}(\mathbb{P})$ be an orthonormal basis.
The elements satisfy

$$
\begin{aligned}
& \therefore u_{\varepsilon}^{s}(\mathbb{P})^{+} u_{\varepsilon^{\prime}}^{s^{\prime}}(\mathbb{P})= \\
& \begin{aligned}
& \sum_{s} u_{ \pm}^{s s^{\prime}} \delta_{\varepsilon \varepsilon^{\prime}} \\
&=\frac{1}{2}\left(1 \pm \frac{1}{\omega_{\mathbb{P}}} \Delta_{\mathbb{P}}\right) \\
& \therefore \sum_{ \pm}^{s}(\mathbb{P})^{+}=\text {projection operator to } S_{ \pm}(\mathbb{P}) \\
&=\frac{1}{2 \omega_{\mathbb{P}}}\left(\omega_{\mathbb{1}} \gamma^{0} \pm \gamma^{0}(\mathbb{\gamma} \cdot \mathbb{P}+m) \gamma^{0}\right) \\
&=\frac{1}{2 \omega_{\mathbb{P}}^{s}(\mathbb{P})} \\
&=\frac{1}{2}\left(1 \pm \frac{1}{\omega_{\mathbb{P}}} \Delta_{\mathbb{P}}\right) \gamma^{0} \\
& \gamma^{0} \gamma^{i}=-\gamma^{i} \gamma^{0}, \gamma^{0} \gamma^{0}=1
\end{aligned}
\end{aligned}
$$

Let us expand $\Psi(\mathbb{P})$ w.r.t. the basis $\left\{U_{+}^{S}(\mathbb{P})\right\}_{S=1}^{d s / 2} \cup\left\{U_{-}^{S}(\mathbb{P})\right\}_{s=1}^{d / 2}$ of S as

$$
\psi(\mathbb{P})=\sum_{s}\left(u_{+}^{s}(\mathbb{P}) b_{+s}(\mathbb{P})+u_{-}^{s}(\mathbb{P}) b_{-s}(\mathbb{P})\right) \cdot \sqrt{(2 \pi)^{\alpha-1}}
$$

Then

$$
L=\int d^{d-1} \mathbb{P} \sum_{\varepsilon, s}\left(b_{\varepsilon s}\left(\mathbb{P}^{+} \dot{b}_{\varepsilon s}(\mathbb{P})-\varepsilon \omega_{\mathbb{P}} b_{\varepsilon s}(\mathbb{P})^{+} b_{\varepsilon s}(\mathbb{P})\right)\right.
$$

We know how to quantize such a system (Lecture 3):

$$
\begin{aligned}
& \left\{b_{\varepsilon s}(\mathbb{P}), b_{\varepsilon^{\prime} s^{\prime}}\left(\mathbb{P}^{\prime}\right)\right\}=\delta_{\varepsilon \varepsilon} \delta_{s s^{\prime}} \delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right) \\
& \left\{b_{\varepsilon s}(\mathbb{P}), b_{\varepsilon^{\prime} s^{\prime}}\left(\mathbb{P}^{\prime}\right)\right\}=\left\{b_{q s}(\mathbb{P})^{+}, b_{\varepsilon^{\prime} s^{\prime}}\left(\mathbb{P}^{\prime}\right)^{+}\right\}=0, \\
& H=\int d^{d-1} \mathbb{P} \sum_{\varepsilon s} \varepsilon \omega_{\mathbb{p}} b_{\varepsilon s}(\mathbb{P})^{+} b_{\varepsilon s}(\mathbb{P}) .
\end{aligned}
$$

$\left[H, b_{\varepsilon S}(\mathbb{P})\right]=-\varepsilon \omega_{\mathbb{P}} b_{\varepsilon S}(\mathbb{P}),\left[H, b_{\varepsilon s}(\mathbb{P})^{+}\right]=\varepsilon \omega_{\mathbb{P}} b_{\varepsilon s}(\mathbb{P})^{+}$
$\therefore b_{+s}(p)^{+}, b_{-s}(\mathbb{1}):$ creation operator
$b_{+s}(\mathbb{P}), b_{s}(\mathbb{P})^{+}$: annihilation operator
The state $|0\rangle$ annihilated by $b_{+s}(\mathbb{P})$ and $b_{-s}(\mathbb{P})^{+} \quad \forall_{S}, \forall_{\mathbb{P}}$
is the unique ground state, with energy

$$
E_{0}=\int d^{\alpha-1} \mathbb{P}\left(-\frac{d s}{2} \omega_{\mathbb{P}} \delta^{d-1}(0)\right)
$$

Other states are obtained from 10) by operating $b_{+S}(\mathbb{P})^{+} \& b_{-S}(\mathbb{P})$, each operation increasing energy by ω_{p}.

Remarks. There is no negative norm states.
e.g. $\quad|\mathbb{p} ;+s\rangle=b_{+s}(\mathbb{p})^{+}|0\rangle, \quad|p ;-s\rangle:=b_{-s}(\mathbb{p})|0\rangle$.

Assuming $\langle 0 \mid 0\rangle=1$,

$$
\begin{aligned}
& \left\langle\mathbb{P} ;+s \mid \mathbb{1}^{\prime} ;+s^{\prime}\right\rangle=\langle 0| b_{+s}(\mathbb{P}) b_{+r^{\prime}}\left(\mathbb{P}^{\prime}\right)^{+}|0\rangle=\delta_{s s^{\prime}} \delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right) \\
& \left\langle\mathbb{P} ;-s \mid \mathbb{1}^{\prime}:-s^{\prime}\right\rangle=\langle 0| b_{-s}(\mathbb{P})^{+} b_{-s^{\prime}}\left(\mathbb{P}^{\prime}\right)|0\rangle=\delta_{s s^{\prime}} \delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right) \\
& \cdot Q=\int d^{d-1} \mathbb{P} \sum_{\varepsilon s} b_{\varepsilon s}(\mathbb{P})^{+} b_{\varepsilon s}(\mathbb{P}) \\
& {\left[Q, b_{\varepsilon s}(\mathbb{P})\right]=-b_{\varepsilon s}(\mathbb{P}),\left[Q_{Q}, b_{\varepsilon s}(\mathbb{P})^{+}\right]=b_{\varepsilon s}(\mathbb{P})^{+}}
\end{aligned}
$$

Interpretation
$b_{+s}(\mathbb{P})^{+} / b_{+s}(\mathbb{P})$ is creation/annihilation of a particle of mass m, momentum \mathbb{P}, charge +1
$b_{-s}(\mathbb{P}) / b_{-s}(\mathbb{P})^{+}$is creation/annihilation of a particle of mass m, momentum $-\mathbb{P}$, charge -1 .

They form a representation of the subgroup of Lorentz group that fixes $\left(\omega_{\mathbb{p}}, p\right) \cong \underset{m \neq 0}{\int O(d-1)}$ or $\underset{m=0}{ } \underset{m}{ } \underset{m}{ }(d-2)$.

$$
\begin{aligned}
& \psi(x)=\int \frac{d^{\alpha-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1}}} e^{i \mathbb{P} \cdot x} \sum_{s}\left(u_{+}^{s}(\mathbb{P}) b_{+s}(\mathbb{P})+u_{-}^{s}(\mathbb{P}) b_{-s}(\mathbb{P})\right) \\
& \psi(t, x)=e^{i t H} \psi(x) e^{-i t H} \\
& =\int \frac{d^{\alpha-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1}}} e^{i \mathbb{P} \cdot x} \sum_{s}\left(u_{+}^{s}(\mathbb{P}) e^{-i \omega_{\mathbb{p}} t} b_{+s}(\mathbb{R})+u_{-}^{s}(\mathbb{P}) e^{i \omega_{\mathbb{p}} t} b_{-s}(\mathbb{P})\right) \\
& \bar{\psi}(t, x)=\int \frac{d^{\alpha-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1}}} e^{-i \mathbb{P} \cdot x} \sum_{s}\left(\overline{u_{+}^{s}(\mathbb{P})} e^{t i \omega_{\mathbb{p}} t} b_{+s}(\mathbb{R})+\overline{u_{-}^{s}(\mathbb{P})} e^{-i \omega_{\mathbb{p}} t} b_{-s}(\mathbb{P})+\right. \\
& \langle 0| \psi(x) \bar{\psi}(y)|0\rangle \\
& =\int \frac{d^{\alpha-1} \mathbb{P}_{1} d^{d-1} \mathbb{P}_{2}}{(2 \pi)^{d-1}} e^{i i \mathbb{P}_{1} \cdot x-i P_{2} \cdot y} \sum_{\delta_{1}, s_{2}} e^{-i \omega_{\mathbb{P}_{1}} x^{0}+i \omega_{\mathbb{P}_{2}} y^{0}} u_{+}^{s_{1}}\left(\mathbb{P}_{1}\right) \overline{u_{+}^{s_{2}}\left(\mathbb{P}_{2}\right)} \times \\
& \langle 0| b_{+s_{1}}\left(\mathbb{P}_{1}\right) b_{+s_{2}}\left(\mathbb{P}_{2}\right)^{+}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \langle 0| \bar{\psi}(y) \psi(x)|0\rangle<\text { regarded as End }(S) \text { element } \\
& =\int \frac{d^{d-1} \mathbb{P}_{1} d^{d-1} P_{2}}{(2 \pi)^{d-1}} e^{i \mathbb{P}_{1} \cdot *-i P_{2} y} \sum_{\delta_{1}, s_{2}} e^{-i \omega_{\mathbb{P}_{2}} y^{0}+i \omega_{\mathbb{P}_{1}} x^{0}} u_{-}^{S_{1}}\left(\mathbb{P}_{1}\right) \overline{u_{-}^{S_{2}}\left(\mathbb{P}_{2}\right)} \times \\
& \langle 0| b_{-s_{2}}\left(\mathbb{P}_{2}\right)^{\top} b_{-s_{1}}\left(\mathbb{P}_{1}\right)|0\rangle \\
& =\int \frac{d^{\alpha-1} \mathbb{P}}{(2 \pi)^{\alpha-1}} e^{i\left(\mathbb{P} \cdot(x-y)-i \omega_{\mathbb{P}}\left(x^{0}-y^{0}\right)\right.} \sum_{\frac{1}{2 \omega_{\mathbb{P}}}\left(\omega_{\mathbb{p}}^{s} \gamma^{0}(\mathbb{P}) \overline{U_{-}^{s}(\mathbb{R})}\right.}^{\left.\gamma^{0} \cdot \mathbb{P}-m\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \langle 0| T \psi(x) \bar{\psi}(y)|0\rangle= \begin{cases}\langle 0| \psi(x) \bar{\psi}(b)|0\rangle & \left.x^{0}\right\rangle y^{0} \\
-\langle 0| \bar{\psi}(y) \psi(x)|0\rangle & \left.y^{0}\right\rangle x^{0}\end{cases} \\
& =\int \frac{d^{p-1} \mathbb{P}}{(2 \pi)^{n-1}} e^{-i \omega_{\mathbb{P}}\left|x^{0}-y^{0}\right|+i \mathbb{P} \cdot(x-y)} \frac{1}{2 \omega_{\mathbb{p}}}\left(\operatorname{sgn}\left(x^{0}-y^{0}\right) \omega_{\mathbb{p}} \gamma^{0}-\gamma \cdot \mathbb{p}+m\right) \\
& =\int \frac{d^{a-1} \mathbb{P}}{(2 \pi)^{n-1} 2 \omega_{\mathbb{p}}} e^{\left.-i \omega_{\mathbb{p}} \mid x^{0}-y^{0}\right)-i \mathbb{P} \cdot(x-y)}\left(\operatorname{sgn}\left(x^{0}-y^{0}\right) \omega_{\mathbb{p}} \gamma^{0}+\boldsymbol{\gamma} \cdot \mathbb{P}+m\right)
\end{aligned}
$$

... match with $\langle\psi(x) \bar{\psi}(y)\rangle$.

Ghost system
The gauge fixed Maxwell theory (B-eliminated):

$$
\tilde{\mathcal{L}}_{E}=\frac{1}{4 e^{2}} \sum_{r, v} F_{r^{v}}^{2}+\frac{1}{2 e^{2} \xi}(\partial \cdot A)^{2}+\bar{C} \cdot \partial^{2} C
$$

consider this part

$$
\langle C(x) \bar{C}(y)\rangle_{E}=\partial^{-2} x \cdot y=\int \frac{d^{2} P_{E}}{(2 \pi)^{d}} \frac{e^{-i P_{E}(x-y)}}{-P_{E}^{2}}
$$

reverse Wick rotation: $x^{d} \rightarrow i x^{d}, p_{d} \rightarrow-i p_{0}, d^{\mu \nu} \rightarrow-\eta^{\mu \nu}$
Also $\bar{C} \rightarrow-i \bar{C} \quad$ (Sign error in Lee 5)

$$
\begin{gathered}
\langle C(x)(-i) \bar{C}(y)\rangle= \\
\int_{\mathbb{R}^{d-1} \times \mathbb{C}} \frac{d^{d-1} \mathbb{P} d P_{0}}{(2 \pi)^{d-1}} \frac{i e^{-i \mathbb{P} \cdot(x-y)-i P_{0}\left(x^{0}-y^{0}\right)}}{-\left(P_{\delta}-|\mathbb{P}|\right)\left(P_{0}+|\mathbb{P}|\right)} \\
-\omega_{\mathbb{P}}
\end{gathered}
$$

or

$$
\begin{aligned}
\langle C(x) \bar{C}(y)\rangle & =\int_{\mathbb{R}^{\alpha}} \frac{d^{d} p}{(2 \pi)^{d}} \frac{e^{-i \rho(x-y)}}{p^{2}+i \cdot 0} \\
& =-i \int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2|\mathbb{P}|} e^{-i| | \mathbb{P}| | x^{0}-y^{0} \mid-i \mathbb{P} \cdot(x-y)}
\end{aligned}
$$

Canonical quantization
In Minkowski space,

$$
S[C, \bar{C}]=\int d^{d} x\left(-i \bar{C} \partial^{2} C\right)=\int d^{d} x i \partial^{m} \bar{C} \partial_{\Gamma} C
$$

Reality of fields: $C^{*}=C, \bar{C}^{*}=\bar{C}$.
Let us describe the system in momentum space.

$$
\begin{aligned}
& C(\mathbb{X})=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}} e^{i \mathbb{P} \cdot x} C(\mathbb{P}), \quad C(\mathbb{P})^{*}=C(-\mathbb{P}) \\
& \bar{C}(\mathbb{C})=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}} e^{i \mathbb{P} \cdot *} \bar{C}(\mathbb{P}), \quad \bar{C}(\mathbb{P})^{*}=\bar{C}(-\mathbb{P}) \\
& L=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}}\left(i \dot{\bar{C}}(-\mathbb{P}) \dot{C}(\mathbb{P})-i \mathbb{P}^{2} \bar{C}(-\mathbb{P}) C(\mathbb{P})\right) \\
& H=\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1}}\left(i \dot{\bar{C}}(-\mathbb{P}) \dot{C}(\mathbb{P})+i \mathbb{P}^{2} \bar{C}(-\mathbb{P}) C(\mathbb{P})\right)
\end{aligned}
$$

A system of this type was discussed in Lecture 3. Exercise (C).
By ward identity, we find

$$
\begin{aligned}
& \left\{C(\mathbb{P}), \dot{\bar{C}}\left(-\mathbb{P}^{\prime}\right)\right\}=(2 \pi)^{d-1} \delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right) \\
& \left\{\bar{C}(-\mathbb{P}), \dot{C}\left(\mathbb{P}^{\prime}\right)\right\}=-(2 \pi)^{d-1} \delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right),
\end{aligned}
$$

all other anticommutaturs of $C, \bar{C}, \dot{C}, \dot{\bar{C}}=0$.

Let us introduce

$$
\begin{aligned}
& b(\mathbb{P}):=\sqrt{\frac{\| \mathbb{P} \mid}{2(2 \pi)^{\alpha-1}}} c(\mathbb{P})+\frac{i}{\sqrt{2(2 \pi)^{\alpha-1}|\mathbb{P}|}} \dot{C}(\mathbb{P}) \\
& \bar{b}(\mathbb{P}):=-i \sqrt{\frac{\| \mathbb{P} \mid}{2(2 \pi)^{\alpha-1}} \bar{C}(\mathbb{P})+\frac{i}{\sqrt{2(2 \pi)^{\alpha-1}|\mathbb{P}|}} \dot{\bar{C}}(\mathbb{P}) .}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\{b(\mathbb{P}), \bar{b}\left(\mathbb{P}^{\prime}\right)^{+}\right\}=\delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right) \\
& \left\{\bar{b}(\mathbb{P}), b\left(\mathbb{P}^{\prime}\right)^{+}\right\}=\delta^{d-1}\left(\mathbb{P}-\mathbb{R}^{\prime}\right)
\end{aligned}
$$

all other anticommutators of $b, b^{+}, \bar{b}, \bar{b}^{+}=0$.

$$
\begin{aligned}
& H=\int d^{d-1} \mathbb{P}|\mathbb{P}|\left(b(\mathbb{P})^{+} \bar{b}(\mathbb{P})+\bar{b}(\mathbb{P})^{+} b(\mathbb{P})-\delta^{d-1}(0)\right) \\
& {[H, b(\mathbb{P})]=-|\mathbb{P}| b(\mathbb{P}), \quad\left[H, b(\mathbb{P})^{+}\right]=|\mathbb{P}| b(\mathbb{P})^{+}} \\
& {[H, \bar{b}(\mathbb{P})]=-|\mathbb{P}| \bar{b}(\mathbb{P}), \quad\left[H, \bar{b}(\mathbb{P})^{+}\right]=|\mathbb{P}| \bar{b}(\mathbb{P})^{+}}
\end{aligned}
$$

$\therefore b(\mathbb{P})^{+}, \bar{b}(\mathbb{P})^{+}$: creation operators,
$b(\mathbb{P}), \bar{b}(\mathbb{P})$: annihilation operators.
The state $|0\rangle$ annihilated by $b(\mathbb{P}) \& \bar{b}(\mathbb{P}) \quad \forall \mathbb{p}$ is the unique ground state, with energy $E_{0}=-\int d^{d-1} \mathbb{P} \| \mathbb{P} \mid \delta_{(0)}^{d-1}(0)$.

Other states are obtained from $|0\rangle$ by opera tm $b(\mathbb{P})^{\top}$ a $\bar{b}(\mathbb{P})^{\top}$, each increasing energy by $|\mathbb{P}|$.

Remark There are zero \& negative norm states.

$$
\begin{aligned}
& |\mathbb{P}, \phi\rangle:=b(\mathbb{P})^{+}|0\rangle, \quad|\phi, \mathbb{P}\rangle:=\bar{b}(\mathbb{P})^{\dagger}|0\rangle \\
& \left|\mathbb{P}_{1}, \mathbb{P}_{2}\right\rangle:=b\left(\mathbb{P}_{1}\right)^{+} \bar{b}\left(\mathbb{P}_{2}\right)^{+}|0\rangle \\
& \left.\begin{array}{l}
\left\langle\mathbb{P}_{1}, \phi \mid \mathbb{P}_{2}, \phi\right\rangle=\langle 0| b\left(\mathbb{P}_{1}\right) b\left(\mathbb{P}_{2}\right)^{+}|0\rangle=0 \\
\left.\left\langle\phi, \mathbb{P}_{1}\right| \phi_{1}, \mathbb{P}_{2}\right)=\langle 0| \bar{b}\left(\mathbb{P}_{1}\right) \bar{b}\left(\mathbb{P}_{2}\right)^{+}|0\rangle=0
\end{array}\right\} \text { zero norm } \\
& \left\langle\mathbb{P}_{1}, \mathbb{P}_{2} \mid \mathbb{P}_{3}, \mathbb{P}_{4}\right\rangle=\langle 0| \bar{b}\left(\mathbb{P}_{2}\right) b\left(\mathbb{P}_{1}\right) b\left(\mathbb{P}_{3}\right)^{+} \bar{b}\left(\mathbb{P}_{4}\right)^{\top}|0\rangle \\
& =-\delta^{d-1}\left(\mathbb{P}_{1}-\mathbb{P}_{4}\right) \delta^{d-1}\left(\mathbb{P}_{2}-\mathbb{P}_{3}\right) \leftarrow \text { negative norm }
\end{aligned}
$$

Interpretation?
$b(\mathbb{P})^{t}$ e $\bar{b}(\mathbb{P})^{\dagger}$ are interpreted as creating massless particles. However, they create states of zero/negative norm.
Thus these particles are unphysical "ghost" particles.
Computation of $\langle 0| T C(x) \bar{C}(y)|0\rangle$

$$
\begin{aligned}
& C(\mathbb{P})=\sqrt{\frac{(2 \pi)^{a-1}}{2|\mathbb{P}|}}\left(b(\mathbb{P})+b(-\mathbb{P})^{+}\right) \\
& \bar{C}(\mathbb{P})=i \sqrt{\frac{(2 \pi)^{a-1}}{2|\mathbb{P}|}}\left(\bar{b}(\mathbb{P})+\bar{b}(-\mathbb{P})^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C(\mathbb{*})=\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1} 2|\mathbb{P}|}}\left(e^{i \mathbb{P} \cdot \boldsymbol{x}} b(\mathbb{P})+e^{-i \mathbb{P} \cdot \boldsymbol{x}} b(\mathbb{P})^{\dagger}\right) \\
& \bar{C}(x)=\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{-1} 2|\mathbb{P}|}} i\left(e^{i \mathbb{P} \cdot x} \bar{b}(\mathbb{P})-e^{-i \mathbb{P} \cdot \boldsymbol{x}} \bar{b}(\mathbb{P})^{\dagger}\right) \\
& C(t, x)=e^{i t H} C(*) e^{-i t H} \\
& =\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1} 2|\mathbb{P}|}}\left(e^{i \mathbb{P} \cdot \boldsymbol{x}-i \| \mathbb{P} \mid t} b(\mathbb{P})+e^{-i \mathbb{P} \cdot x+i \| \mathbb{P} \mid t} b(\mathbb{P})^{\boldsymbol{+}}\right) \\
& \bar{C}(t, x)=e^{i t H} \bar{C}(x) e^{-i t H} \\
& =\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1} 2|\mathbb{P}|}} i\left(e^{i \mathbb{P} \cdot x-i|\mathbb{P}| t} \bar{b}(\mathbb{P})-e^{-i \mathbb{P} \cdot x+i|\mathbb{P}| t} \bar{b}(\mathbb{P})^{\dagger}\right) \\
& \langle 0| C(x) \bar{C}(y)|0\rangle=-i \int \frac{d^{2-1} \mathbb{P}}{(2 \pi)^{1-1} 2|\mathbb{P}|} e^{-i|\mathbb{P}|\left(x^{0}-y^{0}\right)+i \mathbb{P} \cdot(x-y)} \\
& \langle 0| \bar{C}(y) C(x)|0\rangle=i \int \frac{d^{2-1} \mathbb{P}}{(2 \pi)^{x-1} 2|\mathbb{P}|} e^{-i \| \mathbb{P} \mid\left(y^{0}-x^{0}\right)+i \mathbb{P} \cdot(\boldsymbol{y}-x)} \\
& \therefore\langle 0| T C(x) \bar{C}(y)|0\rangle=-i \int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{\alpha-1} 2|\mathbb{R}|} e^{-i \| \mathbb{P}| | x^{0}-y^{0} \mid-i \mathbb{P} \cdot(x-y)}
\end{aligned}
$$

\cdots match with $\langle c(x) \bar{C}(y)\rangle$.

The gauge fixed Maxwell theory (full)

$$
\tilde{\mathcal{L}}=-\frac{1}{4 e^{2}} F^{\mu \nu} F_{\mu \nu}-\frac{1}{2 e^{2} \xi}(\partial \cdot A)^{2}-i \bar{C} \partial^{2} C
$$

(Set $\xi=e=1$ below)
BRST symmetry

$$
\begin{aligned}
& \delta_{B} A_{\mu}=\partial_{\mu} C, \quad \delta_{B} C=0, \quad \delta_{B} \bar{C}=i \partial \cdot A \\
\leadsto & Q_{B}=\int d^{d-1} \times\left(-F^{0 i} \partial_{i} C-\dot{C} \partial \cdot A\right)
\end{aligned}
$$

Quantization: $\left(\right.$ Notation change: $\left.a_{0}(\mathbb{P}) \leftrightarrow a_{0}(-\mathbb{P})^{+}\right)$

$$
\begin{aligned}
& A_{\mu}(x)=\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{d-1} 2|\mathbb{P}|}}\left(e^{-i P_{\mathbb{P}} x} a_{\mu}(\mathbb{P})+e^{i P_{\mathbb{P}} x} a_{\mu}(\mathbb{P})^{+}\right) \\
& C(x)=\int \frac{d^{d-1} x}{\sqrt{(2 \pi)^{d-1} 2|\mathbb{P}|}}\left(e^{-i \mathbb{P}_{\mathbb{P}} x} b(\mathbb{P} \mid t-\mathbb{P} \cdot x\right. \\
& \bar{C}(x)=\int \frac{d^{d-1} \mathbb{P}}{\sqrt{(2 \pi)^{\alpha-1} 2|\mathbb{P}|}} i\left(e^{-i \mathbb{P}_{\mathbb{P}} x} b\left(\mathbb{P}^{+} x \bar{b}(\mathbb{P})-e^{i P_{\mathbb{P}} x} \bar{b}(\mathbb{P})^{+}\right)\right. \\
& {\left[a_{\mu}(\mathbb{P}), a_{\nu}\left(\mathbb{P}^{\prime}\right)^{+}\right]=-\eta_{\mu} \delta^{d-1}\left(\mathbb{P}^{+}-\mathbb{R}^{\prime}\right),} \\
& \left\{b(\mathbb{P}), \bar{b}\left(\mathbb{P}^{\prime}\right)^{+}\right\}=\left\{\bar{b}(\mathbb{P}), b\left(\mathbb{P}^{\prime}\right)^{+}\right\}=\delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right),
\end{aligned}
$$

other commutators/anticommutators $=0$

$$
\begin{array}{r}
H=\int d^{\alpha-1} \mathbb{P}|\mathbb{P}|\left(-\eta^{\mu \nu} a_{\mu}(\mathbb{P})^{+} a_{\nu}(\mathbb{P})+b(\mathbb{P})^{+} \bar{b}(\mathbb{P})+\bar{b}(\mathbb{P})^{\top} b(\mathbb{P})\right. \\
\left.+\frac{d-2}{2} \delta^{d-1}(0)\right)
\end{array} \begin{aligned}
& {\left[H, O_{\mathbb{P}}\right]=-|\mathbb{P}| \Theta_{\mathbb{R}}, \quad\left[H, O_{\mathbb{P}}^{+}\right]=\| \mathbb{P} \mid \mathcal{O}_{\mathbb{P}}^{+}}
\end{aligned}
$$

for $\mathcal{O}_{\mathbb{P}}=a_{\mu}(\mathbb{P}), b(\mathbb{P}), \bar{b}(\mathbb{P})$.
The state $|0\rangle$ annihilated by all such $\mathcal{O}_{\mathbb{P}}$'s $\forall_{\mathbb{P}}$ is the unque ground state. Other states are obtained from $|0\rangle$ by operating $\mathcal{O}_{\mathbb{p}}^{+}$'s each creating energy $|\mathbb{P}|$.

$$
\begin{aligned}
& Q_{B}=-\int d^{d-1} \mathbb{P}\left\{b (\mathbb { P }) \left(\sum_{i} p_{i} a_{i}(\mathbb{P})^{\dagger}+\left(\mathbb{P} \mid a_{0}(\mathbb{P})^{+}\right)\right.\right. \\
& \left.+b(\mathbb{P})^{+}\left(\sum_{i} p_{i} a_{i}(\mathbb{P})+|\mathbb{P}| a_{0}(\mathbb{P})\right)\right\} \\
& {\left[Q_{B}, a_{i}(\mathbb{P})\right]=p: b(\mathbb{P}), \quad\left[Q_{B}, a_{0}(\mathbb{P})\right]=-|\mathbb{P}| b(\mathbb{P}),} \\
& \quad\left[Q_{B}, a_{i}(\mathbb{P})^{\dagger}\right]=-p_{i} b\left(\mathbb{P}^{\dagger}, \quad\left[Q_{B}, a_{0}(\mathbb{P})^{\top}\right]=|\mathbb{P}| b(\mathbb{P})^{\top},\right. \\
& \left\{Q_{B}, b(\mathbb{P})\right\}=\left\{Q_{B}, b(\mathbb{P})^{\top}\right\}=0, \\
& \left\{Q_{B}, \bar{b}(\mathbb{P})\right\}=-\sum_{i} p_{i} a_{i}(\mathbb{P})-|\mathbb{P}| a_{0}(\mathbb{P}), \\
& \left\{Q_{B}, \bar{b}(\mathbb{P})^{\dagger}\right\}=-\sum_{i} p_{i} a_{i}(\mathbb{P})-|\mathbb{P}| a_{0}(\mathbb{P})^{\dagger} .
\end{aligned}
$$

BRST cohomology

$$
\mathcal{H}=\left\{\text { products of } a_{r}^{+}, b^{+}, \bar{b}^{+} \text {on }|0\rangle\right\}
$$

ghost number:	a_{μ}	a_{r}^{+}	b	b^{+}	\bar{b}	\bar{b}^{+}	$\|0\rangle$
0	0	1	1	-1	-1	$\underbrace{}_{\text {definition. }}$	

$$
\begin{aligned}
& \mathcal{X}^{i}=\{\text { state of ghost number }=i\} \\
& \therefore \xrightarrow{Q_{B}} X^{i} \xrightarrow{Q_{B}} \mathscr{e}^{i+1} \xrightarrow{Q_{B}} X^{i+2} \rightarrow \cdots \quad Q_{B}^{2}=0
\end{aligned}
$$

\sim BRST homology

$$
H^{i}\left(\mathscr{X}, Q_{B}\right)=\operatorname{Ker}\left(Q_{B}: X^{i} \rightarrow \mathscr{X}^{i+1}\right) / \operatorname{Im}\left(Q_{B} ; \mathcal{X}^{i-1} \rightarrow \mathscr{X}^{i}\right)
$$

The basic proposal was:
physical states are BRST cohomology classes

$$
X_{\text {phys }}=\oplus H_{i}^{\oplus}\left(\mathscr{X}, \partial_{B}\right) .
$$

What is $H^{\prime}\left(\mathscr{X}, \partial_{\beta}\right)$ then?
Let us compute!

Warm-up: Examine low lying states.
$N_{c}:=$ number of creation operators

$$
\begin{aligned}
& N_{c}=0 \text { on }|0\rangle \\
& \left.N_{c}=1 \text { spanned by } a_{\mu}(\mathbb{p})^{\dagger}|0\rangle, b(\mathbb{p})^{\dagger}|0\rangle, \bar{b}(\mathbb{p})^{\dagger}(0\rangle \text { (all } p^{\prime} s\right) . \\
& \mathcal{C}_{N_{c}}=\left\{N_{c} \text { creation opes on }|0\rangle\right\}
\end{aligned}
$$

Q_{B} does not change N_{C}

$$
\begin{aligned}
& \mathscr{H}_{N_{c}}^{i}=\left\{N_{c} \text { creation ops on }|0\rangle \text {, ghost number }=i\right\} \\
& \xrightarrow{Q_{B}} \mathscr{X}_{N_{L}}^{i} \xrightarrow{Q_{B}} \mathcal{X}_{N_{L}}^{i+1} \xrightarrow{Q_{B}} \ldots \text { subcomplex. } \\
& H^{i}\left(\mathscr{O}, \alpha_{B}\right)=\bigoplus_{N_{C}} H^{i}\left(\mathscr{X}_{N_{C}}, Q_{B}\right) \\
& N_{c}=0 \\
& x_{0}^{-1} \quad x_{0}^{0} \quad x_{0}^{1} \\
& 0 \rightarrow 0_{0}^{\prime \prime} \longrightarrow \mathbb{C}^{\prime \prime}|0\rangle \rightarrow 0 \rightarrow 0 . \\
& \therefore H^{i}\left(\mathscr{X}_{0}, \partial_{B}\right)=\left\{\begin{array}{cc}
\mathbb{C}|0\rangle & i=0 \\
0 & i \neq 0
\end{array}\right.
\end{aligned}
$$

$N_{c}=1$

$$
Q_{B} \bar{b}(\mathbb{P})^{+}|0\rangle=\left(-\sum_{r} P_{i} a_{i}(\mathbb{P})^{+}-|\mathbb{P}| a_{0}(\mathbb{P})^{+}\right)|0\rangle
$$

$$
\partial_{B} \epsilon^{\mu} a_{r}(\mathbb{P})^{\dagger}|0\rangle=-\sum_{i} \epsilon^{i} p_{i} b(\mathbb{P})^{\dagger}|0\rangle+\epsilon^{0}|\mathbb{P}| b(p)^{+}|0\rangle
$$

$$
=\left(-\sum_{i} \epsilon^{i} p_{i}+\epsilon^{0}|\mathbb{P}|\right) b(\mathbb{P})^{+}|0\rangle
$$

$$
\epsilon \cdot P_{\mathbb{P}} ; P_{\mathbb{P}}:=(|\mathbb{P}|, \mathbb{P})\left\{\begin{array}{l}
P_{\mathbb{P}}^{0}=|\mathbb{P}| \\
P_{\mathbb{P}}^{i}=P_{i}
\end{array}\right.
$$

$$
\begin{aligned}
\therefore H^{i}\left(\mathcal{X}_{1}, Q_{B}\right) & =0 \text { if } i \neq 0 \\
H^{0}\left(\mathscr{X}_{1}, Q_{\mathbb{B}}\right) & =\frac{\left\{\epsilon^{\mu}(\mathbb{P}) a_{\mu}(\mathbb{P})^{+}|0\rangle \mid \epsilon(\mathbb{P}) \cdot \mathbb{P}^{\mathbb{P}}=0\right\}_{\mathbb{P}}}{\epsilon(\mathbb{P}) \sim \epsilon(\mathbb{P})+\text { const } \mathbb{P}_{\mathbb{P}}} \\
& \left.\cong\left\{\sum_{i} \epsilon^{i}(\mathbb{P}) a_{i}(\mathbb{P})^{+} \mid 0\right) \mid \sum_{i} \epsilon^{i}(\mathbb{P}) P_{i}=0\right\}_{\mathbb{P}}
\end{aligned}
$$

\uparrow
a particle with a transversal polarization. ($d-2$ choices for each \mathbb{P})

Let us put
$\mathcal{H}_{\text {trans }}:=\left\{\right.$ product of transversal $a^{+\prime}$ s on $\left.|0\rangle\right\}$
Then
Theorem

$$
H^{i}\left(\mathscr{H}, \partial_{B}\right) \cong\left\{\begin{array}{cc}
X_{\text {trans u }} & i=0 \\
0 & i \neq 0
\end{array}\right.
$$

Therefore, $\mathcal{X}_{\text {phys }} \cong \mathcal{L}_{\text {strauss }}$.
Remarks
(i) A positive definite inner product is induced on phys.
(ii) Quantization based on Hamiltonian formulation, with Gauss law $\nabla \cdot \mathbb{E}=0$ and Coulonb gauge $\nabla \cdot A=0$, directly finds $\mathscr{H}_{\text {trausu }}$ as the space of states.

