Computation of the one-loop integrals

We would like to compute regularized versions of

$$
\begin{aligned}
& I=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{h^{2}+m^{2}} \\
& V=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}+m^{2}} \frac{1}{(k-p)^{2}+m^{2}}
\end{aligned}
$$

that appear in and for
(1) momentum cut-ott

$$
\begin{aligned}
\frac{1}{k^{2}+m^{2}} & =\int_{0}^{\infty} d \alpha e^{-\alpha\left(h^{2}+m^{2}\right)} \\
& \rightarrow \int_{1 / \Lambda^{2}}^{\infty} d \alpha e^{-\alpha\left(h^{2}+m^{2}\right)}=\frac{e^{-\frac{h^{2}+m^{2}}{1^{2}}}}{h^{2}+m^{2}}
\end{aligned}
$$

and
(3) dimensional regularization: $4 \rightarrow d=4-\epsilon$.

Exercise: Do the computation.
(Option 1) Explain the steps marked? in the following.
(Option 2) Do it in your own way.

$$
\begin{aligned}
I_{1(1)} & =\int_{(2 \pi)^{4}} \frac{d^{4} k}{\left(y_{1 / n^{2}}^{\infty} d \alpha e^{-\alpha\left(h^{2}+m^{2}\right)}\right.} \\
& \vdots \\
& =\int_{1 / \Lambda^{2}}^{\infty} d \alpha \frac{e^{-\alpha m^{2}}}{(4 \pi)^{2} \alpha^{2}} \\
& \vdots \frac{1}{(4 \pi)^{2}}\left[n^{2}-m^{2}\left(\log \left(\frac{\Lambda^{2}}{m^{2}}\right)+1-\gamma\right)+m^{2} O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
I_{(3)} & =\mu_{P R}^{4-d} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}+m^{2}}=\mu_{D R}^{4-d} \frac{V_{d}\left(S^{d-1}\right)}{2(2 \pi)^{d}} \int_{0}^{\infty}\left(h^{2}\right)^{d / 2-1} d k^{2} \frac{1}{k^{2}+m^{2}} \\
& \doteq \frac{\mu_{D R}^{4-d} m^{d-2}}{(4 \pi)^{d / 2} \Gamma(d / 2)} B\left(\frac{d}{2}, 1-\frac{d}{2}\right)=P\left(\frac{1}{2}\right) P\left(1-\frac{d}{2}\right) \\
& =m^{2}\left(\frac{\mu_{D R}}{m}\right)^{4-d} \frac{1}{(4 \pi)^{d / 2}} \Gamma\left(1-\frac{d}{2}\right) \\
d=4-\epsilon & \searrow \\
& \doteq-\frac{m^{2}}{(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)+1-\gamma+O(\epsilon)\right]
\end{aligned}
$$

$$
\begin{aligned}
& V_{(1)}=\int \frac{d^{4} k}{(2 \pi)^{4}} \int_{1 / \Lambda^{2}}^{\infty} \int_{1 / \Lambda^{2}}^{\infty} d \alpha d \beta e^{-\alpha\left(k^{2}+m^{2}\right)-\beta\left((k-p)^{2}+m^{2}\right)} \\
& \stackrel{1}{=} \frac{1}{(4 \pi)^{2}} \int_{1 / \Lambda^{2}}^{\infty} \int_{1 / \Lambda^{2}}^{\infty} \frac{d \alpha d \beta}{(\alpha+\beta)^{2}} e^{-\frac{\alpha \beta}{\alpha+\beta} p^{2}-(\alpha+\beta) m^{2}} \\
& \text { insert } 1=\int_{2 / \lambda^{2}}^{\infty} d \lambda \delta(\lambda-\alpha-\beta) \text { \& substitute } \alpha \rightarrow \lambda x, \beta \rightarrow \lambda y \\
& =\frac{1}{(4 \pi)^{2}} \int_{2 / \Lambda^{2}}^{\infty} d \lambda \int_{1 / \lambda \Lambda^{2}}^{\infty} \int_{1 / \lambda \Lambda^{2}}^{\infty} \frac{d x d y}{(x+y)^{2}} e^{-\lambda\left(\frac{x y}{2+y} p^{2}+(x+y) m^{2}\right)} \underbrace{\delta(\lambda(1-x-y))}_{\frac{1}{\lambda} \delta(1-x-y)} \\
& =\frac{1}{(4 \pi)^{2}} \int_{2 / \Lambda^{2}}^{\infty} \frac{d \lambda}{\lambda} \int_{1 / \lambda n^{2}}^{1-1 / \lambda n^{2}} d x e^{-\lambda\left(x(1-\lambda) p^{2}+m^{2}\right)} \\
& =X-2 Y \text {. } \\
& {\underset{y}{x}}_{\int_{0}^{1}-2 \int_{Y}^{1 / \lambda \lambda^{2}}}^{\longrightarrow} \\
& X=\frac{1}{(4 \pi)^{2}} \int_{2 / \Lambda^{2}}^{\infty} \frac{d \lambda}{\lambda} \int_{0}^{1} d x e^{-\lambda\left(x(1-x) \rho^{2}+m^{2}\right)} \\
& \stackrel{\square}{\doteq} \frac{1}{(4 \pi)^{2}}\left[\log \left(\frac{\Lambda^{2}}{2 m^{2}}\right)-r-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p^{2}}{m^{2}}\right)+O\left(\frac{p^{2}}{\Lambda^{2}}, \frac{m^{2}}{\Lambda^{2}}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& Y=\frac{1}{(4 \pi)^{2}} \int_{2 / \Lambda^{2}}^{\infty} \frac{d \lambda}{\lambda} \int_{0}^{1 / \lambda \lambda^{2}} d x e^{-\lambda\left(x(1-x) p^{2}+m^{2}\right)} \\
& {\left[0 \leqslant \lambda x \leqslant \frac{1}{\Lambda^{2}} \Rightarrow e^{-\lambda\left(x(1-x) p^{2}+m^{2}\right)}=e^{-\lambda m^{2}}\left(1+0\left(\frac{p^{2}}{\Lambda^{2}}\right)\right)\right.} \\
& =\frac{1}{(4 \pi)^{2}} \int_{2 / \lambda^{2}}^{\infty} \frac{d \lambda}{\lambda} \frac{1}{\lambda \Lambda^{2}} e^{-\lambda m^{2}}\left(1+O\left(\frac{p^{2}}{\Lambda^{2}}\right)\right) \\
& =\frac{1}{(4 \pi)^{2}}\left(\frac{1}{2}+O\left(\frac{m^{2}}{\Lambda^{2}}, \frac{p^{2}}{\Lambda^{2}}\right)\right) \text {. } \\
& \therefore V_{(D)}=X \sim 2 Y \\
& =\frac{1}{(4 \pi)^{2}}\left(\log \left(\frac{n^{2}}{2 m^{2}}\right)-\gamma-1-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{p^{2}}{m^{2}}\right)+O\left(\frac{p^{2}}{\Lambda^{2}}, \frac{m^{2}}{\Lambda^{2}}\right)\right] . \\
& V(3)=M_{D R}^{4-1} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+m^{2}} \frac{1}{(k-p)^{2}+m^{2}} \\
& \stackrel{!}{\bullet} u_{D R}^{4-d} \int \frac{d^{d} k^{\prime}}{(2 \pi)^{d}} \int_{0}^{1} \frac{d x}{(k^{2}+\underbrace{x(1-x) p^{2}+m^{2}}_{=i \Delta})^{2}} \\
& \stackrel{\square}{=} \frac{M_{P R}^{4-d}}{(4 \pi)^{d / 2} \Gamma(d / 2)} \int_{0}^{1} d x \Delta^{\frac{d}{2}-2} B\left(\frac{d}{2}, 2-\frac{d}{2}\right)=\Gamma\left(\frac{d}{2}\right) \Gamma\left(2-\frac{d}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{M_{P R}^{4-d}}{(4 \pi)^{d / 2}} \Gamma\left(2-\frac{d}{2}\right) \int_{0}^{1} d x \Delta^{\frac{d}{2}-2} \\
d=4-\epsilon & \doteq \frac{1}{(4 \pi)^{2}}\left[\frac{2}{\epsilon}-\gamma-\int_{0}^{1} d x \log \left(\frac{\Delta}{4 \pi \mu_{D R}^{2}}\right)+O(\epsilon)\right] \\
& =\frac{1}{(4 \pi)^{2}}\left[\frac{2}{\epsilon}+\log \left(\frac{4 \pi \mu_{D R}^{2}}{m^{2}}\right)-\gamma-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{\rho^{2}}{m^{2}}\right)+O(\epsilon)\right]
\end{aligned}
$$

You may use

$$
\begin{aligned}
& \int_{\epsilon}^{\infty} \frac{d t}{t} e^{-t}=-\log \epsilon-r+O(\epsilon) \\
& B(p, q)=\int_{0}^{\infty} \frac{y^{p-1} d y}{(1+y)^{p+q}}=\frac{P(p) \Gamma(q)}{P(p+q)} \\
& P(n+1)=n!\text { for } n=0,1,2, \cdots \\
& \Gamma(z)=\frac{1}{z}-r+O(z) \text { as } z \rightarrow 0 \\
& \Gamma(-1+z)=-\frac{1}{z}+r-1+O(z) \text { as } z \rightarrow 0 \\
& \frac{1}{A B}=\int_{0}^{1} \frac{d x}{(x A+(1-x) B)^{2}}
\end{aligned}
$$

Determination of the one-loop counter terms
We have determined the one loop counter terms of $4 d \phi^{\dagger}$ theory, $a_{1}(\Lambda), b_{1}(\Omega), C_{1}(\Omega)$ for momentum cutoff $a_{1}(\epsilon), b_{1}(\epsilon), c_{1}(\epsilon)$ for dimensional regularization
so that on-shell renormalization condition is satisfied.

Do the same for intermediate renormalization $\left\{\begin{array}{l}\left.\Gamma(-p, p)\right|_{p^{2}=0}=m^{2} \\ \left.\frac{d}{d p^{2}} P(-p, p)\right|_{p^{2}=0}=1 \\ \left.\Gamma\left(p_{1},-, p_{4}\right)\right|_{p_{i} p_{j}=0}=\lambda\end{array}\right.$
and

$$
\text { "another } R_{1} C_{1} \text { " }\left\{\begin{array}{l}
\left.\Gamma(-p, p)\right|_{p^{2}=\mu^{2}}=\mu^{2}+m^{2} \\
\left.\frac{d}{d p^{2}} \Gamma(-p, p)\right|_{p^{2}=\mu^{2}}=1 \\
\left.\Gamma\left(p_{1}, \cdots, p_{4}\right)\right|_{p_{i} \cdot p_{j}}= \begin{cases}\mu^{2} & i=j \\
-\mu^{2} / 3 & i=j\end{cases}
\end{array}\right.
$$

