Examples
Computation of $Z\left(t_{f}, q_{f} ; t_{i}, q_{1}\right)$ \& $Z\left(S_{T}^{1}\right)$
in examples: (1) free particle in a line
(2) harmonic oscillator
(3) free particle in a circle
(3)" with a theta term
(1) Free particle in a line

$$
L=\frac{m}{2} \dot{q}^{2}, \quad \hat{H}=\frac{1}{2 m} \tilde{p}^{2}
$$

Spectrum: $\quad E_{p}=\frac{1}{2 m} p^{2}, \quad \Psi_{p}(q)=\frac{e^{i p q / \hbar}}{\sqrt{2 \pi \hbar}}$
Using operator formalism we have

$$
\begin{aligned}
Z\left(t_{f}, q_{f} ; t_{i}, q_{i}\right) & =\left\langle q_{f}\right| e^{-i \frac{t_{f}-T_{i}}{\hbar} \hat{H}}\left|q_{i}\right\rangle \\
& =\sqrt{\frac{m}{2 \pi \hbar i\left(t_{f}-t_{i}\right)}} e^{\frac{i m\left(q_{f}-q_{i}\right)^{2}}{2 \hbar\left(t_{f}-t_{i}\right)}}
\end{aligned}
$$

Let us try to reproduce this by path-integral:

A configuration $q(t)$ see $q\left(t_{l}\right)=q_{1}, q\left(t_{f}\right)=q_{f}$ can be written as

$$
q(t)=q_{i}+\left(q_{f}-q_{i}\right) \frac{t-t_{i}}{t-t_{f}}+\sum_{n=1}^{\infty} q_{n} \sqrt{\frac{2}{t_{f}-\tau_{i}}} \sin \left(\frac{\pi n}{t_{f}-\tau_{i}}\left(t-\tau_{i}\right)\right)
$$

A motivation of " $\sqrt{\frac{2}{t_{f}-t_{i}}}$ ":
$\varphi_{n}(t)=\sqrt{\frac{2}{t_{f}-t_{i}}} \sin \left(\frac{\pi n}{t_{f}-t_{i}}\left(t-t_{i}\right)\right)$ are onshonormd
with respect to the inner product $\left(\varphi, \varphi^{\prime}\right)=\int_{c_{i}}^{t_{t}} d t \varphi(t)^{*} \varphi^{\prime}(t)$:

$$
\left(\varphi_{n}, \varphi_{m}\right)=\delta_{n, m}
$$

For this

$$
S[q]=\frac{m\left(q_{f}-q_{i}\right)^{2}}{2\left(t_{f}-t_{i}\right)}+\sum_{n=1}^{\infty} \frac{m}{2}\left(\frac{\pi n}{\tau_{1}-t_{i}}\right)^{2} q_{n}^{2}
$$

Let us "define" the path-meyral measure by
$D q=C \prod_{n=1}^{\infty} d q_{n} \quad$ for some constant C.
Then,

$$
\begin{aligned}
& z\left(t_{f}, q_{f} ; t_{i}, q_{i}\right)=\int D q e^{i \hbar S[q]} \\
& =e^{\frac{i}{\hbar} \frac{m\left(q_{f}-q_{i}\right)^{2}}{2\left(t_{f}-\tau_{i}\right)}} \cdot C \prod_{n=1}^{\infty} \sqrt{\frac{L \pi_{i} \hbar\left(t_{f}-t_{i}\right)^{2}}{m\left(\pi_{n}\right)^{2}}}
\end{aligned}
$$

The product $\prod_{n=1}^{\infty} \sqrt{\frac{2 \pi i \hbar\left(t_{t}-t_{i}\right)^{2}}{m\left(\pi_{n}\right)^{2}}}$ is divergent (or zero), but let us "tune" the constant C so that

Several ways:
(I) Choose C_{N} so that

$$
\lim _{N \rightarrow \infty} C_{N} \prod_{n=1}^{N} \sqrt{\frac{2 \pi i \hbar\left(t_{f}-t_{i}\right)^{2}}{m(\pi n)^{2}}} \text { is finite. }
$$

(II) Zeta function regularization

$$
\prod_{n=1}^{\infty} \frac{x}{n}=(2 \pi x)^{-\frac{1}{2}}
$$

Zeta function regularization

$$
\zeta(s):=\sum_{n=1}^{\infty} n^{-s} \quad \text { Riemann's zeta function }
$$

- absolutely convergent if $\operatorname{Re}(s)>1$
- analytic continuation \& regular at $S=0$.

$$
\begin{aligned}
& S(S)=\sum_{n=1}^{\infty} e^{-s \log n} \\
& \zeta^{\prime}(S)=\sum_{n=1}^{\infty}(-\log n) e^{-S \log n}
\end{aligned}
$$

known: $\zeta(0)=-\frac{1}{2}, \quad \zeta(0)=-\frac{1}{2} \log 2 \pi$

$$
\begin{aligned}
\prod_{n=1}^{\infty} \frac{x}{n} & =\exp \left(\sum_{n=1}^{\infty} \log \left(\frac{x}{n}\right)\right)=\exp \left(\sum_{n=1}^{\infty}(\log x-\log n)\right) \\
& =\exp \left(\zeta(0) \log x+\zeta^{\prime}(0)\right) \\
& =\exp \left(-\frac{1}{2} \log x-\frac{1}{2} \log 2 \pi\right)=(2 \pi x)^{-\frac{1}{2}}
\end{aligned}
$$

Back to path-integral.
Let us use Zeta function regularization $\prod_{n=1}^{\infty} \frac{x}{n}=(2 \pi x)^{-\frac{1}{2}}$
Let us define
$D q=\prod_{n=1}^{\infty} C d q_{n} \quad$ for some constant C.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{array}{l}
Z\left(t_{f}, q_{f}: t_{i}, q_{i}\right)=e^{\frac{i}{\hbar} \frac{m\left(q_{f}-q_{i}\right)^{2}}{2\left(t_{f}-\tau_{i}\right)}} \cdot \prod_{n=1}^{\infty} c \sqrt{\frac{2 \pi i \hbar\left(t_{f}-t_{i}\right)^{2}}{m\left(\pi_{n}\right)^{2}}} \\
=e^{\frac{1}{\hbar} \frac{m\left(q_{f}-q_{i}\right)^{2}}{2\left(t_{f}-t_{i}\right)}}\left(2 \pi c \sqrt{\frac{2 \pi i \hbar\left(t_{f}-t_{i}\right)^{2}}{m \pi^{2}}}\right)^{-\frac{1}{2}} \\
\\
=e^{\frac{1}{\hbar} \frac{m\left(q_{f}-q_{i}\right)^{2}}{2\left(t_{f}-t_{i}\right)}}\left(\frac{m}{8 \pi i c^{2} \hbar\left(t_{f}-t_{i}\right)^{2}}\right)^{\frac{1}{4}}
\end{array}
\end{aligned}
$$

If we choose $C^{2}=i \pi \hbar / 2 m$

$$
=e^{\frac{i}{\hbar} \frac{m\left(q_{f}-q_{i}\right)^{2}}{2\left(t_{f}-t_{i}\right)}} \sqrt{\frac{m}{2 \pi \hbar i\left(t_{f}-\tau_{i}\right)}}
$$

match with the operutor-result.

More about the definition of $\theta q=C \prod_{n=1}^{\infty} d q_{n}$

For any way to define " $C \prod_{n=1}^{\infty} \sqrt{\frac{2 \pi i \hbar\left(t_{t}-t_{i}\right)^{2}}{m\left(\pi_{n}\right)^{2}}}$ "
it is a function of $t_{f}-t_{i}$ (and $\hbar \& m$).
Let us denote it by $F\left(t_{f}-t_{i}\right)$ so that

$$
Z\left(t_{f}, q_{f} ; t_{i} q_{i}\right)=F\left(t_{t}-t_{i}\right) e^{\frac{i m\left(q_{f}-q_{i}\right)^{2}}{2 \hbar\left(t_{f}-t_{i}\right)}}
$$

Let us try to fix the function $F(\tau)$ by the properties $Z\left(t_{f}, q_{f} ; t_{1}, q_{i}\right)$ is supposed to have:
(a) Unitarity of time evolution

$$
\Psi(q) \longmapsto \int d q^{\prime} z\left(T, q ; 0, q^{\prime}\right) \bar{\psi}\left(q^{\prime}\right)
$$

(b) Composition law:

$$
\int d q_{2} z\left(t_{3}, q_{3} ; t_{2}, q_{2}\right) z\left(t_{2}, q_{2} ; t_{1}, q_{1}\right)=z\left(t_{3}, q_{3} ; t_{2}, q_{2}\right) .
$$

Exercise: Show that
(a) $\Leftrightarrow|F(T)|^{2}=\frac{m}{2 \pi \hbar T}$.
(b) $\Leftrightarrow F\left(t_{3}-t_{2}\right) F\left(t_{2}-t_{1}\right)=\sqrt{\frac{m\left(t_{3}-t_{1}\right)}{2 \pi i \hbar\left(t_{3}-t_{2}\right)\left(t_{2}-t_{1}\right)}} F\left(t_{3}-t_{1}\right)$.

These regive that

$$
F(\tau)=\sqrt{\frac{m}{2 \pi i \hbar T}} e^{i A T}
$$

for some real constant A that may depend on $m \& t$.
This A can be absorbed by redefining Lagrangian

$$
L(q, \dot{q}) \rightarrow L(q, \dot{q})-\hbar A
$$

Thus, modulo a possible shift of Lagrangian by a constant, we may set

$$
F(T)=\sqrt{\frac{m}{2 \pi i \hbar T}} .
$$

Partition function.

$$
\begin{aligned}
& \operatorname{Tr}(e^{\left.-\frac{T}{\hbar} \hat{H}\right)=} \int_{\sqrt{\frac{m}{2 \pi \hbar T}} e^{-\frac{1}{\hbar} \frac{m(q-q)^{2}}{2} T} \underbrace{\langle q| e^{-\frac{T}{\hbar} \hat{H}}|q\rangle}}^{\quad=\int d q \sqrt{\frac{m}{2 \pi \hbar T}}=\text { divergent! }}
\end{aligned}
$$

Let us "regularize" this by pretending that the particle is in a segment of large but five length L.

Then $\operatorname{Tr}\left(e^{-\frac{T}{\hbar} \tilde{H}}\right)=L \cdot \sqrt{\frac{m}{2 \pi \hbar T}}$.
Let us try to reproduce this by path-integral:

$$
\begin{aligned}
Z\left(S_{T}^{\prime}\right)= & \int Q e^{-\frac{1}{\hbar}} \int_{S_{T}^{\prime}} d \tau \frac{m}{2}\left(\frac{d q}{d \tau}\right)^{2} \\
& q(\tau) \text { periodic in } \tau \rightarrow \tau+T
\end{aligned}
$$

A periodic configuration $q(\tau)=\{(\tau+\tau)$ can de written as

$$
q(\tau)=\frac{q_{0}}{\sqrt{T}}+\sum_{n=1}^{\infty}\left(q_{n}^{c} \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} \tau\right)+q_{n}^{5} \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n}{\tau} \tau\right)\right)
$$

Again, the motivation for $\frac{1}{\sqrt{T}}$ io $\sqrt{\frac{L}{T}}$ is so that

$$
\varphi_{0}(\tau)=\frac{1}{\sqrt{T}}, \quad \varphi_{n}^{c}(\tau)=\sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} \tau\right), \varphi_{n}^{s}(\tau)=\sqrt{\frac{2}{T}} \sin \left(\frac{\pi n}{\tau} \tau\right)
$$

are orthonormal w.r.t. $\left(\rho, \varphi^{\prime}\right)=\int_{0}^{T} t \tau \varphi(\tau)^{*} \varphi^{\prime}(\tau)$.

$$
S_{E}[q]=\frac{m}{2} \sum_{n=1}^{\infty}\left(\frac{2 \pi n}{T}\right)^{2}\left(\left(q_{n}^{c}\right)^{2}+\left(q_{n}^{s}\right)^{2}\right)
$$

$D q=C d q_{0} \cdot \prod_{n=1}^{\infty} d q_{n}^{c} d q_{n}^{s} \quad$ for some constant C
Note: as q takes values in large but fuite interval

$$
\begin{aligned}
& \quad[0, L], 0 \leq q_{0} \leq L \sqrt{T} \\
& Z\left(S_{T}^{\prime}\right)=\int C d q_{0} \cdot \prod_{n=1}^{\infty} d q_{n}^{c} d q_{n}^{s} e^{-\frac{m}{2 \hbar} \sum_{n=1}^{\infty}\left(\frac{2 \pi n}{T}\right)^{2}\left(\left(q_{n}^{c}\right)^{2}+\left(q_{n}^{s}\right)^{2}\right)} \\
& =C \cdot L \sqrt{T} \cdot \prod_{n=1}^{\infty} \frac{2 \pi}{m\left(\frac{2 \pi n}{T}\right)^{2} / \hbar}
\end{aligned}
$$

$$
Z\left(S_{T}^{\prime}\right)=C \cdot L \sqrt{T} \cdot \prod_{n=1}^{\infty} \frac{\hbar T^{2}}{2 \pi m n^{2}}
$$

Use the zeta-function regularization:

$$
\prod_{n=1}^{\infty} \frac{x}{n}=(2 \pi x)^{-\frac{1}{2}} \text { or } \prod_{n=1}^{\infty} \frac{x^{2}}{n^{2}}=(2 \pi x)^{-1}
$$

Define

$$
\begin{aligned}
& \theta q=\ell \varepsilon_{0} \cdot \prod_{n=1}^{\infty} c d_{n}^{c} d \xi_{n}^{s} \quad \text { for some } c \\
& \begin{aligned}
Z\left(S_{T}^{\prime}\right) & =L \sqrt{T} \cdot \prod_{n=1}^{\infty} c \frac{\hbar T^{2}}{2 \pi m n^{2}} \\
& \triangleq L \sqrt{T}\left(2 \pi \sqrt{c \cdot \frac{\hbar T^{2}}{2 \pi m}}\right)^{-1} \\
& =L \sqrt{\frac{m}{c \cdot 2 \pi \hbar T}}
\end{aligned}
\end{aligned}
$$

match with the earlier result with $c=1$.
(2) Harmonic oscillator

$$
L=\frac{m}{2} \dot{q}^{2}-\frac{m \omega^{2}}{2} q^{2}, \quad \hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2}}{2} \hat{q}^{2}
$$

Spearum $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad n=0,1,2, \ldots$

$$
\Psi_{n}(q)=\text { Hermite polynomial. }
$$

Transition amplitude
A configuration $q(t)$ s.t, $q\left(t_{i}\right)=q_{i}, q\left(\tau_{f}\right)=q_{f}$ can be written as

$$
q(t)=q_{c l}(t)+\tilde{q}(t)
$$

where $q_{c e}$ is a solution of E.O.M. $\ddot{q}=-\omega^{2} q$

$$
s_{1} 1_{1} q_{c e}\left(t_{i}\right)=q_{i}, \quad q_{c l}\left(t_{f}\right)=\varepsilon_{f}
$$

$\left(\right.$ som: $\left.q_{c e}(t)=q_{i} \frac{\sin \omega\left(t-t_{f}\right)}{\sin \omega\left(t_{i}-t_{f}\right)}+q_{f} \frac{\sin \Delta\left(t-t_{i}\right)}{\sin \omega\left(t_{f}-\tau_{i}\right)}\right)$ and $\quad \tilde{q}(t)=\sum_{n=1}^{\infty} q_{n} \sqrt{\frac{2}{t_{r}-t_{i}}} \sin \left(\frac{\pi n}{t_{r}-t_{i}}\left(t-t_{i}\right)\right)$.

$$
S[q]=S\left[q_{c l}+\tilde{q}\right]=S\left[q_{c l}\right]+S[\tilde{q}]
$$

$Q: k h y ?$

$$
\begin{aligned}
& S\left[q_{c l}\right]=\frac{m \omega}{2 \sin \omega\left(t_{f}-t_{i}\right)}\left[\left(q_{f}^{2}+q_{i}^{2}\right) \cos \omega\left(t_{f}-t_{i}\right)-2 q_{f} q_{i}\right] \\
& S[\widetilde{q}]=\sum_{n=1}^{\infty}\left\{\frac{m}{2}\left(\frac{\pi n}{t_{r}-t_{i}}\right)^{2}-\frac{m \omega^{2}}{2}\right\} q_{n}^{2} \\
& z\left(t_{f}, q_{f} ; t_{i}, q_{i}\right)=\int \partial q e^{\frac{i}{\hbar} S[q]} \quad q\left(t_{f}\right)=q_{f}, q\left(t_{i}\right)=q_{i} \\
& =e^{\frac{i}{\hbar} S\left[q_{c x}\right]} \int D \tilde{q}, \underbrace{e^{\frac{i}{\hbar} S[\tilde{q}]}}_{\leftarrow} C \prod_{u=1}^{\infty} d q_{n} \\
& =e^{\frac{i}{\hbar} S\left[q_{c l}\right]} C \prod_{n=1}^{\infty} \sqrt{\frac{2 \pi i \hbar}{m\left(\frac{\pi n}{c_{t}-c_{i}}\right)^{2}-m \omega^{2}}} \\
& \underbrace{C \prod_{n=1}^{\infty} \sqrt{\frac{2 \pi i \hbar\left(t_{1}-\tau_{i}\right)}{m(\pi n)^{2}}}} \prod_{n=1}^{\infty} \sqrt{\left.\frac{1}{1-\left(\omega\left(t_{t}-\tau_{i}\right) / \pi n\right.}\right)^{2}}
\end{aligned}
$$

same as in the tree particle \mathbb{R}

- Using the definition of $C \prod_{n=1}^{\infty} d q_{n}$ determined in the free partio in \mathbb{R},

$$
C \prod_{n=1}^{\infty} \sqrt{\frac{2 \pi i \hbar\left(t_{r}-\tau_{i}\right)}{m(\pi n)^{2}}}=\sqrt{\frac{m}{L \pi_{i} \hbar i\left(f_{f}-t_{i}\right)}}
$$

- For the second ∞-product, use

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1-\left(\frac{x}{\pi n}\right)^{2}\right)=\left\{\begin{array}{l}
1 \text { at } x=0 \\
\text { simple zen at } x=\pi n \quad\left(n \in \mathbb{Z}^{x}\right)
\end{array}\right. \\
& =\frac{\sin x}{x} \cdot \\
& \therefore \prod_{n=1}^{\infty} \sqrt{\left.\frac{1}{1-\left(\omega\left(t_{f}-\tau_{i}\right) / \pi n\right.}\right)^{2}}=\sqrt{\frac{\omega\left(t_{f}-t_{i}\right)}{\sin \omega\left(t_{f}-t_{i}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & z\left(t_{\left.f_{1} q_{f} ; t_{i}, q_{i}\right)}\right. \\
& =e^{\frac{i}{\hbar} S\left(q_{c l}\right) \sqrt{\frac{m}{2 \pi \hbar i\left(t_{f}-t_{i}\right)}} \cdot \sqrt{\frac{\omega\left(t_{f}-t_{i}\right)}{\sin \omega\left(t_{f}-\tau_{i}\right)}}} \\
& =\sqrt{\frac{m \omega}{2 \pi \hbar i \sin \omega\left(t_{f}-\tau_{i}\right)}} e^{\frac{i}{\hbar} S\left[q_{e l}\right]} \\
& =\sqrt{\frac{m \omega}{2 \pi \hbar i \sin \omega\left(t_{f}-\tau_{i}\right)} e^{\frac{i m \omega}{2 \hbar \sin \omega\left(t_{f}-t_{i}\right)}}\left[\left(q_{f}^{2}+q_{i}^{2}\right) \cos \omega\left(t_{f}-t_{i}\right)-2 q_{f} q_{i}\right]}
\end{aligned}
$$

Partition function
... Three ways (i) In operator formalism
(ii) Direct Path-integrel
(iii) Use $\operatorname{Tr} e^{-\frac{T}{\hbar} \hat{H}}=\int d q\left(q\left|e^{-\frac{T}{\hbar} \hat{H}}\right| r\right)$
(i) In operator formalism.

$$
\begin{gathered}
\operatorname{Tr}_{r_{l}} e^{-\frac{T}{\hbar} \hat{H}}=\sum_{n=0}^{\infty} e^{-\frac{T}{\hbar} \hbar \omega\left(n+\frac{1}{2}\right)}=e^{-\omega T / 2} \sum_{n=0}^{\infty} e^{-\omega T n} \\
=e^{-\omega T / 2} \cdot \frac{1}{1-e^{-\omega T}}=\frac{1}{e^{\omega T / 2}-e^{-\omega T / 2}}
\end{gathered}
$$

(ii) Direct path-myegrel.

A periodic configuration $q(\tau+\tau)=q(\tau)$ can be written as

$$
q(\tau)=\frac{q_{0}}{\sqrt{T}}+\sum_{n=1}^{\infty}\left(q_{n}^{c} \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} \tau\right)+q_{n}^{s} \sqrt{\frac{2}{T}} \sin \left(\frac{1 \pi n}{T} \tau\right)\right) .
$$

For this,

$$
S_{E}[q]=\frac{m \omega^{2}}{2} q_{0}^{2}+\sum_{n=1}^{\infty}\left(\frac{m}{2}\left(\frac{2 \pi n}{T}\right)^{2}+\frac{m \omega^{2}}{2}\right)\left(q_{n}^{c^{2}}+q_{n}^{s^{2}}\right) .
$$

$D q=d q_{0} \cdot \prod_{n=1}^{\infty} d q_{n}^{c} d q_{n}^{s}$ a use ζ-function regularization.
(We know $D q=d q_{0} \cdot \prod_{n=1}^{\infty} c d q_{n}^{c} d q_{n}^{s} \quad$ with $c=1$ works!)

$$
\begin{aligned}
& Z\left(S_{\tau}^{\prime}\right)=\int D q e^{-\frac{1}{\hbar} S_{E}[q]} \\
& =\int d q_{0} \prod_{n=1}^{\infty} d q_{n}^{c} d q_{n}^{s} e^{-\frac{1}{\hbar}\left\{\frac{m v^{2}}{2} q_{0}^{2}+\sum_{n=1}^{\infty} \frac{m}{2}\left(\left(\frac{L \pi n}{T}\right)^{2}+\omega^{2}\right)\left(q_{n}^{c^{2}+q_{n}^{2}}\right)\right\}} \\
& =\int d q_{0} e^{-\frac{m \omega^{2}}{2 \hbar} q_{0}^{2}} \prod_{n=1}^{\infty} \int d q_{n}^{c} d q_{n}^{s} e^{-\frac{m}{2 \hbar}\left(\left(\frac{2 \pi n}{T}\right)^{2}+\omega^{2}\right)\left(q_{n}^{c^{2}}+q_{n}^{s^{2}}\right)} \\
& =\sqrt{\frac{2 \pi}{m \omega^{2} / \hbar}} \cdot \underbrace{\infty}_{n=1} \frac{2 \pi}{m\left(\left(\frac{2 \pi n}{T}\right)^{2}+\omega^{2}\right) / \hbar} \\
& \underbrace{\prod_{n=1}^{\infty} \frac{1}{1+\left(\frac{\omega \tau}{2 \pi n}\right)^{2}}}_{\text {fin res. }_{n=1} \frac{\hbar \tau^{2}}{2 \pi m n^{2}}} \underbrace{\infty}_{\|} \\
& \left.\sqrt{\frac{m}{2 \pi \hbar T^{2}}} \prod_{n=1}^{\infty} \frac{1}{1-\left(\frac{w t}{2 \pi n}\right)^{2}}\right|_{t \rightarrow-i T}
\end{aligned}
$$

Use $\prod_{n=1}^{\infty}\left(1-\left(\frac{x}{\pi n}\right)^{2}\right)=\frac{\sin x}{a}$ again:

$$
\prod_{n=1}^{\infty}\left(1-\left(\frac{\omega t}{2 \pi n}\right)^{2}\right)=\frac{\sin (\omega t / 2)}{\omega t / 2} \xrightarrow{t \rightarrow-i T} \frac{\sinh (\omega T / 2)}{\omega T / 2}
$$

$$
\begin{aligned}
\therefore Z\left(S_{T}^{\prime}\right) & =\sqrt{\frac{2 \pi \hbar}{m \omega^{2}}} \cdot \sqrt{\frac{m}{2 \pi \hbar T^{2}}} \cdot \frac{\omega T / 2}{\sinh ((\omega T / 2)} \\
& =\frac{1}{2 \sinh (\omega T / 2)}=\frac{1}{e^{\omega T / 2}-e^{-\omega T / 2}}
\end{aligned}
$$

(iii) Use the result for $z\left(f_{t}, q_{f} ; t_{i}, q_{i}\right)$ in

$$
\begin{aligned}
& \operatorname{Tr}_{\left.\partial e^{-\frac{T}{\hbar} \hat{H}}\right)=\int d q \underbrace{\langle q| e^{-\frac{T}{\hbar} \hat{H}}|q\rangle}}^{\left.z(t, q ; 0, q)\right|_{t \rightarrow-i T}} \\
& Z(t, q ; 0, q) \\
& =\sqrt{\frac{m \omega}{2 \pi \hbar i \sin \omega t}} e^{\frac{i m \omega}{2 \hbar \sin \omega t}\left[2 q^{2} \cos \omega t-2 q^{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } t \rightarrow-i T, \quad \sin \omega t \rightarrow-i \sinh \omega T \\
& \cos \omega t \rightarrow \cosh \omega T \\
& 2 \cosh \omega T-2=e^{\omega T}+e^{-\omega T}-2=\left(e^{\omega T / 2}-e^{-\omega T / 2}\right)^{2} \\
& \begin{array}{l}
\therefore z(t, q: 0, q) \\
\\
\longrightarrow \sqrt{\frac{m \omega}{2 \pi \hbar \sinh \omega T}} e^{-\frac{m \omega}{2 \hbar \sinh \omega T}\left(e^{\omega T / 2}-e^{-\omega \pi / 2}\right)^{2} q^{2}}
\end{array} \\
& \left.\therefore \int d q z(t, q ; 0, q)\right|_{t \rightarrow-i T} \\
& =\int d q \sqrt{\frac{m \omega}{2 \pi \hbar \sinh \omega T}} e^{-\frac{m \omega}{2 \hbar \sinh \omega T}\left(e^{\omega \tau / 2}-e^{-\omega \tau / 2}\right)^{2} q^{2}} \\
& =\sqrt{\frac{m \omega}{2 \pi \hbar \sinh \omega T} \cdot \sqrt{\frac{2 \pi}{m \omega\left(e^{\omega T / 2}-e^{-\omega T / 2}\right)^{2} / \hbar \sinh \omega T}} \text { }} \\
& =\frac{1}{e^{\omega t / 2}-e^{-\omega T / 2}}
\end{aligned}
$$

The results of (i), (ii), (iii) all match. V
(3) Free particle in a circle $S_{2 \pi R}^{1}=\mathbb{R} / 2 \pi R \mathbb{Z}$.

$$
L=\frac{m}{2} \dot{q}^{2} \text { where } q \sim q+2 \pi R \text {. }
$$

The wave function must be periodic, $\Psi(q+2 \pi R) \stackrel{!}{=} \Psi(q)$.

$$
\begin{aligned}
& \|\Psi\|^{2}:=\int_{0}^{2 \pi r} d q /\left.\bar{\psi}(q)\right|^{2} . \\
& {[\hat{q}, \hat{p}]=i \hbar \leadsto \hat{p}=-i \hbar \frac{d}{d q}, \quad \hat{H}=\frac{1}{2 m} \hat{p}^{2} .} \\
& \hat{p}=p \text { on } e^{i p q / \hbar}
\end{aligned}
$$

\uparrow this needs to be $q \rightarrow q+2 \pi R$ periodic

$$
\Rightarrow e^{2 \pi i P R / \hbar} \stackrel{!}{=} 1 \text { ie. } P R / \hbar \quad!\mathbb{Z}
$$

$\therefore P=\frac{\hbar n}{R}(n \in \mathbb{Z})$. Momentum is quantized.

$$
\begin{aligned}
& \Psi_{n}(\varepsilon)=\frac{1}{\sqrt{2 \pi R}} e^{i n a / R} \quad\binom{\text { normalized so that }}{\left(\Psi_{n}, \Psi_{n}\right)=\delta_{n, m}} \\
& \hat{H} \Psi_{n}=E_{n} \Psi_{n}, \quad E_{n}=\frac{1}{2 m}\left(\frac{\hbar n}{R}\right)^{2} .
\end{aligned}
$$

trausition auplitude
(i) operator:

$$
\begin{aligned}
& z\left(t_{f} q_{f} ; t_{i}, q_{i}\right)=\left(q_{f}\left|e^{-\frac{i\left(t_{f}-t_{i}\right)}{\hbar} \hat{H}}\right| q_{i}\right\rangle \\
& =\sum_{n \in \mathbb{Z}} \underbrace{\left\langle q_{f} \mid n\right\rangle} e^{-i \frac{t_{f}-t_{i}}{\hbar} \frac{1}{2 m}\left(\frac{t_{n}}{R}\right)^{2}}\left\langle n \mid q_{i}\right\rangle \\
& \Psi_{n}\left(q_{f}\right)=\frac{1}{\sqrt{2 \pi R}} e^{i n q_{f} / R} \tilde{\epsilon}_{n}\left(q_{i}\right)^{k}=\frac{1}{\sqrt{2 \pi R}} e^{-i n \varepsilon_{i} / R} \\
& =\frac{1}{2 \pi R} \sum_{n \in \mathbb{Z}} e^{-i \frac{t_{f}-t_{i}}{2 m} \hbar\left(\frac{n}{R}\right)^{2}+i \frac{n\left(q_{f}-q_{i}\right)}{R}}
\end{aligned}
$$

(ii) path-integral:
$q(t)$ s.t. $q\left(t_{i}\right) \sim q_{i}, q\left(t_{f}\right) \sim q_{f}$ can be written as

$$
q(t)=q_{i}+\left(q_{f}-q_{i}\right) \frac{t-t_{i}}{t_{f}-t_{i}}+2 \pi R w \frac{t-t_{i}}{t_{f}-t_{i}}+\sum_{n=1}^{\infty} \sqrt{\frac{2}{t_{-}-t_{i}}} q_{n} \sin \left(\pi n \frac{t-t_{i}}{t_{f}-t_{i}}\right)
$$

whare $w \in \mathbb{Z}$ (winding $\#$)
For this,

$$
S[q]=\left(t_{f}-t_{i}\right) \frac{m}{2}\left(\frac{\varepsilon_{f}-q_{i}+2 \pi R w}{t_{r}-t_{i}}\right)^{2}+\sum_{n=1}^{\infty} \frac{m}{2}\left(\frac{\pi n}{t_{f}-t_{i}}\right)^{2} q_{n}^{2} .
$$

$$
\begin{aligned}
\int D q & =\sum_{w \in \mathbb{Z}} \int C \prod_{n=1}^{\infty} d q_{n} \\
Z\left(t_{f} q_{f} ; t_{1} q_{i}\right) & =\sum_{w \in \mathbb{Z}} e^{\frac{i}{\hbar} \frac{m\left(q_{f}-q_{i}+2 \pi R \omega\right)^{2}}{2\left(t_{f}-t_{i}\right)}} \cdot C \prod_{n=1}^{\infty} \int d q_{n} e^{\frac{i}{\hbar} \frac{m}{2}\left(\frac{\pi n}{t_{f}-t_{i}}\right)^{2} q_{n}^{2}}
\end{aligned}
$$

same as in free particle in \mathbb{R}.
Use the same definition $\rightarrow \|$

$$
\begin{aligned}
& =\sqrt{\frac{m}{2 \pi \hbar i\left(t_{f}-t_{i}\right)}} \\
& =\sqrt{2 \pi \hbar i\left(t_{f}-t_{i}\right)} \sum_{w \in \mathbb{Z}} e^{\frac{i}{\hbar} \frac{m\left(q_{f}-q_{1}+2 \pi R w\right)^{2}}{2\left(t_{f}-t_{i}\right)}}
\end{aligned}
$$

Exercise Show that the results of (i) \& (ii) match.
You may use
Poisson resummation formula

$$
\sum_{n \in \mathbb{Z}} e^{-\pi a n^{2}+2 \pi i b n}=a^{-\frac{1}{2}} \sum_{w \in \mathbb{Z}} e^{-\frac{\pi}{a}(w+b)^{2}}
$$

Partition function
(i) Operator

$$
T_{r_{x}} e^{-\frac{T}{\hbar} \hat{H}}=\sum_{n \in \mathbb{Z}} e^{-\frac{T}{\hbar} \frac{1}{2 m}\left(\frac{n \hbar}{R}\right)^{2}}=\sum_{n \in \mathbb{Z}} e^{-\frac{\hbar T}{2 m}\left(\frac{n}{R}\right)^{2}}
$$

(ii) Path-integrd

A periodic configuration $q(\tau+T) \sim q(\tau)$ can be written as

$$
\begin{aligned}
& q(t)=\frac{1}{\sqrt{T}} q_{0}+2 \pi R \omega \frac{t}{T} \\
&+\sum_{n=1}^{\infty}\left(q_{n}^{c} \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n \tau}{T}\right)+q_{n}^{s} \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n \tau}{T}\right)\right)
\end{aligned}
$$

where $q_{0} \sim q_{0}+\sqrt{T} \cdot 2 \pi R$ and $\omega \in \mathbb{Z}$ (wading \#).

$$
\begin{aligned}
& S_{E}[q]=T \cdot \frac{m}{2}\left(\frac{2 \pi R \omega}{T}\right)^{2}+\sum_{n=1}^{\infty} \frac{m}{2}\left(\frac{2 \pi n}{T}\right)^{2}\left(\left(q_{n}^{c}\right)^{2}+\left(q_{n}^{s}\right)^{2}\right) \\
& \int \theta q=\sum_{w \in \mathbb{Z}} \int d q_{0} \prod_{n=1}^{\infty} d q_{n}^{c} d q_{n}^{s}
\end{aligned}
$$

where q_{0} integration is on $[0, \sqrt{T} \cdot 2 \pi R]$
l $S-f\left(n\right.$ reg is used for $\prod_{n=1}^{\infty}$.

$$
\begin{aligned}
Z\left(S_{T}^{\prime}\right) & =\int D q e^{-\frac{1}{\hbar} S_{E}(q]} \\
& =\sum_{w \in \mathbb{Z}} \sqrt{T} \cdot 2 \pi R \cdot e^{-\frac{m}{2 \hbar} \frac{(2 \pi R w)^{2}}{T}} \prod_{n=1}^{\infty} \int d \varepsilon_{n}^{c} d q_{n}^{s} e^{-\frac{m}{2 \hbar\left(\frac{2 \pi n}{T}\right)^{2}\left(q_{n}^{\left.c^{2}+q_{n}^{s^{2}}\right)}\right.}}
\end{aligned}
$$

same as in free particle in \mathbb{R}
S. fen reg $\rightarrow \|$

$$
\begin{aligned}
& =2 \pi R \cdot \sqrt{\frac{m}{2 \pi \hbar T}} \sum_{\omega \in \mathbb{Z}} e^{-\frac{m}{2 \hbar \hbar T^{2}}} \\
& =(2 \pi R \omega)^{2}
\end{aligned}
$$

Exerase show that the results of (i) a (ii) match (Again, Poisson resummation formula can be used.)
(iii) We may also use the result for $\left.z\left(t_{f}, q_{f}\right) t_{i}, q_{i}\right)$ in

$$
\operatorname{Tr}\left(e^{-\frac{T}{\hbar} \hat{H}}\right)=\underbrace{\int_{Z(t, q ; 0, q)} d q \underbrace{\langle q| e^{-\frac{T}{\hbar} \hat{H}}|q\rangle}_{t \rightarrow-i T}}_{S_{L \pi k}^{\prime}}
$$

Recall

$$
\begin{aligned}
& \left.z(t, q ; 0, q)\right|_{t \rightarrow-i T} \\
& \quad=\left\{\begin{array}{l}
\frac{1}{2 \pi R} \sum_{n \in \mathbb{Z}} e^{-\frac{\hbar T}{2 m\left(\frac{n}{R}\right)^{2}}} 0 p \\
\sqrt{\frac{m}{2 \pi \hbar T}} \sum_{\omega \in-Z} e^{-\frac{m(2 \pi R \omega)^{2}}{2 \hbar T}} p . I . \\
\left.\therefore \int_{S_{2 \pi R}^{\prime}} d q z(t, q ; 0, q)\right|_{t \rightarrow-i T} \\
\quad=\left.2 \pi R \cdot z(t, q ; 0, q)\right|_{t \rightarrow-i T}
\end{array}\right.
\end{aligned}
$$

= nothing but the results in (i) \& (ii).

Remark
In the limit $R \rightarrow \infty$, the circle $S_{2 \pi R}^{1}$ decompactifies to the line R. Let us see what happens to the partition function

$$
Z\left(S_{T}^{1}\right)=\left\{\begin{array}{l}
\sum_{n \in \mathbb{Z}} e^{-\frac{\hbar T}{2 m}\left(\frac{n}{R}\right)^{2}} \tag{Op}\\
2 \pi R \sqrt{\frac{m}{2 \pi \hbar T}} \sum_{w \in \mathbb{Z}} e^{-\frac{m(2 \pi R \omega)^{2}}{2 \hbar T}}
\end{array}\right.
$$

Of course, it diverges in the limit. But the two different expressions tell us different reasons (which must be equivalent):

- In (OP), all $n \in \mathbb{Z}$ contributes with weight 1, and the divergence is because the number of states is ∞. In fact, even below a frise energy $E=\frac{1}{2 m}\left(\frac{\hbar n}{R}\right)^{2} \leqslant E_{0}$, \# of states is ∞ in thelmit (the spectrum becomes continuous).
- In (P.Z.), as $R \rightarrow \infty$, the $\omega=0$ term is dominant. $Z\left(S_{\tau}^{\prime}\right) \sim 2 \pi R \sqrt{\frac{m}{2 \pi \hbar T}}$, and the divergence is because the volume is ∞. (Recall that $L \cdot \sqrt{\frac{m}{2 \bar{a} \hbar T}}$ is the regularized version of $Z\left(S_{\tau}^{\prime}\right)$ for the particle in a line.)
(3) Particle in S^{\prime} with a theta term

$$
\begin{aligned}
& q \sim q+2 \pi R \\
& L=\frac{m}{2} \dot{q}^{2}+\theta \dot{q}
\end{aligned}
$$

Called theta term
Exercises:

1. Find the Hamitonian $H(p, q)$.
2. Find the spectrum.
3. Find the Euclidean Lagrangian $L_{E}(9, \dot{q})$.
(Warring: it is not real!)
4. Compute $z\left(t_{f}, q_{t}, t_{i}, q_{i}\right)$ in Operator \& path-integul.
(check that the result match.)
5. Compute $\operatorname{Tr}_{\mu e}\left(e^{-\frac{T}{\hbar} \hat{H}}\right)=Z\left(S_{\tau}^{\prime}\right)$
in Operator \& path-integul.
(check that the result match.)
