
Computation of transition amplitude and partition functions

Let us compute ECt ,4 iti .4: ) & partition functions in both

operator & path-integral .

Operator

We choose the symmetric ordering FI =
= (4 , 4) ,

& = (4+
,
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The results for other orderings can be easily found after that

and will be mentioned .
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We may also compute symmetry-twisted partition function
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A change of operator orderings
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Recall (E. /En) = /EdEd4 E,
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This A can be regarded as an ambiguity in the

definition of &F&4 .
It can also be absorbed

by a shift of by a constant which result

in overall shift of energy .

the result (#) match with the Operator result where

the ambiguity in the definition of OF&4

corresponds to operator ordering ambiguity .



For partition function,
first do Wick rotation :

L = i44 -wF4

-> Le = -(ii -wF4) = ya + w)4
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* 3 - function regularization

Generalized Zeta function 3(S , a) = E. (n+as
is absolutely convergent for Re(s)> and has analytic

continuation which is regular at S= 0
,
with

310 , a) = t - a
,
310 , a) = logP(a) - log2t .

Here P(a) is Gamma function .
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: 3- function regularization

corresponds to the symmetric ordering .



Remark (Op) The two cases"I" of the operator result
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This is also the case when S' is an even integer .
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the path-integral result

- at Le
ZalS1) == /05o+ e

↑(t+T) = ei64()
,
4(T+T) = ="<4(t)

=

-is + i

is a bit
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The definition appears to be periodic

under & + +2
,
but the result is periodic only

under a + &+45
.
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At first sight, it appears that the problem is in the

3-function regularization
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RHS changes its sign under & +x+ 25
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However whatever regularization you use
,
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As a - & +2
,
One particular CT-X changes its sign

and the set of other (exin-d)'s goes back to itself
.

Nothing is particularly wrong about 3-function regularization .

A way-out of the problem is to modify the definition of
the path-integral measure as
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This is the same as the operator result for S= I ,
S= - m
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It is periodic under & ->4+25
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This looks like a "cheap trick" and it looks strange that

it depends on an additional parameter me 2
.
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However
,
it turns out to be a "reasonable solution in a

certain sense
.

We will see that when we systematically
study anomaly .


