Computation of transition amplitude and partition functions
Let us compute $Z\left(t_{f}, \bar{\Psi}_{f} ; t_{i}, \Psi_{i}\right)$ \& partition functions in both operator a path-integral.

Operator
We choose the symmetric ordervy $\hat{H}=\frac{\omega}{2}\left[\hat{\psi}^{+}, \hat{\psi}\right], \hat{\partial}=\left[\hat{\psi}^{+}, \hat{\psi}\right]$. The rests for other orderings can be easily found offer that and will be mentioned.

$$
\begin{aligned}
& z\left(t_{f}, \bar{\psi}_{f} ; t_{i}, \psi_{i}\right)=\left\langle\bar{\Psi}_{f}\right| e^{-i \frac{t_{f}-t_{i}}{\hbar}} \hat{H}\left|\psi_{i}\right\rangle \\
& \quad=\langle 0|\left(1+\frac{1}{\hbar} \bar{\psi}_{f} \hat{\psi}\right) e^{-i \frac{t_{f}-t_{i}}{\hbar} \hat{H}}\left(1+\frac{1}{\hbar} \tilde{\psi}^{+} \psi_{i}\right)|0\rangle \\
& \quad=\langle 0|\left(1+\frac{1}{\hbar} \bar{\psi}_{f} \hat{\psi}\right)\left(e^{i\left(t_{f}-t_{i}\right) \frac{\omega}{2}}+\frac{1}{\hbar} e^{-i\left(t_{f}-t_{i}\right) \frac{\omega}{2}} \hat{\psi}^{+} \psi_{i}\right)|\Delta\rangle \\
& \quad=e^{i\left(t_{f}-t_{i}\right) \frac{\omega}{2}}+\frac{1}{\hbar} e^{-i\left(t_{f}-t_{i}\right) \frac{\omega}{2}} \bar{\psi}_{f} \psi_{i} \\
& \quad=e^{i\left(t_{f}-t_{i}\right) \frac{\omega}{2}}\left(1+\frac{1}{\hbar} e^{-i\left(t_{f}-t_{i}\right) \omega} \bar{\psi}_{f} \psi_{i}\right) \\
& \quad=e^{i\left(t_{f}-t_{i}\right) \frac{\omega}{2}} e^{\frac{1}{\hbar} e^{-i\left(t_{f}-t_{i}\right) \omega} \Psi_{f} \psi_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}_{\operatorname{se}} e^{-\frac{T}{\hbar} \hat{H}}=e^{-\frac{T}{\hbar}\left(-\frac{\hbar \omega}{2}\right)}+e^{-\frac{T}{\hbar}\left(\frac{\hbar \omega}{2}\right)}=e^{\frac{\omega T}{2}}+e^{-\frac{\omega T}{2}} \\
& \operatorname{Trge}(-1)^{F} e^{-\frac{T}{\hbar} \hat{H}}=e^{-\frac{T}{\hbar}\left(-\frac{\hbar \omega}{2}\right)}-e^{-\frac{T}{\hbar}\left(\frac{\hbar \omega}{2}\right)}=e^{\frac{\omega T}{2}}-e^{-\frac{\omega T}{2}}
\end{aligned}
$$

We may also compute symmery-twisted partition function

$$
\operatorname{Tr}_{\mathscr{H}}(\pm 1)^{F} e^{\frac{i \alpha}{\hbar} \hat{\theta}} e^{-\frac{T}{\hbar} \hat{H}}=e^{\frac{\omega T}{2}-\frac{i \alpha}{2}} \pm e^{-\frac{\omega T}{2}+\frac{i \alpha}{2}}
$$

A change of operator orderings

$$
\begin{aligned}
& \hat{H}=(1-s) \omega \hat{\psi}^{+} \hat{\psi}-s \omega \hat{\psi} \hat{\psi}^{+}=\frac{\omega}{2}\left[\hat{\psi}^{+}, \hat{\psi}\right]-\left(s-\frac{1}{2}\right) \hbar \omega, \\
& \hat{Q}=\left(1-s^{\prime}\right) \hat{\psi}^{+} \hat{\psi}-s^{\prime} \hat{\psi} \hat{\psi}^{+}=\left[\hat{\psi}^{+}, \tilde{\psi}\right]-\left(s^{\prime}-\frac{1}{2}\right) \hbar
\end{aligned}
$$

would result in a shift of the exponent in the overall factor,

$$
\begin{aligned}
& z\left(t_{1}, \bar{\psi}_{r} ; t_{i}, \psi_{i}\right)=e^{i\left(t_{f}-t_{i}\right) s \omega} e^{\frac{1}{\hbar}} e^{-i\left(t_{f}-t_{i}\right) \omega} \psi_{+} \psi_{i} \\
& T_{r}(\pm i)^{F} e^{i \alpha} \hat{\theta} \\
& e^{-\frac{T}{\hbar} \hat{H}}=e^{s \omega T-i \delta^{\prime} \alpha}\left(1 \pm e^{-\omega T+i \alpha}\right)
\end{aligned}
$$

Path-integral

$$
\begin{aligned}
& \text { Path-integral } \\
& Z\left(t_{t}, \bar{\psi}_{t} ; \tau_{i}, \psi_{i}\right)=\int_{\bar{\psi}\left(t_{4}\right)=\overline{\psi_{t}}, \psi\left(\tau_{i}\right)=\psi_{i}} s \bar{\theta} e^{\left.\frac{1}{\hbar} \bar{\psi} \psi\right|_{t_{t}}+\frac{i}{\hbar} \int_{t_{i}}^{t_{t}} d t(i \bar{\psi} \dot{\psi}-\omega \bar{\psi} \psi)} \underbrace{\infty}_{\frac{i}{\hbar}<}
\end{aligned}
$$

$W_{\text {rite }} \psi=\psi_{c l}+\widetilde{\psi}, \quad \tilde{\psi}\left(t_{i}\right)=0$,

$$
\bar{\psi}=\bar{\psi}_{c l}+\overline{\bar{\psi}}, \quad \tilde{\bar{\psi}}\left(t_{f}\right)=0
$$

where $\Psi_{c e}$ \& $\bar{\Psi}_{c e}$ are solution of EOM obeying boundary condition,

$$
\begin{aligned}
& \psi_{c l}(t)=\psi_{i} e^{-i \omega\left(t-\tau_{i}\right)} \\
& \bar{\psi}_{c l}(t)=\bar{\psi}_{f} e^{i \omega\left(t-t_{f}\right)}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& e=-i \bar{\psi}_{f}\left(\psi_{c l}\left(t_{f}\right)+\widetilde{\psi}\left(t_{f}\right)\right) \\
& +\int_{t_{i}}^{t_{7}} d t(\underbrace{i\left(\overline{\psi_{c l}}+\bar{\psi}\right)\left(\dot{\psi_{c l}}+\dot{\tilde{\psi}}\right)-\omega\left(\bar{\psi}_{c l}+\overline{\widetilde{\psi}}\right)\left(\psi_{c l}+\tilde{\psi}\right)}) \\
& \left(\bar{\psi}_{c l}+\tilde{\bar{\psi}}\right)(\underbrace{i \dot{\psi}_{c l}-\omega \psi_{c l}}_{0})+\underbrace{\left(\tilde{\psi}_{c l}+\tilde{\bar{\psi}}\right)(i \dot{\tilde{\psi}}-\omega \tilde{\psi})} \\
& \frac{d}{d t}\left(i\left(\bar{\psi}_{c l}+\bar{\psi}\right) \tilde{\psi}\right)-i \frac{d}{d t}\left(\bar{\psi}_{c l}+\bar{\psi}\right) \tilde{\psi}-\omega\left(\bar{\psi}_{c l}+\overline{\bar{\psi}}\right) \tilde{\psi} \\
& (\underbrace{-i \dot{\psi}_{c l}-w \bar{\psi}_{c l}}_{0}-i \dot{\overline{\widetilde{\psi}}}-w \overline{\widetilde{\psi}}) \tilde{\psi}
\end{aligned}
$$

$$
\begin{aligned}
& =-i \psi_{f}\left(\psi_{i} e^{-i \omega\left(t_{f}-t_{i}\right)}+\tilde{\psi}\left(t_{f}\right)\right) \\
& +i(\underbrace{\left(t_{f}\right)}_{\bar{\psi}_{f}}+\underbrace{\tilde{\psi}\left(t_{f}\right)}_{0}) \tilde{\psi}\left(t_{f}\right)-i\left(\bar{\psi}_{c e}\left(t_{i}\right)+\bar{\psi}\left(t_{i}\right)\right) \underbrace{\tilde{\psi}\left(t_{i}\right)}_{0} \\
& +\int_{t_{i}}^{t_{f}} d t(-i \tilde{\tilde{\psi}} \tilde{\psi}-\omega \tilde{\bar{\psi}} \tilde{\psi}) \\
& =-i \bar{\psi}_{f} \psi_{i} e^{-i \omega\left(t_{f}-t_{i}\right)}+\int_{t_{i}}^{t_{7}} d t(-i \dot{\bar{\psi}} \tilde{\psi}-\omega \tilde{\psi} \tilde{\psi}) \\
& \therefore z\left(t_{5} \bar{\psi}_{r} ; \tau, \psi_{i}\right) \\
& =e^{\frac{1}{\hbar} \bar{\psi}_{f} \psi_{i} e^{-i \omega\left(t_{f}-t_{t}\right)}} \int_{-} D \tilde{\psi} \partial \tilde{\psi} e^{\frac{i}{\hbar} \int_{\tau_{i}}^{t_{d}} d(-i \dot{\bar{\psi}} \bar{\psi}-\omega \tilde{\bar{\psi}} \tilde{\psi})} \\
& \widetilde{\Psi}\left(t_{f}\right)=0, \tilde{\psi}\left(t_{i}\right)=0 \quad=: F\left(t_{f}-t_{i}\right) \\
& =F\left(t_{f}-t_{i}\right) e^{\frac{1}{\hbar} \bar{\psi}_{f} \psi \cdot e^{-i \omega\left(t_{f}-\tau_{i}\right)}}
\end{aligned}
$$

Constraint on $F(t)$:

$$
\hat{Z}_{t_{t}, t_{i}}: \Psi(\bar{\psi}) \longmapsto \int \hbar d \bar{\psi}^{\prime} d \psi^{\prime} z\left(t_{t}, \bar{\psi} ; t_{i}, \psi^{\prime}\right) e^{\frac{1}{\hbar} \psi^{\prime} \bar{\psi}^{\prime}} \Psi\left(\bar{\psi}^{\prime}\right)
$$

is (i) unitary and obeys (ii) $\hat{Z}_{t_{3}, t_{2}} \cdot \widehat{Z}_{t_{1}, t_{1}}=\widehat{Z}_{t_{3}, t_{1}}$

Recall $\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle=\int \hbar d \bar{\psi} d \psi \Psi_{1}(\Psi)^{*} e^{\frac{1}{\hbar} \psi \psi} \Psi_{2}(\Psi)$.
Then (i) $\Leftrightarrow|F(t)|^{2}=1$
(ii) $\Longleftrightarrow F\left(t_{3}-t_{2}\right) F\left(t_{2}-t_{1}\right)=F\left(t_{3}-t_{1}\right)$

There require

$$
\begin{gather*}
F(t)=e^{i A t} \text { for a real A. } \\
\therefore z\left(t_{f}, \bar{\psi}_{f} ; t_{i}, \psi_{i}\right)=e^{i A\left(t_{f}-t_{i}\right)} e^{\frac{1}{\hbar} \bar{\psi}_{f} \psi_{i} e^{-i \omega\left(t_{f}-t_{i}\right)}}
\end{gather*}
$$

This A can be regarded as an ambiguity in the definition of $D \bar{\Psi} D 4$. It can also be absorbed by a shift of L by a constant which result in overall shift of energy.

The result (\#) match with the Operator result where the ambiguity in the definition of $8 \overline{9} 84$ corresponds to operator ordering ambiguity.

For partition function, first do Wick rotation:

$$
\begin{aligned}
& L=i \bar{\psi}-w \bar{\psi} \\
& \leadsto L_{E}=-\left(i \bar{\psi} i \frac{d \psi}{d \tau}-\omega \bar{\psi} \psi\right)=\bar{\psi}\left(\frac{d}{d \tau}+\omega\right) \psi
\end{aligned}
$$

Let us compute

$$
\begin{aligned}
Z_{\alpha}\left(S_{T}^{\prime}\right):= & \int_{D} \bar{\psi} D \psi e^{-\frac{1}{\hbar} \int_{0}^{T} d \tau L_{E}} \\
& \bar{\psi}(\tau+T)=e^{i \alpha} \bar{\psi}(\tau), \psi(\tau+\tau)=e^{-i \alpha} \psi(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& \bmod \text { expansion }\left\{\begin{array}{l}
\bar{\psi}=\sum_{n \in \mathbb{Z}} \bar{\psi}_{n} \frac{1}{\sqrt{T}} e^{i(2 \pi n+\alpha) \tau / T} \\
\psi=\sum_{n \in \mathbb{Z}} \psi_{n} \frac{1}{\sqrt{T}} e^{i(2 \pi n-\alpha) \tau / T}
\end{array}\right. \\
& S_{E}=\int_{0}^{T} d \tau \sum_{n, m} \bar{\psi}_{m} \frac{1}{\sqrt{T}} e^{i(2 \pi m+\alpha) \tau / T} \\
& \left(i \frac{2 \pi n-\alpha}{T}+\omega\right) \psi_{n} \frac{1}{\sqrt{T}} e^{i(2 \pi n-\alpha) \tau / T} \\
& =\sum_{n \in \mathbb{Z}} \bar{\psi}_{-n}\left(i \frac{2 \pi n-\alpha}{T}+\omega\right) \psi_{n}
\end{aligned}
$$

Let us put $D \bar{\Psi} D \psi:=\prod_{n \in \mathbb{Z}} d \Psi_{-n} d \psi_{n}$ and use δ - fan reg.

$$
\begin{align*}
Z_{\alpha}\left(S_{T}^{\prime}\right) & =\int \prod_{n \in \mathbb{Z}} d \bar{\psi}_{-n} d \psi_{n} e^{-\frac{1}{\hbar} \sum_{n \in \mathbb{Z}} \bar{\psi}_{-n}\left(i \frac{2 \pi n-\alpha}{T}+\omega\right) \psi_{n}} \\
& =\prod_{n \in \mathbb{Z}} \frac{1}{\hbar}\left(i \cdot \frac{2 \pi n-\alpha}{T}+\omega\right) \\
& =\underbrace{\prod_{n \in \mathbb{Z}} \frac{i(2 \pi n-\alpha)}{\hbar T}} \cdot \underbrace{}_{n \in \mathbb{Z}}\left(1-\frac{i \omega T}{2 \pi n-\alpha}\right) \tag{B}
\end{align*}
$$

(A)

$$
(A)=\frac{\alpha}{\hbar T i} \cdot \prod_{n=1}^{\infty} \frac{n-\alpha / 2 \pi}{\hbar T / 2 \pi i} \cdot \frac{n+\alpha / 2 \pi}{-\hbar T / 2 \pi i}
$$

[δ-function regularization (see $*$ below):

$$
\begin{aligned}
& {\left[\prod_{n=1}^{\infty} \frac{n+y}{x}=\sqrt{2 \pi x} / \Gamma(1+y)\right.} \\
= & \frac{\alpha}{\hbar T i} \frac{\sqrt{\hbar T / i}}{\Gamma\left(1-\frac{\alpha}{2 \pi}\right)} \frac{\sqrt{\hbar T i}}{\Gamma\left(1+\frac{\alpha}{2 \pi}\right)}=\frac{\alpha}{i}\left(\Gamma\left(1-\frac{\alpha}{2 \pi}\right) \Gamma\left(1+\frac{\alpha}{2 \pi}\right)\right)^{-1} \\
& \quad \Gamma(1-z) \Gamma(1+z)=z \Gamma(1-z) \Gamma(z)=\frac{\pi z}{\sin \pi z} \\
= & \frac{\alpha}{i} \frac{\sin \left(\pi \frac{\alpha}{2 \pi}\right)}{\pi \frac{\alpha}{2 \pi}}=-2 i \sin \left(\frac{\alpha}{2}\right)
\end{aligned}
$$

S-function regularization
Generalized zeta function $\zeta(s, a)=\sum_{n=0}^{\infty}(n+a)^{-s}$
is absolutely convergent for $\operatorname{Re}(S)>1$ and has analytic continuation which is regular at $S=0$, with

$$
\zeta(0, a)=\frac{1}{2}-a, \quad \zeta^{\prime}(0, a)=\log \Gamma(a)-\frac{1}{2} \log 2 \pi
$$

Here $\Gamma(a)$ is Gamma function.
(A convenient property: $\Gamma(a+1)=a \Gamma(a), \Gamma(a) P(1-a)=\frac{\pi}{\sin \pi a}$.)
Note: $\zeta^{\prime}(s, a):=\frac{\partial}{\partial s} \zeta(s, a)=\sum_{n=0}^{\infty}-\log (n+a)(n+a)^{-s}$.
Using these we find

$$
\begin{aligned}
\prod_{n=1}^{\infty} \frac{n+y}{x} & =\exp \left(\sum_{n=1}^{\infty}(\log (n+y)-\log x)\right) \\
& =\exp (-\zeta(0,1+y)-\log x \cdot \zeta(0,1)) \\
& =\exp \left(-P(1+y)+\frac{1}{2} \log 2 \pi+\frac{1}{2} \log x\right) \\
& =\frac{\sqrt{2 \pi x}}{\Gamma(1+y)}
\end{aligned}
$$

$$
\begin{aligned}
& B=\prod_{n \in \mathbb{Z}}\left(1-\frac{i \omega T}{2 \pi n-\alpha}\right) \cdot \text { Lat } i \omega T=0 \\
&=\frac{\sin \left(\frac{i \omega T+\alpha}{2}\right)}{\sin \left(\frac{\alpha}{2}\right)} \cdot \text { simple zero at i } \omega T= \\
&=\left(e^{\left.i \frac{i \omega T+\alpha}{2}-e^{-i \frac{i \omega T+\alpha}{2}}\right) / 2 i \sin \left(\frac{\alpha}{2}\right)}\right. \\
&=\left(e^{-\frac{\omega T}{2}+i \frac{\alpha}{2}}-e^{\frac{\omega T}{2}-i \frac{\alpha}{2}}\right) / 2 i \sin \left(\frac{\alpha}{2}\right) \\
&\left.\therefore Z_{\alpha}\left(S_{T}^{\prime}\right)=A \cdot B\right)=e^{\frac{\omega T}{2}-i \frac{\alpha}{2}}-e^{-\frac{\omega T}{2}+i \frac{\alpha}{2}}
\end{aligned}
$$

This match with the operator result for
$\operatorname{Tr}_{x}(-1)^{F} e^{i \frac{\alpha}{\hbar} \hat{\partial}} e^{-\frac{T}{\hbar} \hat{H}}$ with the symmetric ordering

$$
\hat{H}=\frac{\omega}{2}\left[\hat{\psi}^{+}, \tilde{\psi}\right], \hat{\partial}=\frac{1}{2}\left[\hat{\psi}^{+}, \hat{\psi}\right]
$$

$\therefore \delta$-function regularization
corresponds io the symmetric ordering.

Remark $\left(O_{p}\right)$ The two cases " \pm " of the operator result

$$
\operatorname{Tr}_{\mu}(\pm 1)^{F} e^{\frac{i \alpha}{\hbar} \hat{\theta}} e^{-\frac{T}{\hbar} \hat{H}}=e^{s \omega T-i s^{\prime} \alpha}\left(1 \pm e^{-\omega T+i \alpha}\right)
$$

is consistent with each other. Indeed, for $S^{\prime}=0$,

$$
\hat{\partial}= \begin{cases}0 & \text { and } \\
\hbar & e^{i \frac{\alpha}{\hbar} \widetilde{\partial}}=\left\{\begin{array} { l }
{ 1 } \\
{ e ^ { i \alpha } }
\end{array} \quad \text { on } \left\{\begin{array}{l}
|0\rangle \\
\hat{\psi}^{+}|0\rangle
\end{array}, \$\right.\right. \text {, }\end{cases}
$$

and in particular $e^{i \frac{\alpha}{\hbar} \hat{\theta}}=(-1)^{F}$ for $\alpha \equiv \pi \bmod 2 \pi$.
Thus, $\alpha \rightarrow \alpha+\pi$ does

$$
\begin{aligned}
& e^{i \frac{\alpha}{\hbar} \hat{\theta}} \rightarrow(-1)^{F} e^{i \frac{\alpha}{\hbar} \hat{\theta}} \\
& 1+e^{-\omega T+i \alpha} \rightarrow 1-e^{-\omega T+i \alpha}
\end{aligned}
$$

That is, the two cases $+e$ - are swapped by $\alpha \rightarrow \alpha+\pi \quad$ for $s^{\prime}=0$ in which $e^{i \frac{\pi}{\hbar} \tilde{\partial}}=(-i)^{F}$. This is also the case when S^{\prime} is an even integer. For a general $s^{\prime}, e^{i \frac{\pi}{\hbar} \hat{D}}=(-1)^{F} e^{-i \pi s^{\prime}}$, and the two cases are also swapped by $\alpha \rightarrow \alpha+\pi$.
(PI.) On the other hand, the path-integral result

$$
\begin{aligned}
Z_{\alpha}\left(S_{T}^{\prime}\right):= & \int_{D \Psi D \psi} e^{-\frac{1}{\hbar} \int_{0}^{T} d \tau L_{E}} \\
& \bar{\psi}(\tau+\tau)=e^{i \alpha} \Psi(\tau), \psi(\tau+\tau)=e^{-i \alpha} \psi(\tau) \\
= & e^{\frac{\omega T}{2}-i \frac{\alpha}{2}}-e^{-\frac{\omega T}{2}+i \frac{\alpha}{2}}
\end{aligned}
$$

is a bit strange. The definition appears to be periodic under $\alpha \rightarrow \alpha+2 \pi$, but the result is periodic only under $\alpha \rightarrow \alpha+4 \pi$.

Related problem: $Z_{\alpha}\left(S_{T}^{\prime}\right)$ for $\alpha= \pm \pi$ is the path-intgal over $\psi(\tau), \bar{\psi}(\tau)$ which is antiperiodic under $\tau \rightarrow \tau+T$, and this is supposed to be equal to $\operatorname{Tr}_{\text {ce }}\left(e^{-\frac{T}{\hbar} \hat{H}}\right)$.
However the results

$$
\begin{aligned}
& Z_{t \pi}\left(S_{T}^{\prime}\right)=\mp i\left(e^{\omega T / 2}+e^{-\omega T / 2}\right) \text { and } \\
& \operatorname{Tr}_{o l}\left(e^{-\frac{T}{\hbar} \hat{H}}\right)=e^{\omega T / 2}+e^{-\omega T / 2}
\end{aligned}
$$

differ by phases.

At first sight, it appears that the problem is in the ζ-function regularization
(A) $:=\prod_{n \in \mathbb{Z}} \frac{i(2 \pi n-\alpha)}{\hbar T} \stackrel{\downarrow}{=}-2 i \sin \left(\frac{\alpha}{2}\right)$

LHS appears to be periodic under $\alpha \rightarrow a+2 \pi$, but RHS changes its sign under $\alpha \rightarrow \alpha+2 \pi$.

However, whatever regularization you use, the ∞-product $\prod_{n \in \mathbb{Z}} \frac{i(2 \pi n-\alpha)}{\hbar T}$ must change its sign under $\alpha \rightarrow \alpha+2 \pi$:

As $\alpha \rightarrow \alpha+2 \pi$, one particular $2 \pi n-\alpha$ changes its sign and the ser of other $(2 \pi n-\alpha)$ is goes back to itself.

Nothing is particularly wrong about S-function regularization.

A way-out of the problem is to modify the definition of the path-integral measure as

$$
D \bar{\psi} \theta \psi=e^{i\left(m+\frac{1}{L}\right) \alpha} \prod_{n \in \mathbb{Z}} d \Psi_{-n} d \psi_{n} \text { with } m \in \mathbb{Z}
$$

which results in

$$
Z_{\alpha}\left(S_{T}^{\prime}\right)=e^{\frac{\omega T}{2}+i m \alpha}-e^{-\frac{\omega T}{2}+i(m+1) \alpha}
$$

This is the same us the operator result for $\delta=\frac{1}{2}, S^{\prime}=-m$.
It is periodic under $\alpha \rightarrow \alpha+2 \pi$, and indeed

$$
\begin{aligned}
& Z_{0}\left(S_{T}^{\prime}\right)=T_{\partial e}(-1)^{F} e^{-\frac{T}{\hbar} \hat{H}} \\
& Z_{\pi}\left(S_{T}^{\prime}\right)=T_{r_{\alpha e}} e^{-\frac{T}{\hbar} \hat{H}}
\end{aligned}
$$

This looks like a "cheap trick" and it looks strange that it depends on an additional parameter $m \in \mathbb{Z}$.

However, it turns out to be a "reasonable solution" in a certain sense. We will see that when we systematically study anomaly.

