
Regularization and Renormalization

Divergences
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ultra-violet ( = short distance) divergence



superficial degree of divergence D

= power of momentale of the integral
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E = # external lines
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[ = # internal lines
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V = #vertices ,

↳ # loops = [ - V + 1 = net # of momentum integrals
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Theory of Scalar & in d-dimensions : D = dL-2 I
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theory

E = 0 B : D = 4 quartic divergence

E=2- : D = 2 quadratic divergence

>E = 4 /D : D = 0 logarithmic divergence-L/X
/E2) = /E : DSO (superficially) convergentD!



How do we deal with such divergences?

regularization:
a systematic change of the theory
so that the loop integrals are all finite.

At least, we need a

For E= 0 , 2 , 4
,
the divergence occurs for any number V of vertices,

i.e, at all orders in perturbative expansion

9)↑ theory in other d : D = d + (d-4)V- E
&> P DO for large enough V .

Only a finite number of Feynman diagrams are

(superficially) divergent.

d) P For each E
,
D30 for large enough V.

AnyCorrelator is (Superficially) divergent
at sufficiently high orders in perturbative expansion .



Regularizations

ultra-violet cut-off  (UV cut-off)



Pauli-Villars regularization



Lattice



Dimensional regularization





Renormalization









mass dimension





renormalization condition








