$\underline{\text { Renormalization group }}$
Choices of renormalization conditions:
"On shell", "intermediate", "Another (μ)",..
All these originate from the same classical Lagrangian
\longrightarrow same physics.
But we need a dictionary:
renormalization condition I $\rightarrow \phi_{I}, \lambda_{I}, \cdots$
renormalization condition II $\rightarrow \Phi_{\text {II }}, \lambda_{\text {II }}, \cdots$$\Leftarrow$ relation?
e.g. in $4 d \phi^{4}$ theory
"another R.C." parametrized by a mass scale μ_{Σ}
renormalization point
at $\mu: \phi, m, \lambda \quad$ To describe the same physics, at $\mu^{\prime}: \phi^{\prime}, m^{\prime}, \lambda^{\prime} \Longleftarrow$ how are they related?

Answer: so that the bare fields/couplings are the same.

$$
\begin{gathered}
z_{0}^{\frac{1}{2}}(m, \lambda ; \mu, \Lambda) \phi=\phi_{0}=z_{0}^{\frac{1}{2}}\left(m^{\prime}, \lambda^{\prime} ; \mu^{\prime}, \Lambda\right) \phi^{\prime} \\
m_{0}(m, \lambda ; \mu, \Lambda)=m_{0}=m_{0}\left(m^{\prime}, \lambda^{\prime} ; \mu^{\prime}, \Lambda\right) \\
\lambda_{0}(m, \lambda ; \mu, \Lambda)=\lambda_{0}=\lambda_{0}\left(m^{\prime}, \lambda^{\prime} ; \mu^{\prime}, \Lambda\right) \\
\Gamma\left(\phi_{0}, m_{0}, \lambda_{0} ; \Lambda\right) \\
\Gamma(\phi, m, \lambda ; \mu, \Lambda)
\end{gathered}
$$

The change $(\phi, m, \lambda) \rightarrow\left(\phi^{\prime}, m^{\prime}, \lambda^{\prime}\right)$ for $\mu \rightarrow \mu^{\prime}$ is called the renormalization group (RG) transformation, and the equality $\#$ is called the RG equation. The relation between the renormalized fields/couplings has a limit as $\Lambda \rightarrow \infty$, and

$$
\begin{gathered}
\Gamma(\phi, m, \lambda ; \mu):=\lim _{\Lambda \rightarrow \infty} \Gamma(\phi, m, \lambda ; \mu, \Lambda) \text { satisfies } \\
\Gamma(\phi, m, \lambda ; \mu)=\Gamma\left(\phi^{\prime}, m^{\prime}, \lambda^{\prime} ; \mu^{\prime}\right) .
\end{gathered}
$$

The RG transformation may be written as

$$
\begin{aligned}
& \phi^{\prime}=Z^{-\frac{1}{2}}\left(m, \lambda ; \mu^{\prime}, \mu\right) \phi_{1} \\
& m^{\prime}=R^{m}\left(m, \lambda ; \mu^{\prime}, \mu\right) \\
& \lambda^{\prime}=R^{\lambda}\left(m, \lambda ; \mu^{\prime}, \mu\right)
\end{aligned}
$$

Put

$$
\begin{aligned}
& \left.\mu^{\prime} \frac{\partial}{\partial \mu^{\prime}} z^{\frac{1}{2}}\left(m, \lambda ; \mu^{\prime}, \mu\right)\right|_{\mu^{\prime}=\mu}=: \gamma(m, \lambda ; \mu) \\
& \left.\mu^{\prime} \frac{\partial}{\partial \mu^{\prime}} R^{m}\left(m, \lambda ; \mu^{\prime}, \mu\right)\right|_{\mu^{\prime}=\mu}=:-\gamma_{m}(m, \lambda ; \mu) m \\
& \left.\mu^{\prime} \frac{\partial}{\partial \mu^{\prime}} R^{\lambda}\left(m, \lambda ; \mu^{\prime}, \mu\right)\right|_{\mu^{\prime}=\mu}=: \beta(m, \lambda ; \mu)
\end{aligned}
$$

Then, the infinitesimal RG transformation (RG flow) is

$$
\begin{aligned}
& \mu \frac{d}{d \mu} \phi=-\gamma(m ; \lambda ; \mu) \phi \\
& \mu \frac{d}{d \mu} m=-\gamma_{m}(m, \lambda ; \mu) m \\
& \mu \frac{d}{d \mu} \lambda=\beta(m, \lambda ; \mu)
\end{aligned}
$$

and the infinitesimal RG equation is

$$
\left[-\gamma \phi \cdot \frac{\delta}{\delta \phi}-\gamma_{m} m \frac{\partial}{\partial m}+\beta \frac{\partial}{\partial \lambda}+\mu \frac{\partial}{\partial \mu}\right] \Gamma(\phi, m, \lambda ; \mu)=0
$$

Computation in 4d ϕ^{4} theory
Recall $Z_{0}=1+\hbar \lambda a_{1}+\hbar^{2} \lambda^{2} a_{2}+\cdots$

$$
\begin{aligned}
& Z_{0} m_{0}^{2}=m^{2}+\hbar \lambda b_{1}+\hbar^{2} \lambda^{2} G_{L}+\cdots \\
& Z_{0}^{2} \lambda_{0}=\lambda+\hbar \lambda^{2} C_{1}+\hbar^{2} \lambda^{3} C_{L}+\cdots \\
& a_{1}= 0 \\
& b_{1}=-\frac{1}{2(4 \pi)^{2}}\left[\Lambda^{2}-m^{2}\left(\log \left(\frac{n^{3}}{m^{2}}\right)+1-r\right)+m^{2} O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right] \\
& C_{1}=\frac{3}{2(4 \pi)^{2}}\left[\log \left(\frac{\Lambda^{2}}{2 m^{2}}\right)-r-1-\int_{0}^{1} d x \log \left(1+x(1-x) \frac{4 \mu^{2}}{3 m^{2}}\right)+O\left(\frac{m^{2}}{\Lambda^{2}}\right)\right]
\end{aligned}
$$

Thus, to 1-loop, $Z_{0}=1+O\left(\hbar^{2}\right)$, and

$$
\begin{aligned}
O=\mu \frac{d}{d \mu} \phi_{0} & =\mu \frac{d}{d \mu} \phi+O\left(\hbar^{2}\right) \\
0=\mu \frac{d}{d \mu} m_{0}^{2} & =\mu \frac{d}{d \mu} m^{2}+\hbar \mu \frac{d}{d \mu} \lambda b_{1}+O\left(\hbar^{2}\right) \\
0=\mu \frac{d}{d \mu} \lambda_{0} & =\mu \frac{d}{d \mu} \lambda+\hbar\left(\mu \frac{d}{d \mu} \lambda^{2} C_{1}+\lambda^{2} \mu \frac{d}{d \mu} C_{1}\right)+O\left(t^{2}\right) \\
\Rightarrow \mu \frac{d}{d \mu} \phi & =O\left(\hbar^{2}\right) \\
\mu \frac{d}{d \mu} \lambda & =-\hbar \lambda^{2} \mu \frac{d}{a \mu} C_{1}+O\left(\hbar^{2}\right) \\
\mu \frac{d}{d \mu} m & =O\left(\hbar^{2}\right)
\end{aligned}
$$

$$
\therefore \begin{aligned}
\gamma(m, \lambda ; \mu) & =O\left(\hbar^{2}\right) \\
\gamma_{m}(m, \lambda ; \mu) & =O\left(\hbar^{2}\right) \\
\beta(m, \lambda ; \mu) & =-\hbar \lambda^{2} \mu \frac{d}{d \mu} C_{1} \\
& =\frac{3 \hbar \lambda^{2}}{2(4 \pi)^{2}} \int_{0}^{1} d x \frac{x(1-x) \frac{8 \mu^{2}}{3 m^{2}}}{1+x(1-x) \frac{4 \mu^{2}}{3 m^{2}}}+O\left(\hbar^{2}\right) \\
& = \begin{cases}\frac{3 \hbar \lambda^{2}}{2(4 \pi)^{2}}+O\left(\hbar^{2}\right) & \mu \gg m \\
\frac{2 \hbar \lambda^{2}}{3(4 \pi)^{2}} \frac{\mu^{2}}{m^{2}}+O\left(\hbar^{2}\right) \quad \mu \ll m\end{cases}
\end{aligned}
$$

Let us consider the limit $m \rightarrow 0$.
As $\lambda * Z$ are dimensionless, $\beta * \gamma$ are functions of λ only. Indeed, in this limit, $a_{1}=0, b_{1}=-\frac{\Lambda^{2}}{2(4 \pi)^{2}}$,

$$
c_{1}=\frac{3}{2(4 \pi)^{2}}\left[\log \left(\frac{\Lambda^{2}}{2 \mu^{2}}\right)-\gamma-1-\int_{0}^{1} d x \log \left(x(1-x) \frac{4}{3}\right)\right]
$$

\uparrow jet

$$
r=0, \quad \beta=\frac{3 \lambda^{2}}{(4 \pi)^{2}} \quad \text { at } \quad 1-100 p \text {. }
$$

The RG flow: $\mu \frac{d}{d \mu} \lambda=\beta(\lambda)$

$$
\mu \frac{d}{d \mu} \phi=-\gamma(\lambda) \phi
$$

The RG eqn:

$$
\left[\mu \frac{\partial}{\partial \mu}+\beta(\lambda) \frac{\partial}{\partial \lambda}-\gamma(\lambda) \phi \cdot \frac{\delta}{\delta \phi}\right] \Gamma(\phi, \lambda ; \mu)=0 .
$$

Instead of μ, we $t=\log \left(\mu / \mu_{0}\right)$ or $\mu=e^{t} \mu_{0}$.
Then, the RG flow takes the form

$$
\begin{aligned}
& \lambda=\bar{\lambda}(t) \quad\left(\leftarrow \text { a solution to } \frac{1}{d t} \lambda=\beta(\lambda)\right) \\
& \phi=\bar{\phi}(t)=\bar{\phi}(0) \cdot e^{-\int_{0}^{t} d t^{\prime} \gamma\left(\bar{\lambda}\left(t^{\prime}\right)\right)}
\end{aligned}
$$

and the RGE:
$\Gamma\left(\bar{\phi}(t), \bar{\lambda}(t) ; e^{t} \mu_{0}\right)$ is t-indyendent.

Write

$$
\begin{aligned}
& \Gamma=\sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \frac{d^{4} p_{i}}{(2 \pi)^{4}} \cdot(2 \pi)^{4} \delta\left(p_{1}+\cdots+p_{n}\right) \\
& \rho\left(p_{1}, \cdots, p_{n}, \lambda ; \mu\right) \phi\left(p_{1}\right) \cdots \phi\left(p_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R G E: \\
& e^{-n \int_{0}^{t} d t^{\prime} \bar{\gamma}\left(\bar{\lambda}\left(t^{\prime}\right)\right)} \Gamma\left(p_{1}, \cdots, p_{n}, \bar{\lambda}(t): e^{t} \mu_{0}\right) \quad \text { is } t-\text { independent } \\
& \quad=P\left(p_{1}, \cdots, p_{n}, \bar{\lambda}(0) ; \mu_{0}\right)
\end{aligned}
$$

On the other hand, the canonical dimensions are

$$
\begin{aligned}
& {[\mu]=1,[P]=1,[\lambda]=0,[\Gamma]=0} \\
& \therefore\left[\Gamma\left(p_{1}, \cdots ; p_{n}, \lambda ; \mu\right)\right]=4-n \Rightarrow \\
& \Gamma\left(e^{t} p_{1}, \cdots, e^{t} p_{n}, \lambda ; e^{t} \mu\right)=e^{(4-n) t} \Gamma\left(p_{1},-, p_{n}, \lambda ; \mu\right)
\end{aligned}
$$

Combining,

$$
\begin{aligned}
& \Gamma\left(e^{t} p_{1}, \cdots, e^{t} \rho_{n}, \bar{\lambda}(0) ; \mu_{0}\right) \\
& \\
& \stackrel{R G E}{=} e^{-n \int_{0}^{t} d t^{\prime} \bar{\gamma}\left(\bar{\lambda}\left(t^{\prime}\right)\right)} \Gamma\left(e^{t} p_{1}, \cdots e^{t} p_{1}, \bar{\lambda}(t) ; e^{t} \mu_{0}\right)
\end{aligned}
$$

Can. dim

$$
=e^{\text {Can. dim }} 4 t-n \int_{0}^{t} d t^{\prime}\left(1+\gamma\left(\bar{\lambda}\left(t^{\prime}\right)\right)\right) \Gamma\left(p_{1}, \cdots, p_{n}, \bar{\lambda}(t) ; \mu_{0}\right)
$$

This means
(1) If we uniformly rescale the momenta as

$$
P_{i} \rightarrow e^{t} P_{i}
$$

the coupling λ effectively changes as

$$
\bar{\lambda}(0) \rightarrow \bar{\lambda}(t) .
$$

$\bar{\lambda}(t)$ is the "effective coupling constant."
(2) The dimension of ϕ has also changed as

$$
1 \rightarrow 1+\gamma(\bar{\lambda}(t))
$$

$\gamma(\lambda)$ is the "anomalous dimension" of ϕ.

At $1-$ loop, $\frac{d \lambda}{d t}=\frac{3 \lambda^{2}}{(4 \pi)^{2}}$

$$
\begin{aligned}
& \int \frac{d \lambda}{\lambda^{2}}=\int \frac{3 d t}{(4 \pi)^{2}} \sim-\frac{1}{\bar{\lambda}(t)}+\frac{1}{\bar{\lambda}(0)}=\frac{3 t}{(4 \pi)^{2}} \\
& \bar{\lambda}(t)=\frac{\bar{\lambda}(0)}{1-\frac{3 t}{(4 \pi)^{2}} \bar{\lambda}(0)}
\end{aligned}
$$

The coupling is weaker at lower energies or stronger at higher energies.

- $\lambda(\mu)=\frac{\lambda\left(\mu_{0}\right)}{1-\frac{3 \lambda\left(\mu_{0}\right)}{(4 \pi)^{2}} \log \left(\mu / \mu_{0}\right)}$
is valid for $\mu \ll \mu_{0}$ even if $\left|\log \left(\mu / \mu_{0}\right)\right|$ mu) be large.
- The Series expansion

$$
\lambda(\mu)=\sum_{n=0}^{\infty} \lambda\left(\mu_{0}\right)\left(\frac{3 \lambda\left(\mu_{0}\right)}{(4 \pi)^{2}} \log \left(\mu / \mu_{0}\right)\right)^{n}
$$

hus a Feynman diagram interpretation:

$$
\begin{aligned}
\sim_{0}^{h_{1}} & \sim \lambda^{n+1} \int_{m}^{\mu_{0}} \frac{d^{4} k_{1}}{\left(k_{1}^{2}\right)^{2}} \cdots \int_{r}^{\mu_{0}} \frac{d^{4} k_{n}}{\left(k_{n}^{2}\right)^{2}} \\
& \sim \lambda^{n+1}\left(\log \mu_{0} / \mu\right)^{n}
\end{aligned}
$$

"RC sums up a series of Feynman diagrams"

Various possibilities

$\lambda \rightarrow 0$ in the IR limit infra-red free theory We've just seen Well see next egg. $4 d \phi^{4}$ theory, $Q E D_{4}$ $\frac{Q C D_{4} \text { with large \# of flavors }}{\text { next semester }}$

$\lambda \rightarrow 0$ in the UV limit
asymptotically free theory
eff. Ad Yang-Mills theory
$\underbrace{Q C D_{4} \text { with small \# of flavor) }}_{\text {next semester }}$

λ does not run!
finite theory
es. $\frac{\text { Id } N=4 \text { superymmetric Yung-Mills }}{\text { next semester }}$

Other possibilities:

non-trivial fixed point of RG flow.

At such a point λ_{*}, with $\gamma_{*}:=\gamma\left(\lambda_{*}\right)$,

$$
\begin{aligned}
& \Gamma\left(e^{t} p_{1}, \cdots, e^{t} p_{n}, \lambda_{*} ; \mu_{0}\right) \\
& \quad=e^{\left(4-n\left(1+v_{*}\right)\right) t} \Gamma\left(p_{1}, \cdots, p_{n}, \lambda_{*} ; \mu_{0}\right)
\end{aligned}
$$

Correlation functions scales in a simple way. "scale invariant theory".
eg. $\Gamma(-p, p)=$ const $\cdot\left(p^{2}\right)^{1-\gamma_{*}}$

$$
\begin{aligned}
& \Gamma(P)=\frac{1}{2} \phi_{i} A_{i j} \phi_{j}-\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{n=i_{n}} \lambda_{1 P_{l}}^{i-\dot{m}_{n}} \phi_{i n} \cdot \phi_{i n} \\
& \Gamma(-p, p)=p^{2}-\lambda_{1 P I}^{(2)}\left(p^{2}\right) \\
& -120-+-1182-+-(182)-\cdots \\
& =-(1-(112)-)^{-1} \\
& =\frac{1}{p^{2}}\left(1-\lambda_{1 p(}^{(2)}\left(p^{2}\right) \frac{1}{p^{2}}\right)^{-1}=\frac{1}{p^{2}-\lambda_{1 p(}^{(2)}\left(p^{2}\right)}=\frac{1}{\Gamma(-p, p)} \\
& \langle\phi(x) \phi(0)\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p x}}{(\mathbb{T}(-p, p))} \propto\left(p^{2}\right)^{1-\gamma_{*}} \\
& \infty \frac{1}{|x|^{2+2 v_{*}}}
\end{aligned}
$$

An application: RG improvement of $\bigcup_{\text {eff }}(\phi)$
In fd ϕ^{4} theory, we detained 1-loop effective potential

$$
\begin{aligned}
& \left.\begin{array}{l}
U_{\text {eft }}(\phi)= \\
+\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \\
+(4 \pi)^{2}
\end{array}\left(m^{2}+\frac{\lambda \phi^{2}}{2}\right)^{2} \log \left(1+\frac{\lambda \phi^{2}}{2 m^{2}}\right)-\frac{\lambda}{2} m^{2} \phi^{2}-\left(\frac{3}{2}+k\right)\left(\frac{\lambda \phi^{2}}{2}\right)^{2}\right] \\
& \quad ; K=\int_{0}^{1} d x \log \left(1+x(1-x) \frac{4 \mu^{2}}{3 m^{2}}\right) \quad \text { n "Another } R C^{\prime \prime} \\
& \quad=\int_{0}^{1} d x \log \left(\frac{m^{2}}{\mu^{2}}+x(1-x) \frac{4}{3}\right)-\log \left(\frac{m^{2}}{\mu^{2}}\right) \\
& =\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4} \\
& +\frac{1}{4(4 \pi)^{2}}\left[\left(m^{4}+\lambda m^{2} \phi^{2}\right) \log \left(1+\frac{\lambda \phi^{2}}{2 m 2}\right)-\frac{\lambda}{2} m^{2} \phi^{2}\right) \\
& +\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda \phi^{2}}{2}\right)^{2}\left[\log \left(\frac{m^{2}}{\mu^{2}}+\frac{\lambda \phi^{2}}{2 \mu^{2}}\right)-\frac{3}{2}-\int_{0}^{1} d x \log \left(\frac{m^{2}}{\mu^{2}}+x(1-x) \frac{4}{3}\right)\right]
\end{aligned}
$$

$\exists m \rightarrow 0$ limit:

$$
\begin{array}{r}
U_{\text {eff }}(P)=\frac{\lambda}{4!} \phi^{4}+\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda \phi^{2}}{2}\right)^{2}\left(\log \left(\frac{\lambda \phi^{2}}{2 \mu^{2}}\right)+C\right) \\
C=-\frac{3}{2}-\int_{0}^{1} d x \log \left(x(1-x) \frac{4}{3}\right)=\frac{1}{2}-\log \frac{4}{3}
\end{array}
$$

$$
\begin{aligned}
U_{\text {eff }}^{\prime}(\phi) & =3 \phi^{3}(\underbrace{\frac{\lambda}{4!}+\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda}{2}\right)^{2}\left(\log \left(\frac{\lambda p^{2}}{2 \mu^{2}}\right)+C+\frac{1}{2}\right)}) \\
& !!
\end{aligned}
$$

$$
U_{\text {eff }}(0)=0, \quad U_{\text {eft }}\left(\pm \phi_{k}\right)=-\frac{1}{8(4 \pi)^{2}}\left(\frac{\lambda \phi_{x}^{2}}{2}\right)^{2}<0
$$

$\phi= \pm \phi_{*}$ are the minimum. Are these the $V E V$ of ϕ ? $\mathbb{Z}_{2}: \phi \rightarrow-\phi$ is spontaneously broken?
$\left(x_{0}\right)=0$: Cancellation of tree and 1-loop correction.

$$
\Rightarrow \mid \text { tree }|=|1-\operatorname{loop}|
$$

Perturbation theory is invalid.
You cannot trust this conclusion.

But then, what is the real conclusion? \mathbb{Z}_{2} symmetry is spontaneously broken or not?
\rightarrow We can answer to this using RG!
RGE on $\Gamma(\phi, \lambda ; \mu) \Rightarrow$

$$
\left(\mu \frac{\partial}{\partial \mu}+\beta(\lambda) \frac{\partial}{\partial \lambda}-\gamma(\lambda) \phi \frac{\partial}{\partial \phi}\right) \bigcup_{\text {eff }}(\phi, \lambda ; \mu)=0
$$

If $\bar{\lambda}(t), \bar{\phi}(t)$ solve $\frac{d \lambda}{d t}=\beta(\lambda), \frac{d \phi}{d t}=-\gamma(\lambda) \phi$,
$R G E \Leftrightarrow U_{\text {eff }}\left(\bar{\phi}(t), \bar{\lambda}(t) ; e^{t} \mu\right)$ is t-independent.
By dimensional analysis, $\bigcup_{\text {eft }}(\phi, \lambda ; \mu)=\phi^{4} U(\phi / \mu, \lambda)$.
At 1 -loop, $\quad \beta=\frac{3 \lambda^{2}}{(4 \pi)^{2}}, \gamma=0$,

$$
\begin{aligned}
& u(\phi / \mu, \lambda)=\frac{\lambda}{4!}+\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda}{2}\right)^{2}\left(\log \left(\frac{\lambda}{2}\left(\frac{\phi}{2}\right)^{2}\right)+C\right) . \\
& \leadsto \quad \bar{\lambda}(t)=\frac{\lambda}{1-\frac{3 t}{(4 \pi)^{2}} \lambda}, \bar{\phi}(t)=\phi \quad \text { for }(\bar{\lambda}(0), \bar{\phi}(0))=(\lambda, \phi) .
\end{aligned}
$$

Let t_{ϕ} be st. $\frac{1}{2}\left(\frac{\phi}{e^{\tau_{p}}}\right)^{2}=1$. i.e. $t_{\phi}=\frac{1}{2} \log \left(\frac{\phi^{2}}{2 \mu^{2}}\right)$.

Then $\bar{\lambda}\left(t_{p}\right)=\frac{\lambda}{1-\frac{3 \lambda}{2(4 \pi)^{2}} \log \left(\frac{\phi^{2}}{2 \mu^{2}}\right)}=: \lambda(\phi)$

$$
\begin{aligned}
& U_{\text {eft }}(\phi, \lambda ; \mu)=U_{\text {eft }}(\underbrace{\bar{\phi}\left(t_{\phi}\right)}_{\phi}, \underbrace{\bar{\lambda}\left(t_{\phi}\right)}_{\lambda(\phi)} ; e^{t_{\phi}} \mu) \\
& =\phi^{4} u\left(\frac{\phi}{e^{t p_{\mu}}}, \lambda(\phi)\right) \\
& \left.=\phi^{4}\left[\frac{\lambda(\phi)}{4!}+\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda(\phi)}{2}\right)^{2}\left(\log \left(\frac{\lambda(\phi)}{l^{2}}\right)\left(\frac{\phi}{e^{t_{p}} \mu}\right)^{2}\right)+C\right)+O\left(\lambda(\phi)^{3}\right)\right] \\
& =\frac{\lambda(\phi)}{4!} \phi^{4}+\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda(\phi) \phi^{2}}{2}\right)^{2}(\log \lambda(\phi)+C)+\cdots
\end{aligned}
$$

This is better and better as $|\phi / M| \rightarrow 0$ where $\lambda(\phi) \rightarrow 0$ $\left[\begin{array}{l}\text { In contrast to } U_{\text {eff }}=\frac{\lambda}{4!} \phi^{4}+\frac{1}{4(\phi \pi)^{2}}\left(\frac{\lambda \phi^{2}}{2}\right)^{2}\left(\log \frac{\lambda \phi^{2}}{2 \mu^{2}}+C\right) \\ \text { which breaks down as }|\phi / \mu| \rightarrow 0 .\end{array}\right]$ RG improvement of perturbation theory!

Where is the minimum?

$$
\begin{aligned}
& 0=U_{e f t}^{\prime}=4 \phi^{3}\left[\frac{\lambda(p)}{4!}+\frac{1}{4(4 \pi)^{2}}\left(\frac{\lambda(p)}{2}\right)^{2}(\log \lambda(\phi)+C)+O\left(\lambda(p)^{3}\right)\right] \\
&+\phi^{4}\left(\frac{1}{4!}+O(\lambda(p))\right) \frac{d \lambda(\phi)}{d \phi}, \frac{3 \lambda(p)^{2}}{(4 \pi)^{2}} \phi^{-1} \\
&= \phi^{3} \lambda(\phi)(\frac{1}{3!}+\frac{\lambda(p)}{4(4 \pi)^{2}}(\underbrace{\left.\left.\log \lambda(p)+C+\frac{1}{2}\right)+O\left(\lambda(p)^{2}\right)\right]}
\end{aligned}
$$

positive $\forall \lambda(\phi) \geqslant 0$
$\phi=0$ is the unique vacuum for $\lambda(\phi)<1$.
No sign of spontaneous \mathbb{Z}_{2} symmetry breaking.

