$$
\begin{aligned}
& \langle\psi(x) \bar{\psi}(y)\rangle_{\text {conn }}=\overleftarrow{\psi(x) \bar{\psi}(y)} \\
& +\frac{1}{2}(-e)^{2} \int d^{4} z_{1} d^{4} z_{2}\left\langle\psi(x)(\bar{\psi} \notin \psi)\left(z_{1}\right)(\bar{\psi} \not A \psi)\left(z_{2}\right) \bar{\psi}(y)\right\rangle_{\text {free }}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d^{4} P_{1}}{(2 \pi)^{4}} \frac{e^{-i P_{1}\left(x-z_{1}\right)}}{-X_{1}+m} \int \frac{d^{4} h_{1}}{(2 \pi)^{4}} \frac{e^{-i h_{1}\left(z_{1}-z_{2}\right)}}{-x_{1}+m} \int \frac{d^{4} P_{4}}{(2 \pi)^{4}} \frac{e^{-i\left(\left(z_{2}-y\right)\right.}}{-X_{2}+m} \int \frac{d^{4} h_{2}}{(2 \pi)^{4}} \frac{\delta_{\mu}}{e^{-i h_{2}\left(z_{1}-\tau_{2}\right)}} \\
& (2 \pi)^{4} \delta\left(p_{1}-h_{1}-k_{2}\right)(2 \pi)^{4} \delta\left(k_{1}-p_{2}+h_{2}\right) \\
& =(2 \pi)^{8} \delta\left(p_{1}-p_{2}\right) \delta\left(k_{2}+h_{1}-p_{2}\right) \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p x}}{-\phi+m} e^{2 \int \frac{d^{4} k}{(2 a)^{4}} \gamma^{\mu} \frac{1}{-k+m} \gamma^{v} \frac{\delta_{\mu \nu}}{(h-p)^{2}}} \frac{e^{i p y}}{-x+m} \\
& =:-\sum_{2}(\rho)
\end{aligned}
$$



$$
\begin{aligned}
& \sum_{2}(p)=-e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} r^{\mu} \frac{1}{-k+m} r^{\nu} \frac{\delta_{r}}{(h-p)^{2}} \\
& =-e^{2} \int \frac{d^{4} h}{(2 \pi)^{4}} \frac{r^{m}(k+m) \gamma_{r}}{\left(h^{2}+m^{2}\right)(h-p)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{-2 k+4 m}{\left(k^{2}+m^{2}\right)(k-p)^{2}}
\end{aligned}
$$

Pauli-Villars regularization

$$
\frac{1}{(k-p)^{2}} \rightarrow \frac{1}{(h-p)^{2}}-\frac{1}{(k-p)^{2}+\Lambda^{2}}
$$

$\Leftrightarrow$ introduce a regulator field $B_{\mu}$ with L Lagrangian

$$
\Delta C=\frac{1}{2} B^{\mu}\left(-\partial^{2}+\Lambda^{2}\right) B_{\mu}+i e \bar{\psi} B Z \psi
$$

gauge invariance is preserved with $\delta B=0$.

$$
\begin{aligned}
& \cdot \frac{1}{\left(h^{2}+m^{2}\right)\left((h-p)^{2}+\Lambda^{2}\right)}=\int_{0}^{1} \frac{d x}{(\underbrace{\left((-x)\left(h^{2}+m^{2}\right)+x\left((h-p)^{2}+\Lambda^{2}\right)\right.})^{2}} \\
& =(\underbrace{h-x p}_{l})^{2}+\underbrace{x(1-x) p^{2}+(1-x) m^{2}+x \Lambda^{2}}_{\Delta} \\
& \text { - denominator }=-2(\not \&+x \not p)+4 m \approx-2 x \not p+4 m \\
& \sum_{2, p v}(p)=\sum_{i=0}^{1} C_{i} \sum_{2}\left(p, \Lambda_{i}\right) ;\left(C_{0}, \Lambda_{0}\right)=(1,0),\left(C_{1}, \Lambda_{1}\right)=(-1, \Lambda) \\
& =2 e^{2} \int_{0}^{1} d x \int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} C_{i} \frac{-x \not x+2 m}{\left(l^{2}+\Delta_{i}\right)^{2}} \\
& =\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x \int_{0}^{\infty} t d t \sum_{i} C_{i} \frac{-x p+2 m}{\left(t+\Delta_{i}\right)^{2}} \\
& =\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left[\sum_{i} C_{i}\left(\log \left(t+\Delta_{i}\right)+\frac{\Delta_{i}}{t+\Delta_{i}}\right)\right]_{0}^{\infty}(-x \not x+2 m) \\
& =-\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x \sum_{i} C_{i}\left(\log \Delta_{i}+X()(-x \not p+2 m)\right. \\
& =-\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x \log \left(\frac{\Delta_{0}}{\Delta_{1}}\right)(-x \not p+2 m)
\end{aligned}
$$

$$
\begin{aligned}
\log \frac{\Delta_{0}}{\Delta_{1}} & =\log \left(\frac{x(1-x) p^{2}+(1-x) m^{2}}{x(1-x) p^{2}+(1-x) m^{2}+x \Lambda^{2}}\right) \\
& =\log \left(\frac{x(1-x) p^{2}+(1-x) m^{2}}{x \Lambda^{2}}\right)+O\left(\frac{p^{3}}{\Lambda^{2}}, \frac{m^{2}}{\Lambda^{2}}\right) \\
\sum_{2, p u}(p) & =\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x\left(-x \not p^{2}+2 m\right) \log \left(\frac{x \Lambda^{2}}{x(1-x) p^{2}+(1-x) m^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\psi(x) \bar{\psi}(y) A_{\nu}(z)\right\rangle_{1 P I} \\
& \left.=-e \int d^{4} w \stackrel{\rightharpoonup}{\psi(x) \bar{\psi}(w)} r^{\mu} A_{\mu}(w) \stackrel{\psi}{\psi(w) \bar{\psi}(y) A_{\nu}(z)}\right\} \rightarrow \leftarrow \leftarrow \\
& +\frac{1}{3!}(-e)^{3} \int d^{4} w_{1} d^{4} w_{2} d^{4} w_{3} \\
& \left.\stackrel{\rightharpoonup}{\psi(x)(\bar{\psi} \not \propto \psi)\left(\omega_{1}\right)(\bar{\psi}} \not \subset \psi\right)\left(\omega_{2}\right)(\bar{\psi} \not \subset \psi)\left(w_{3}\right) \frac{1}{\left.\psi(y) A_{\nu}(z) \times 3!\right)} \\
& +\cdots \\
& \underset{\sim}{\leftarrow}=-e \int d^{4} \omega \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{e^{-i p_{1}(x-\omega)}}{-x_{1}+m} r^{\mu} \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{e^{-i p_{2}(\omega-y)}}{-R_{2}+m} \int d^{4} q \frac{e^{-i q(\omega-z)}}{q^{2}} \delta_{\mu \nu} \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i(p+q) x}}{-(p+q)+m}\left(-e \gamma^{\mu}\right) \frac{e^{i p y}}{-x+m} \frac{\delta_{\mu \nu} e^{i q z}}{q^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =(-e)^{3} \int d^{4} \omega_{1} d^{4} \omega_{2} d^{4} \omega_{3} \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{e^{-i p_{1}\left(x-\omega_{1}\right)}}{-R_{1}+m} \gamma^{p} \int \frac{d^{4} b_{1}}{(2 \pi)^{4}} \frac{e^{-i h_{1}\left(\omega_{1}-\omega_{2}\right)}}{-k_{1}+m} \\
& \gamma^{\mu} \int \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{e^{-i k_{2}\left(\omega_{2}-\omega_{3}\right)}}{-x_{2}+m} \gamma^{\lambda} \int \frac{d^{4} P_{2}}{(2 \pi)^{4}} \frac{e^{-i P_{2}\left(\omega_{2}-y\right)}}{-X_{2}+m} \\
& \int \frac{d^{4} h_{3}}{(2 \pi)^{4}} \frac{e^{-i h_{3}\left(\omega_{1}-\omega_{3}\right)}}{h_{3}{ }^{2}} \delta_{\rho \lambda} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{-i q\left(\omega_{2}-q\right)}}{q^{2}} \delta_{\mu \nu} \\
& \int d^{4} w_{1} d^{4} w_{2} d^{4} w_{3} \Rightarrow(2 \pi)^{4} \delta\left(p_{1}-h_{1}-k_{3}\right)(2 \pi)^{4} \delta\left(h_{1}-k_{2}-q\right)(2 \pi)^{4} \delta\left(k_{2}-p_{2}+k_{3}\right) \\
& =(2 \pi)^{4 \cdot 3} \delta\left(p_{1}-p_{2}-q\right) \delta\left(k_{1}-k_{2}-q\right) \delta\left(k_{2}-p_{2}+k_{3}\right) \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{-i(p+q) x}}{-(p+q)+m}\left(-e \Gamma_{2}^{\mu}(p, q)\right) \frac{e^{i p y}}{-\gamma+m} \frac{e^{i q z} \delta_{\mu}}{q^{2}},
\end{aligned}
$$

where

$$
\Gamma_{2}^{\mu}(p, q)=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{p} \frac{1}{-(k+q)+m} \gamma^{\mu} \frac{1}{-k+m} \gamma^{\lambda} \frac{\delta_{p \lambda}}{(k-p)^{2}}
$$



$$
\Gamma_{2}^{\mu}(p, q)=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{r^{p}((k+q)+m) r^{m}(k+m) \gamma_{\rho}}{\left((k+q)^{2}+m^{2}\right)\left(k^{2}+m^{2}\right)(k-p)^{2}}
$$

$$
\gamma^{\rho} \gamma^{\mu} \gamma_{\rho}=\underbrace{\left\{\gamma^{p}, \gamma^{\mu}\right.}_{-2 \delta^{\rho \mu}}\} \gamma_{\rho}-\gamma_{-4}^{\gamma^{\mu}} \underbrace{\gamma^{p} \gamma_{\rho}}=2 \gamma^{\mu}
$$

$$
\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \gamma_{p}=\underbrace{\left\{\gamma^{p}, \gamma^{\nu}\right\} \gamma^{\mu} \gamma_{p}-\gamma^{\nu}\left\{\gamma^{p}, \gamma^{\mu}\right\} \gamma_{p}+\gamma^{\nu} \gamma^{\mu} \underbrace{\rho} \gamma_{p}, \gamma^{2}}
$$

$$
=-2 \delta^{\rho \nu} \gamma^{\mu} \gamma_{\rho}+2 \delta^{\rho \mu} \gamma^{\nu} \gamma_{\rho}-4 \gamma^{\nu} \gamma^{\mu}
$$

$$
=-2 \gamma^{\mu} \gamma^{\nu}-2 r^{\nu} \gamma^{\mu}=4 \delta^{\mu \nu}
$$

$$
\begin{aligned}
\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \gamma^{\sigma} \gamma_{\rho} & =\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \underbrace{\left(\gamma_{\rho}, \gamma^{\sigma}\right)}_{-2 \delta_{\rho}^{\sigma}}-\underbrace{\gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \gamma_{\rho}}_{4 \delta^{\mu \nu}} \gamma^{\sigma} \\
& =-2 \gamma^{\sigma} \gamma^{\nu} \gamma^{\mu}-4 \delta^{\mu \nu} \gamma^{\sigma}=2 \gamma^{\sigma} \gamma^{\mu} \gamma^{\nu}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { nemerator }=2 k \gamma^{\mu}(k+q)+4 m(k+q)^{\mu}+4 m k^{\mu}+2 m^{2} \gamma^{\mu} \\
& \quad=2\left[k \gamma^{\mu}(k+q)+2 m(2 h+q)^{\mu}+m^{2} \gamma^{\mu}\right]
\end{aligned}
$$

$$
\Gamma_{2}^{\mu}(p, q)=2 e^{2} \int \frac{d^{4} k}{(2 \pi)^{2}} \frac{k r^{\mu}(k+q)+2 m(2 h+q)^{\mu}+m^{2} r^{\mu}}{\left((k+q)^{2}+m^{2}\right)\left(h^{2}+m^{2}\right)(k-q)^{2}}
$$

In the Pauli-Villars regularization we have been using, there is another 1-loop diagram where the regulator field $B_{\mu}$ is involved:


As the coupling is ie $\overline{4} \not \subset \psi$, this will produce $i^{2} \Gamma^{\mu}(p, \varepsilon ; \Lambda)$ where

$$
\Gamma_{2}^{\mu}(p, q: \Lambda):=2 e^{2} \int \frac{d^{4} k}{(2 \pi)^{2}} \frac{k r^{\mu}(k+q)+2 m(2 h+q)^{\mu}+m^{2} r^{\mu}}{\left((k+q)^{2}+m^{2}\right)\left(h^{2}+m^{2}\right)\left((k-q)^{2}+\Lambda^{2}\right)}
$$

In total,

$$
\begin{aligned}
\Gamma_{2, p U}^{\mu}(p, q) & =\Gamma_{2}^{\mu}(p, q ; 0)-\Gamma_{2}^{\mu}(p, q ; \Lambda) \\
& =\sum_{i=0}^{1} c_{i} \Gamma_{2}^{\mu}(1, q ; \Lambda ;)
\end{aligned}
$$

where $\left(C_{0}, \Lambda_{0}\right)=(1,0)$ and $\left(C_{1}, \Lambda_{1}\right)=(-1, \Lambda)$.

Let us evaluate the integral.

$$
\begin{aligned}
& \frac{1}{\left((k+q)^{2}+m^{2}\right)\left(h^{2}+m^{2}\right)\left((k-q)^{2}+\Lambda_{i}^{2}\right)} \\
& =2 \int_{0}^{\infty} \frac{d x d y d z \delta((-x-y-z)}{[\underbrace{x\left(k^{2}+m^{2}\right)+y\left((k+q)^{2}+m^{2}\right)+z\left((h-p)^{2}+\Lambda_{i}^{2}\right)}_{l}]^{3}} \\
& \underbrace{k^{2}+2 y q h-2 z p k+y q^{2}+z p^{2}+(x+y) m^{2}+z \Lambda_{i}^{2}} \\
& =\underbrace{(\underbrace{}_{l}+y q-z p}_{\Delta_{i}})^{2}+\underbrace{y(1-y) q^{2}+z(1-z) p^{2}+2 y z p q+(1-z) m^{2}+z \Lambda_{i}^{2}}
\end{aligned}
$$

- numerator

$$
\begin{aligned}
& (l-y q+z p) \gamma^{m}(l+(1-y) q+z p)+2 m(2 l+(1-2 y) q+2 z p)^{M}+m^{2} \gamma^{M} \\
& =\& \gamma^{\mu} \&+(-y \mathscr{X}+z f) \gamma^{\mu}((1-y) \not \subset+z \neq)+2 m((1-1 y) q+2 z p)^{\mu}+m^{2} \gamma^{\mu} \\
& +l \text {-linear } \\
& E \gamma^{\mu} \ell \simeq \frac{1}{4} l^{2} \gamma^{\rho} \gamma^{n} \gamma_{\rho}=\frac{1}{2} l^{2} \gamma^{n} \\
& \simeq \frac{1}{2} l^{2} \gamma^{\mu}+\underbrace{(-y \not \varnothing+z \not x) \gamma^{\mu}((1-y) \not \subset+z \not \varnothing)+2 m((1-2 y) q+2 z \rho)^{\mu}+m^{2} \gamma^{\mu}}_{11}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \Gamma_{2 p v}^{\mu}(\rho, q)=4 e^{2} \int_{0}^{\infty} d x d y d z \delta(1-x-y-z) \underbrace{\int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} c_{i} \frac{\frac{1}{2} l^{2} r^{\mu}+x^{\mu}}{\left(l^{2}+\Delta_{i}\right)^{3}}} \\
& \text { depends only on } y, z \\
& =4 e^{2} \int_{\Delta} d y d z \int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} C_{i} \frac{\frac{1}{2} l^{2} V^{\mu}+X^{\mu}}{\left(l^{2}+\Delta_{i}\right)^{3}} \\
& \text { where } \backslash:=\left\{(y, z) \in \mathbb{R}^{2} \mid y \geq 0, z \geq 0, y+z \leqslant 1\right\} \\
& \cdot \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{1}{\left(l^{2}+\Delta\right)^{3}}=\frac{1}{(4 \pi)^{2}} \int_{0}^{\infty} \frac{t d t}{(t+\Delta)^{3}}=\frac{1}{(4 \pi)^{2}} \int_{0}^{\infty} d\left(\frac{-1}{t+\Delta}+\frac{1}{2} \frac{\Delta}{(t+\Delta)^{2}}\right) \\
& =\frac{1}{(4 \pi)^{2}}\left(\frac{1}{\Delta}-\frac{1}{2} \frac{\Delta}{\Delta^{2}}\right)=\frac{1}{2(4 \pi)^{2}} \frac{1}{\Delta} \\
& \text { - } \int \frac{d^{4} l}{(2 \pi)^{4}} \sum_{i} C_{i} \frac{l^{2}}{\left(l^{2}+\Delta_{i}\right)^{3}}=\frac{1}{(4 \pi)^{2}} \int_{0}^{\infty} t d t \sum_{i} C_{i} \frac{t}{\left(t+\Delta_{i}\right)^{3}} \\
& d\left(\sum_{i} C_{i} \log \left(t+\Delta_{i}\right)+2 \sum_{i} \frac{c_{i} \Delta_{i}}{t+\Delta_{i}}-\frac{1}{2} \sum_{i} \frac{C_{i} \Delta_{i}^{2}}{\left(t+\Delta_{i}\right)^{2}}\right) \\
& =\frac{1}{(4 \pi)^{2}}\left(-\sum_{i} c_{i} \log \Delta_{i}\right)=\frac{1}{(4 \pi)^{2}} \log \left(\frac{\Delta_{1}}{\Delta_{0}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \Gamma_{2 p u}^{\mu}(p, q)=4 e^{2} \int_{\Delta} d y d z {\left[\frac{1}{(4 \pi)^{2}} \log \left(\frac{\Delta_{1}}{\Delta_{u}}\right) \frac{1}{2} \gamma^{\mu}\right.} \\
&\left.+\frac{1}{2(4 \pi)^{2}}\left(\frac{X^{\mu}}{\Delta_{0}}-\frac{X^{\mu}}{\Delta_{1}}\right)\right] \\
&=\frac{2 e^{2}}{(4 \pi)^{2}} \int_{\Delta} d y d z\left[\log \left(\frac{z \Lambda^{2}}{\Delta_{0}}\right) \gamma^{\mu}+\frac{X^{\mu}}{\Delta_{0}}\right. \\
&\left.+O\left(\frac{m^{2}}{\Lambda^{2}}, \frac{p^{2}}{\Lambda^{2}}, \frac{q^{2}}{\Lambda^{2}}, \frac{p q}{\Lambda^{2}}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta_{0}=y(1-y) q^{2}+z(1-z) p^{2}+2 y z p q+(1-z) m^{2} \\
& X^{\mu}=(-y \not x+z \not x) \gamma^{r}((1-y) \not x+z \not x)+2 m((1-2 y) q+2 z p)^{\mu}+m^{2} \gamma^{\mu}
\end{aligned}
$$

Recall $\Gamma[\phi]=S_{\text {free }}[\phi]$ - generating function of 1PI diagrams.


$$
\Gamma(A, \psi, \bar{\psi})
$$

$$
=\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\frac{1}{2} A_{r}(-p)\left(\delta^{r \nu} p^{2}-p^{\mu} p^{\nu}+\frac{1}{\xi} p^{\mu} p^{\nu}-\Pi^{r v}(p)\right) A_{u}(p)\right.
$$

$$
+\bar{\psi}(-p)\left(-\not x+m+\sum(p)\right) \psi(p)
$$

$$
+\int \frac{d^{q} p}{(2 \pi)^{4}} \frac{d^{4} q}{(2 q)^{4}} \bar{\psi}(-p-q) e \Gamma^{\mu}(p, q) A_{\mu}(q) \psi(p)
$$

* higher powers of fields
^ Here we recovered the general gauge parameter $\xi$

Digression: Ward identity for 1PI effective action
Let us consider a general QFT with variable $\phi=\left(\phi_{1}, \cdots, \phi_{N}\right)$ measure $d \phi$ and action $S(\phi)$.
Suppose $\phi \rightarrow \phi+\delta \phi$ is a symmetry, $\delta\left(d \phi e^{-S(9)}\right)=0$.
Then, wa have Ward identity

$$
\begin{aligned}
0 & =\int \delta\left(d \phi e^{-S(\phi)+J \cdot \phi}\right) \\
& =\int d \phi e^{-S(\phi)+J \cdot \phi} J \cdot \delta \phi=e^{-W(J)} J \cdot\langle\delta \phi\rangle_{J}
\end{aligned}
$$

Set $J=J(\phi)$ and use $\frac{\partial \Gamma}{\partial \phi_{i}}(\phi)=J_{i}(\phi)$. We obtain
$\sum_{i}\left\langle\delta \phi_{i}\right\rangle_{J(\phi)} \frac{\partial \Gamma}{\partial \phi_{i}}(P)=0 . \quad$ Slavnov-Taylor identity
ie. $\quad \Gamma(\phi)$ is invariant under $\phi \rightarrow \phi+\langle\delta \phi\rangle_{J(\Phi)}$.

For an at most linear symmery: $\delta \phi_{i}=M_{i}, \phi_{j}+C_{i}$,

$$
\left\langle\delta \phi_{i}\right\rangle_{J(\phi)}=M_{i j}\left\langle\phi_{j}\right\rangle_{J(\phi)}+C_{i}=M_{i j} \phi_{j}+C_{i}=\delta \phi_{i}
$$

So $\Gamma(P)$ is invariant under the original symmetry.

A variant: nonsymmery

$$
\text { e.g. } \delta\left(d \phi e^{-S(\phi)}\right)=d \phi e^{-S(\phi)}(-\delta S(\phi))
$$

Then $0=\int d \Phi e^{-S(\phi)+J \cdot \phi}(-\delta S(\phi)+J \cdot \delta \phi)$

$$
=e^{-W(J)}\left(-\langle\delta S(\phi)\rangle_{J}+J \cdot\langle\delta \phi\rangle_{J}\right)
$$

and setting $J=J(P)$ we have

$$
\sum_{i}\left\langle\delta \phi_{i}\right\rangle_{J(p)} \frac{\partial P}{\partial \phi_{i}}(p)=\langle\delta S(\phi)\rangle_{J(\phi)}
$$

If both $\delta \phi$ \& $\delta S(\phi)$ are at most linear,

$$
\delta \Gamma(\phi)=\delta S(\phi)
$$

End of Digression

Let us apply this to the gauge fixed $Q E D$ and the gauge transformation

$$
\delta A_{\mu}=-\frac{1}{e} \partial_{\mu} \alpha, \quad \delta \psi=i \alpha \psi, \quad \delta \bar{\psi}=\bar{\psi}(-i \alpha) .
$$

This is at most linear, and also

$$
\delta S=\int d^{4} x \frac{1}{\xi}\left(-\frac{1}{e} \partial^{2} \alpha\right) \partial \cdot A \text { is linear. }
$$

Therefore (the variant of ) Slaunov-Taylor identity reads

$$
\delta\left[[A, \psi, \bar{\psi}]=\int d^{4} x \frac{1}{\xi}\left(-\frac{1}{e} \partial^{2} \alpha\right) \partial \cdot A .\right.
$$

That is, if we set

$$
\Gamma[A, \psi, \bar{\psi}]=\int d^{4} x \frac{1}{2 \xi}(\partial \cdot A)^{2}+\Gamma^{\operatorname{inv}}[A, \psi, \bar{\psi}]
$$

then, $P^{i n u}[A, \Psi, \bar{\Psi}]$ is gauge invariant,

$$
\delta \Gamma^{\operatorname{inv}}(A, \psi, \bar{\psi}]=0
$$

In $[[A, \psi, \bar{\psi}]$, the gauge fixing term of the classical Lagrangian is the only term that breaks the gauge symmetry. Ie. "Gauge fixing term is not renormalized."

Note: $\Gamma^{i n u}[A, \psi, \bar{\psi}]$

$$
\begin{aligned}
=\int \frac{d^{4} p}{(2 \pi)^{4}}\{ & \frac{1}{2} A_{r}(-p)\left(\delta^{\mu \nu} p^{2}-p r p^{\nu}-\Pi^{\mu \nu}(p)\right) A_{\nu}(p) \\
& +\bar{\psi}(-p)\left(-\not p+m+\sum(p)\right) \psi(p) \\
& +\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{d^{4} l}{(2 \pi)^{4}} \bar{\psi}(-p-q) e l^{\mu}(p, q) A_{r}(q) \psi(p)
\end{aligned}
$$

+ higher power

$$
\begin{aligned}
& \delta A_{\mu}(p)=\frac{i}{e} p_{\mu} \alpha(p) \\
& \delta \psi(p)=\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{d^{4} p_{2}}{(2 \pi)^{4}}(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p\right) i \alpha\left(p_{1}\right) \psi\left(p_{2}\right) \\
& \delta \bar{\psi}(-p)=\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{d^{4} p_{2}}{(2 \pi)^{4}}(2 \pi)^{4} \delta\left(p_{+} p_{1}-p_{2}\right) \bar{\psi}\left(-p_{2}\right)\left(-i \alpha\left(p_{1}\right)\right) \\
& \delta \Gamma^{\operatorname{inv}}[A, \psi, \bar{\psi}]=0 \\
& \Rightarrow\left\{\begin{array}{l}
p_{\mu} \Pi^{\mu \nu}(p)=0 \\
q_{r} \Gamma^{\mu}(p, q)-q+\sum(p+q)-\sum(p)=0
\end{array}\right.
\end{aligned}
$$

The identities are derived in another way (though the origin is the same).

Another application
The (gauge fixed) Lagrangian of massless $Q E D$

$$
\mathcal{L}=\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+i \bar{\psi}\left(-\gamma^{\mu} D_{\mu}\right) \psi+\frac{1}{2 \xi}(\partial \cdot A)^{2}
$$

has axial symmetry $\left(r_{5}=\gamma^{1} \gamma^{2} \gamma^{3} \gamma^{4}, \beta\right.$ : constant $)$

$$
A_{\mu} \rightarrow A_{\mu}, \psi \rightarrow e^{i \beta \gamma_{s}} \psi, \bar{\psi} \rightarrow \bar{\psi} e^{i \beta r_{s}}
$$

Indeed, $\gamma^{M} \gamma_{S}=-\gamma_{5} \gamma^{M}$ and hence

$$
e^{i \beta r_{s}} \gamma^{\mu} e^{i \beta \gamma_{s}}=e^{i \beta r_{s}} e^{-i \beta \gamma_{s}} \gamma^{\mu}=\gamma^{\mu}
$$

(A mass term $\propto \bar{\psi} \psi$ would not be invariant.)
Suppose the path-integral measure is also invariant.
As the transformation is at most linear, by Slaunou-Taylor identity, $\Gamma[A, \psi, \bar{\psi}]$ is also invariant. In particular,

$$
e^{i \beta \gamma_{s}} \sum(p) e^{i \beta \gamma_{s}} \stackrel{!}{=} \sum(p)
$$

This requires $\sum(p) \propto \not \subset$ in the massless theory.
If we recover $m \neq 0, \sum(p)$ must be of the form

$$
\Sigma(p)=A\left(p^{2}\right) \not \varnothing+B\left(p^{2}\right) m
$$

Structure of divergence
On dimensional ground, the divergence as the UV corot $\Lambda$ is removed $(\Lambda, \rightarrow \infty)$ must be of the form

$$
\begin{aligned}
& \pi^{\mu \nu}(p)=\left(\delta^{\mu \nu} p^{2}-p^{\mu} p^{\nu}\right) a_{1} \log \Lambda+\text { finite, } \\
& \sum(p)=a_{2} \log \Lambda \not x+a_{3} \Lambda+a_{4} \log \Lambda m+\text { finite, } \\
& \Gamma^{\mu}(p, q)=a_{5} \log \Lambda \gamma^{r}+\text { finite }
\end{aligned}
$$

with some constants $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$

- By $\quad q_{\mu} \Gamma^{\mu}(p, q)=q+\sum(p)-\sum(p+q)$,
we find $a_{5}=-a_{2}$.
- By the axial symmetry of the $m=0$ theory
we also find $a_{3}=0$.
Indeed, at the one loop level (with $M_{1} \sim M_{2} \sim \wedge$ ),

$$
\begin{array}{ll}
a_{1}=-\frac{8 e^{2}}{3(4 \pi)^{2}}, & a_{2}=-\frac{2 e^{2}}{(4 \pi)^{2}}, \quad a_{3}=0, \quad a_{4}=\frac{8 e^{2}}{(4 \pi)^{2}} \\
a_{5}=\frac{2 e^{2}}{(4 \pi)^{2}}, & a_{2}+a_{5}=a_{3}=0 \text { is satisfied. }
\end{array}
$$

Renormalization
In view of the structure of divergence, after regularization, we can renormalize the theory as

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{4 e_{0}^{2}} F_{0}^{\mu \nu} F_{0 \mu \nu}+\bar{\psi}_{0}\left(-i \varnothing_{A_{0}}+m_{0}\right) \psi_{0}+\frac{1}{2 e_{0}^{2} \xi_{0}}\left(\partial \cdot A_{0}\right)^{2} \\
& \quad \frac{1}{e_{0}^{2}}=\frac{z_{3}}{e^{2}}, \quad \psi_{0}=\sqrt{z_{2}} \psi_{1}, \bar{\psi}_{0}=\sqrt{z_{2}} \bar{\psi}, \quad z_{2} m_{0}=z_{m} m \\
& \quad A_{0}=e A, \quad e_{0}^{2} \xi_{0}=e^{2} \xi \\
& =
\end{aligned}
$$

- $Z_{3}$ takes care of the divergence of $\Pi^{\mu \nu}(p) \leftrightarrow F^{m \nu} F_{\mu \nu}$.
- $Z_{2}$ takes care of the Common divergence of $\not D$ part of $\Sigma(\rho) \leftrightarrow i \bar{\psi} \partial \psi$ and $\rho^{M}(p, q) \leftrightarrow e \bar{\psi} A \psi$.
- $Z_{m}$ rakes cave of the divergence of $m$ id part of $\sum(p) \leftrightarrow \bar{\psi} \psi \psi$.

$$
\begin{aligned}
& z_{3}=1+\delta_{3}^{(1)}+\delta_{3}^{(2)}+\cdots \\
& z_{2}=1+\delta_{2}^{(1)}+\delta_{2}^{(2)}+\cdots \\
& z_{m}=1+\delta_{m}^{(1)}+\delta_{m}^{(2)}+\cdots
\end{aligned}
$$

We determine $\delta_{3}^{(a)}, \delta_{2}^{(a)}, \delta_{m}^{(a)}$ order by order in perturbation theory so that

$$
\begin{aligned}
& \Gamma_{0}\left[A_{0}, \psi_{0}, \bar{\psi}_{0}, e_{0}(\Lambda), m_{0}(\Lambda), \xi_{0} ; \Lambda\right] \\
&=[[A, \psi, \psi, e, m, \xi ; \Lambda]
\end{aligned}
$$

is finite as a function of $A, \Psi, \bar{\psi}, e, m, \xi$ as the $W$ cut-ott $\wedge$ is removed.

There is an ambiguity in the choice of renormalized fields and couplings, but that is fixed by renormalization condition.

Renormalization condition

$$
\begin{aligned}
& \pi^{\mu r}(q)=\left(\delta^{\mu \nu} q^{2}-q^{\mu} q^{u}\right) \Pi\left(q^{2}\right) \\
& \Sigma(p)=A\left(p^{2}\right) \not p+B\left(p^{2}\right) m \\
& \begin{cases}\Pi(0)=0 \\
A\left(-m^{2}\right)=0 & \text { On shell venormaliz } \\
B\left(-m^{2}\right)=0\end{cases} \\
& \begin{cases}\Pi\left(\mu^{2}\right)=0 & \text { Another R.C. } \\
A\left(\mu^{2}\right)=0 & \mu: \text { a mass scale. } \\
B\left(\mu^{2}\right)=0 & \end{cases}
\end{aligned}
$$

Solution at 1-loop

$$
\begin{aligned}
& \Pi^{(1)}\left(q^{2}\right)=\Pi_{2}\left(q^{2}\right)-\delta_{3}^{(1)}, \\
& A^{(1)}\left(p^{2}\right)=A_{2}\left(p^{2}\right)-\delta_{2}^{(1)}, \\
& B^{(1)}\left(p^{2}\right)=B_{2}\left(p^{2}\right)+\delta_{m}^{(1)},
\end{aligned}
$$

where (for $\xi=1$ )

$$
\begin{aligned}
& \Pi_{2}\left(q^{2}\right)=-\frac{8 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \log \left(\frac{M^{2}}{m^{2}+x(1-x) q^{2}}\right) \\
& A_{2}\left(p^{2}\right)=-\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x \log \left(\frac{x \Lambda^{2}}{(1-x) m^{2}+x(1-x) p^{2}}\right) \\
& B_{2}\left(p^{2}\right)=\frac{4 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x \log \left(\frac{x \Lambda^{2}}{(1-x) m^{2}+x(1-x) p^{2}}\right)
\end{aligned}
$$

On shell $\delta_{3}^{(1)}=\Pi_{2}(0), \delta_{2}^{(1)}=A_{2}\left(-m^{2}\right), \delta_{m}^{(1)}=-B_{2}\left(-m^{2}\right)$
Another $\delta_{3}^{(1)}=\Pi_{2}\left(\mu^{2}\right), \quad \delta_{2}^{(1)}=A_{2}\left(\mu^{2}\right), \delta_{m}^{(1)}=-B_{2}\left(\mu^{2}\right)$

The result (on shell R.C.):

$$
\begin{aligned}
\Pi^{(\prime)}\left(q^{2}\right) & =\frac{8 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \log \left(\frac{m^{2}+x(1-x) q^{2}}{m^{2}}\right) \\
\Sigma^{\prime \prime \prime}(\rho) & =\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x(x \not x-2 m) \log \left(\frac{m^{2}+x p^{2}}{(1-x) m^{2}}\right) \\
\Gamma^{\mu(1)}(\rho, q) & =\gamma^{\mu}-\frac{2 e^{2}}{(4 \pi)^{2}} \int_{\Delta} d y d z\left[\log \left(\frac{(1-z) \Delta_{0}}{z^{3} m^{2}}\right) r^{\mu}-\frac{x^{\mu}}{\Delta_{0}}\right] \\
\Delta_{0} & =y(1-y) q^{2}+z(1-z) p^{2}+2 y z p q+(1-z) m^{2} \\
X^{\mu} & =(-y x+z \not x) \gamma^{r}((1-y) x+z \not x)+2 m((1-2 y) q+z z p)^{n}+m^{2}-\gamma^{\mu}
\end{aligned}
$$

meaning of $\Pi\left(q^{2}\right)$ : It enters into $\Gamma[A, \psi, \bar{\psi}]$ as

$$
\begin{aligned}
\Gamma^{\text {inv }}[A, \psi, \bar{\psi}]= & \int \frac{d^{q} q}{(2 \pi)^{4}} \frac{1}{2} A_{\mu}(-q)\left(\delta^{\mu \nu} q^{2}-q^{\mu} q^{v}\right)\left(1-\Pi\left(q^{2}\right)\right) A_{\nu}(q) \\
& +\cdots
\end{aligned}
$$

$\Rightarrow e_{\text {eft }}^{2}\left(a^{2}\right)=\frac{e^{2}}{1-\pi\left(q^{2}\right)}$
effective gauge coupling constant at energy scale $q^{2} \approx$ length scale $1 / q^{2}$.

$$
\begin{aligned}
& \Pi\left(q^{2}\right) \rightarrow\left\{\begin{array}{l}
O\left(q^{2} / m^{2}\right) \quad \text { as } \quad q^{2} / m^{2} \rightarrow 0 \\
\frac{4 e^{2}}{3(4 \pi)^{2}}\left(\log \left(\frac{q^{2}}{m^{2}}\right)-\frac{5}{3}+O\left(\frac{m^{2}}{q^{2}}\right)\right] \text { as } q^{2} \gg m^{2}
\end{array}\right. \\
& e_{\text {eft }}^{2}\left(q^{2}\right) \rightarrow \begin{cases}e^{2} \text { as } q^{2} / m^{2} \rightarrow 0\end{cases} \\
& \frac{e^{2}}{1-\frac{4 e^{2}}{3(4 \pi)^{2}}\left(\log \left(q^{2} / m^{2}\right)-5 / 3\right)} \text { as } q^{2} / m^{2} \gg 1
\end{aligned}
$$


$e_{\text {eff }}^{2}\left(q^{2}\right) \sim e^{2}$ at long distances $|q|^{-1}>\frac{1}{m}$
$\operatorname{eeff}^{2}\left(q^{2}\right)$ grows at short distances $191^{-1}<\frac{1}{m}$

Interpretation:
"charge screening by vacuum polarization"


Renormalization group
Take the "Another renormalization condition", and denote the $1 P[$ effective action as $\Gamma[A, \psi, \bar{\Psi}, e, m, \xi ; M, \Lambda]$

Change the renormalization point $\mu$ while fixing bare fields/copplings $A_{0}, \Psi_{0}, \bar{\Psi}_{3}, e_{0}, m_{0}, \xi_{0}$. Then, we have $R G E$

$$
\begin{aligned}
0 & =\mu \frac{d}{d \mu} \Gamma\left[A_{0}, \psi_{0}, \bar{\psi}_{0}, e_{0}, m_{0}, \xi_{0} ; \Lambda\right] \\
& =\mu \frac{d}{d \mu} \Gamma[A, \psi, \bar{\psi}, e, m, \xi ; \mu, \Lambda]
\end{aligned}
$$

We denote

$$
\begin{aligned}
& \mu \frac{d}{d \mu} \phi_{I}=-\gamma_{I} \phi_{\tau} \quad \text { for } \phi_{I}=A, \psi, \bar{\Psi}, m \text { and } \\
& \mu \frac{d}{d \mu} e=\beta .
\end{aligned}
$$

As $A_{0}=e A$ and $e_{0}^{2} \xi_{0}=e^{2} \xi$, we find

$$
\begin{aligned}
& 0=\beta A+e\left(-\gamma_{A} A\right), 0=2 e \beta \xi+e^{2} \mu \frac{d \xi}{d \mu} . \\
& \text { i.e. } \quad \gamma_{A}=\frac{1}{e} \beta \text { \& } \mu \frac{d \xi}{d \mu}=-2 \frac{1}{e} \beta \xi=-2 \gamma_{A} \xi
\end{aligned}
$$

Thus, the RGE (in the limit $\Lambda \lambda \infty$ ) reads

$$
\begin{aligned}
& \left(\mu \frac{\partial}{\partial \mu}-\frac{1}{e} \beta A \cdot \frac{\delta}{\delta A}-r_{\psi} \psi \frac{\delta}{\delta \psi}-r_{\psi} \bar{\psi} \frac{\delta}{\partial \bar{\psi}}-r_{m} m \frac{\partial}{\partial m}\right. \\
& \left.\quad+\beta \frac{\partial}{\partial e}-\frac{2}{e} \beta \xi \frac{\partial}{\partial \xi}\right) \Gamma[A, \psi, \bar{\psi}, e, m, \xi: \mu]=0 .
\end{aligned}
$$

As $\frac{1}{e_{0}^{2}}=\frac{z_{3}}{e^{2}}, \psi_{0}=\sqrt{z_{2}} \psi, \quad \bar{\psi}_{0}=\sqrt{z_{2}} \bar{\psi}, \quad z_{2} m_{0}=z_{m} m$,

$$
\begin{aligned}
& 0=-2 e^{-3} \beta z_{3}+e^{-2} \mu \frac{d}{d \mu} z_{3}, \\
& 0=\mu \frac{d}{d \mu} \sqrt{Z_{2}} \psi+\sqrt{z_{2}}\left(-\gamma_{4} \psi\right), \\
& 0=\mu \frac{d}{d \mu} z_{2}^{-1} z_{m} m+Z_{2}^{-} \mu \frac{d}{d \mu} z_{m} m+Z_{2}^{-1} z_{m}\left(-\gamma_{m} m\right) . \\
& \beta=\frac{1}{2} e \mu \frac{d}{d \mu} \log z_{3} \\
& \gamma_{4}=\frac{1}{2} \mu \frac{d}{d \mu} \log z_{2} \\
& \gamma_{m}=\mu \frac{d}{d \mu} \log z_{m}-\mu \frac{d}{d \mu} \log z_{2}
\end{aligned}
$$

Computation at 1 -loop (at $\xi=1$ ):

$$
\begin{aligned}
& \beta^{(1)}=\frac{1}{2} e \mu \frac{d}{d \mu} \delta_{3}^{(1)}=\frac{4 e^{3}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \frac{x(1-x) 2 \mu^{2}}{m^{2}+x(1-x) \mu^{2}} \\
& \gamma_{4}^{(1)}=\frac{1}{2} \mu \frac{d}{d \mu} \delta_{2}^{(1)}=\frac{e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x \frac{x 2 \mu^{2}}{m^{2}+x \mu^{2}} \\
& \gamma_{m}^{(1)}=\mu \frac{d}{d \mu}\left(\delta_{m}^{(1)}-\delta_{2}^{(1)}\right)=\frac{2 e^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x(2-x) \frac{x 2 \mu^{2}}{m^{2}+x \mu^{2}}
\end{aligned}
$$

The result for $\beta^{(1)}$ is valid for any $\xi$
since $\overleftarrow{\psi(x) \Psi}(y)$ is independent of $\xi$.
The result to $\gamma_{\psi}^{(1)}$ a $\gamma_{m}^{(1)}$ depends on $\xi$.
(see the additional note for the expressions.)
Note that

$$
\beta^{(1)} \simeq \begin{cases}\frac{4 e^{3}}{3(4 \pi)^{2}} & \mu \gg m \\ \frac{4 e^{2}}{15(4 \pi)^{2}} \frac{\mu^{2}}{m^{2}} \sim 0 & \mu \ll m\end{cases}
$$

Just like the $\phi^{4}$ theory.

$$
\begin{aligned}
& \underline{\mu \gg m: \beta \sim \frac{4 e^{3}}{3(4 \pi)^{2}} \leftrightarrow \mu \frac{d}{d \mu} \frac{1}{e^{2}} \sim-\frac{8}{3(4 \pi)^{2}}} \begin{array}{l}
\frac{1}{e^{2}(\mu)}-\frac{1}{e^{2}\left(\mu_{0}\right)} \sim-\frac{8}{3(4 \pi)^{2}} \log \left(\mu / \mu_{0}\right) \\
e^{2}(\mu) \sim \frac{e^{2}\left(\mu_{0}\right)}{1-\frac{8 e^{2}\left(\mu_{0}\right)}{3(4 \pi)^{2}} \log \left(\mu / \mu_{0}\right)}
\end{array} .=\frac{1}{\left.1-\frac{1}{3}\right)}
\end{aligned}
$$

The gauge coupling is weaker at lower energies or Stronger at higher energies,

$$
\mu \ll m: \quad \beta \sim 0
$$

The gauge coupling stops running.


As we've already seen.

The massless theory $m=0$ :

$$
\begin{aligned}
e^{2}(\mu) & \frac{e^{2}\left(\mu_{0}\right)}{1-\frac{8 e^{2}\left(\mu_{0}\right)}{3(4 \pi)^{2}} \log \left(\mu / \mu_{0}\right)}
\end{aligned} \quad \text { valid at low } \mu
$$

infra-red free!

A simple generalization
$Q E D$ with electrons with charges $Q_{1}, \cdots, O_{N}$

$$
\begin{gathered}
\mathcal{L}=\frac{1}{4 e^{2}} F^{\mu \nu} F_{\mu \nu}+\sum_{i=1}^{N} \bar{\Psi}_{i}\left(-i \varnothing_{A}+m_{i}\right) \psi_{i} \\
\varnothing_{A} \psi_{i}=\gamma^{\mu}\left(\partial_{\mu}+i Q_{i} A_{r}\right) \psi_{i}
\end{gathered}
$$

$$
\begin{aligned}
\Pi_{2}(q) & =\sum_{i} Q_{i} e{ }^{Q: e} \\
& =\sum_{i}-\frac{8\left(Q_{i} e\right)^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \log \left(\frac{M^{2}}{m_{i}^{2}+x(1-x) q^{2}}\right)
\end{aligned}
$$

With "another R.C." $\Pi\left(\mu^{2}\right)=0, \cdots$,

$$
\begin{aligned}
\beta^{(1)} & =\frac{1}{2} e \mu \frac{d}{d \mu} \delta_{3}^{(1)}=\frac{1}{2} e \mu \frac{d}{d \mu} \Pi_{2}\left(\mu^{2}\right) \\
& =\sum_{i} e \frac{8(Q: e)^{2}}{(4 \pi)^{2}} \int_{0}^{1} d x x(1-x) \frac{x(1-x) \mu^{2}}{m_{i}^{2}+x(1-x) \mu^{2}}
\end{aligned}
$$

Suppose the musses are well-separated

$$
m_{1} \ll m_{2} \ll \ldots<m_{N} .
$$

At the energy scale $m_{i} \ll \mu \ll m_{i+1}$,

$$
\beta \sim \frac{4 e^{3}}{3(4 \pi)^{2}} \sum_{j=1}^{i} Q_{j}^{2}
$$

The slope depends on the energy scale


