Recap

$$
\begin{aligned}
& M=\left\{\text { field configuration }\left(A_{\mu}(x), \phi(x), \psi(x,,-)\right\} \rightarrow M^{n}\right. \\
& g=\{G \text {-valued function } g(x)\} \rightarrow G^{d a}
\end{aligned}
$$

$$
=\{X(\phi)=0\}
$$ M / G

- Sine S
gauge fixing condition

$$
\begin{aligned}
& z(f)=\int_{M / G}^{\prime \prime}[d \phi] e^{-S_{E}(\phi)} f(p) \\
& =\int_{M} d p e^{-S_{E}(\phi)} \delta(\underbrace{\chi}_{\chi})-\omega(p)) \underbrace{\chi(\delta X(p)) f(\phi)}_{F . P . \operatorname{det}} \\
& =\frac{1}{(L \pi \xi)^{\lambda / / 2}} \int_{M \times g} d \phi d \omega e^{-\int_{E}(p)-\frac{1}{2 \xi} \omega^{2}} \delta(X(\phi)-\omega) \operatorname{det}(\delta X(p)) f(p) \\
& =\frac{1}{(2 \pi \xi)^{2 l / 2}} \int_{M} d \phi e^{-\int_{E}(p)-\frac{1}{2 \xi} X(p)^{2}} \operatorname{det}(\delta x(p)) f(p)
\end{aligned}
$$

(\#)

$$
\begin{aligned}
& Z(f)=\frac{1}{(2 \pi \xi)^{d \omega / 2}} \int_{M \times y} d \phi d \omega e^{-\int_{E}(p)-\frac{1}{2 \xi} \omega^{2}} \underbrace{\delta(x(\phi)-\omega)} \operatorname{det}(\delta x(\phi)) f(p) \\
& \frac{1}{(2 \pi)^{d a}} \int d B e^{i B \cdot(X(p)-w)} \\
& \int d \bar{c} d c e^{-\bar{c} \cdot \delta_{c} x(p)} \\
& c, \bar{C}: F . P \text {. ghosts } \\
& =\frac{1}{(2 \pi)^{d c}} \int_{M_{*} \boldsymbol{g}_{b} \times \sigma_{f} \times \sigma_{f}} d \phi_{d B} d \bar{C} d C e^{-\tilde{S}_{E}(\phi, B, \bar{C}, C)} \\
& \widetilde{S}_{E}(P, B, \bar{C}, C)=S_{E}(P)+\frac{3}{2} B^{2}-i B \cdot X(P)+\bar{C} \cdot \delta_{c} \chi(P)
\end{aligned}
$$

gauge fixed action

The gauge fixed system has a symmetry δ_{B} called BRST symmetry

$$
\begin{aligned}
& \delta_{B} \phi=\delta_{C} \phi \\
& \delta_{B} B=0 \\
& \delta_{B} \bar{C}=i B \\
& \delta_{B} C=-\frac{1}{2}[c, c]
\end{aligned}
$$

$$
\begin{aligned}
& c=e^{a} C_{a} \\
& {[C, C]=\left(e^{a} C_{a}, e^{b} c_{b}\right]} \\
& =\left[e^{a}, e^{b}\right] c_{a} c_{b} \\
& \text { If }\left[e^{a}, e^{b}\right]=e^{d} f_{d}^{a b} \text {, } \\
& \delta C_{a}=-\frac{1}{2} f_{a}^{b c} C_{b} C_{d}
\end{aligned}
$$

It is a fermionic symmery $\left\{\begin{array}{l}\delta_{B} \text { bosonic is fermionic } \\ \delta_{B} \text { fermionic is bosonic. }\end{array}\right.$

$$
\begin{aligned}
& \delta_{B}\left(\Theta_{1} \Theta_{2}\right)=\delta_{B} \Theta_{1} \cdot \Theta_{2}+(-1)^{\left(Q_{1}\right)} \mathcal{O}_{1} \cdot \delta_{B} O_{2} \\
& \delta_{B} \widetilde{S}_{E}=\delta_{C} \delta_{E}(\phi)-i B \cdot \delta_{C}^{0} \chi(\phi)+i B \cdot \delta_{C} \chi(\phi) \\
& -\bar{C} \delta C_{a} \delta^{a} X(\phi)+\bar{C} C_{a} \delta_{C} \delta^{a} X(\phi) \\
& -\frac{1}{2} f_{a}^{b d} C_{b} C_{d} \quad C_{b} \delta^{b} \delta^{a} X(\varphi) \\
& {\left[f_{a}^{b d} \delta^{a} x=\delta^{b} \delta^{d} x-\delta^{d} d^{b} X(\because \text { right action })\right.} \\
& =\frac{1}{2} \bar{C} C_{b} C_{d}\left(\delta^{b} \delta^{d}-\delta^{d} \delta^{b}\right) X(\phi)+\bar{C} C_{a} C_{b} \delta^{b} \delta^{a} X(\varphi)=0 .
\end{aligned}
$$

Remarks

- $\delta_{B}{ }^{\circ} \delta_{B}=0 \quad$ (exercise)
$\left(\mathcal{)}\right.$ is said to be BRST closed when $\delta_{B} \mathcal{O}=0$
BRST exact when $\mathcal{O}=\delta_{B}(-)$.
By $\delta_{0} \circ \delta_{B}=0, \quad B R S T$ exact $\Rightarrow B R S T$ closed.
- $\widetilde{S}_{E}=S_{E}-\delta_{B}\left(\bar{C} \cdot\left(\chi(\phi)-\frac{i \xi}{2} B\right)\right)$
... The gauge fixing term is BRST exact.
- $\left\langle\delta_{B} h\right\rangle=0$ by ward identity.

If $\delta_{B} f=0$, then

$$
\left\langle f \cdot \delta_{B} h\right\rangle=(-1)^{|f|}\left\langle\delta_{B}(f \cdot h)\right\rangle=0 .
$$

In particular, if f_{1}, \cdots, f_{n} are BRST closed,
$\left\langle f_{1} \cdots \cdot f_{n}\right\rangle$ does not change uncles change of f_{i} 's by BRST exact ones, $f_{i} \rightarrow f_{i}+\delta_{B} h_{i}$

There motivate us to consider BRST cohomology:

$$
H_{\text {BRIT }}=\{\text { BRST closed }\} /\{B R S T \text { exact }\}
$$

A proposal:
Physical observables are BRST cohomology classes. (states) (states)

There is another symmetry: ghost number Ngh^{h}

	P	B	\bar{C}	C
$N_{g h}$	0	0	-1	1

δ_{B} increases $N_{g^{h}}$ by $1, \quad\left[N_{g^{h}}, \delta_{B}\right]=1$

$$
\begin{aligned}
& \mathcal{F}^{i}=\left\{\text { observable of } N_{g h}=i\right\} \\
& \Rightarrow \delta_{B}: F^{i} \rightarrow F^{i+1} \\
& H_{B R S T}^{i}(F)=\operatorname{Ker}\left(\delta_{B}: F^{i} \rightarrow F^{i+1}\right) / \operatorname{Tm}\left(\delta_{B}: F^{i-1} \rightarrow \mathcal{F}^{i}\right) .
\end{aligned}
$$

We may also integrate -out B :

$$
\begin{aligned}
& Z=\frac{1}{(2 \pi \xi)^{d c / 2}} \int_{M \times \sigma \times \eta} d \phi d \bar{C} d c e^{-\tilde{S}_{E}(\phi, \bar{c}, c)} \\
& \tilde{S}_{E}=S_{E}(\phi)+\frac{1}{2 \xi} X(\phi)^{2}+\bar{C} \cdot \delta_{c} X(P)
\end{aligned}
$$

This is also obtained directly from (1) (2).
This system also has BRST symmetry

$$
\begin{aligned}
& \delta_{0} \phi=\delta_{C} \phi \\
& \delta_{B} \bar{C}=-\frac{1}{\xi} X(\phi) \quad \leftarrow \text { from EOM: } B=\frac{i}{\xi} X(P) \\
& \delta_{B} C=-\frac{1}{2}[C, C] .
\end{aligned}
$$

But $\delta_{B} \circ \delta_{B}=0$ holds only on-shell

$$
\text { (EOM } \delta_{C} \chi(\phi)=0 \text { is needed). }
$$

Back to the case of gauge theory:
$M \sim M=\left\{\left(A_{r}(x), \varphi(x), \psi(x), \cdots\right)\right.$ field config. $\}$
$G \leadsto G=\{g(x) \mid G$-valued function $\}$
of \leadsto Lie $(G)=\{\epsilon(x) \mid$ g-valued function $\}$
As gauge fixing function, we can take

$$
\begin{aligned}
& \chi[A](x)=\partial^{\mu} A_{r}(x) \quad \text { Lorentz gauge } \\
& \delta_{\epsilon} X(A](x)=\partial^{\mu} D_{\mu} \in(x)
\end{aligned}
$$

gauge fixed Lagrangian

$$
\tilde{\mathcal{L}}_{E}=\mathcal{L}_{E}+\frac{\xi}{2} B^{2}-i B \cdot \partial^{\mu} A_{\mu}+\bar{C} \cdot \partial^{\mu} D_{\mu} C
$$

Inverse Wick rotation to real time (with $B \rightarrow i B, \bar{C} \rightarrow i \bar{C}$ \& $\bar{\xi} \rightarrow e^{2} \xi$ for convenience)

$$
\tilde{\mathcal{L}}=\mathcal{L}+\frac{\left.e^{2}\right\}}{2} B^{2}-B \cdot \partial^{\mu} A_{r}-i \bar{C} \partial^{\mu} D_{\mu} C
$$

BRST symmetry:

$$
\begin{aligned}
& \delta_{B} A_{\mu}=D_{\mu} C, \delta_{B} \phi=-C \phi, \delta_{B} \psi=-c \psi \\
& \delta_{B} B=0 \\
& \delta_{B} \bar{C}=i B \\
& \delta_{B} C=-\frac{1}{2}[C, C]
\end{aligned}
$$

The version where B is integrated out:

$$
\begin{aligned}
& \tilde{L}=\mathcal{L}-\frac{1}{2 e^{2} \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}-i \bar{C} \cdot \partial^{\mu} D_{\mu} C \\
& \delta_{B} \bar{C}=\frac{i}{e^{2} \xi} \partial^{\mu} A_{\mu},
\end{aligned}
$$

$\delta_{B}($ others $)=$ same as above.

We may use this as the new starting point for quantization.
For example, we may invert this via Legendre rainstorm to Hamiltonian formulation and then perform the operator quantization.

* This is now possible thanks to $-\frac{1}{\left.2 e^{2}\right\}}\left(\partial^{\mu} A_{r}\right)^{2}$:

Without that, A_{0} would have no kineticterm and hence no conjugate momentum.

However Ap has wrong sign kinetic term (note $\xi>0$) $-\frac{1}{2 e^{-} \zeta}\left(\dot{A}_{0}\right)^{2}$ which yields negative norm states. Also the ghosts with kinetic term $i \dot{\bar{C}} \dot{C}$ also yield zero \& negative norm states. [Lee 3, Exercise (c)]

As the existence of such negative/zero norm states indicates, the gauge fixed system has a huge number of unphysical degrees of freedom.

This is the quantum counterpart of the huge gauge symmery in the classical system: the gauge transformations $\left.(A, \Phi, \psi, \cdots) \longmapsto\left(A^{9}, \Phi^{9}, \psi\right),-\right)$ are regarded as unphysiscal change of field configurations.

The proposal is to take the BRST cohomology to select physical degrees of freedom.

For example, the space of physicd stater is the BRST cohomology of states

$$
\mathcal{H}_{\text {phys }}:=H_{\text {ERST }}(\text { Le })
$$

Lt is expected that this consists of positive norm states only.

Hamiltonian formulation of gauge theories
Consider the system without matter fields for simplicity.

$$
\begin{aligned}
S[A] & =\int-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu} d^{d} x \\
& =\int d^{d} x\left(\frac{1}{2 e^{2}} \sum_{i} F_{0 i}^{2}-\frac{1}{2 e^{2}} \sum_{i c j} F_{i j}^{2}\right) \quad \text { i.j }=1, \cdots, d-1
\end{aligned}
$$

The system is equivalent to

$$
S\left[A, \mathbb{E} ; A_{0}\right]=\int d^{d} x\left(\sum_{i} E_{i} F_{0 i}-\frac{e^{2}}{2} \sum_{i} E_{i}^{2}-\frac{1}{2 e^{2}} \sum_{i<j} F_{i j}^{2}\right)
$$

Integrating out $\mathbb{E}=\left(E_{i}\right)_{i=1}^{d-1}$, we obtain the system of

$$
\left(A, A_{0}\right)=\left(A_{\mu}\right) \text { with action } S[A] \text {. }
$$

[inserting $F_{0 i}=\dot{A}_{i}-\partial_{i} A_{0}+\left[A_{0}, A_{i}\right]=\dot{A}_{i}-D_{i} A_{0}$ and doing partial integration,

$$
\begin{aligned}
& S\left[\mathbb{A}, \mathbb{E} ; A_{0}\right] \\
& \quad=\int d^{d} x\left(\sum_{i} E_{i} \dot{A}_{i}-\frac{e^{2}}{2} \sum_{i} E_{i}^{2}-\frac{1}{2 e^{2}} \sum_{i=j} F_{i j}^{2}+A_{0} D_{i} E_{i}\right)
\end{aligned}
$$

$A_{0}(x)$ is a Lagrange multiplier imposing a constraint

$$
\mathbb{D} \cdot \mathbb{E}=0 \quad \text { Gauss law }
$$

- $E_{i}(x)$ is the conjugate momentum of $A_{i}(x)$.

Their components have Poisson bracket

$$
\left\{A_{i a}(x), E_{j b}(y)\right\}=\delta_{i j} \delta_{a b} \delta(x-y) .
$$

- Hamiltonian is

$$
H(\mathbb{E}, A)=\int d^{3} x\left(\frac{e^{2}}{2} \sum_{i} E_{i}(x)^{2}+\frac{1}{2 e^{2}} \sum_{i<j} F_{i j}(x)^{2}\right) .
$$

Let us study the consmuint

$$
\Phi(x):=\mathbb{D} \cdot \mathbb{E}=D_{i} E_{i}=\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=0 .
$$

For a g-valued function $E(x)$ of x, put

$$
\begin{aligned}
& \Phi(\epsilon):=\int d^{d-1} \in(x) \cdot \Phi(x)=-\int d^{d-1} x \mathbb{D} \in(x) \cdot \mathbb{E} \\
&\{\Phi(\epsilon), \mathbb{A}(x)\}=\mathbb{D} \in(*) \quad \text { (use this expression) } \\
&\{\Phi(\epsilon), \mathbb{E}(x)\}=\{\int d^{d-1} y \underbrace{E(y) \cdot\left[A_{i}, E_{i}\right](y)}, \mathbb{E}(x)\} \\
& {\left[E_{i}, \epsilon\right](y) \cdot A_{i}(y) } \\
&=[\mathbb{E}, \epsilon](x)
\end{aligned}
$$

$\therefore \Phi(\in)$ generates the gauge transformation by $\in(*)$.
In particular, since H is gauge invariant,

$$
\{\Phi(\epsilon), H\}=0
$$

Also, as $\Phi=\mathbb{D} \cdot \mathbb{E}$ is covariant,

$$
\{\Phi(\epsilon), \Phi(*)\}=[\Phi, \epsilon](*)
$$

and hence

$$
\begin{aligned}
&\left\{\Phi\left(\epsilon_{1}\right), \Phi\left(\epsilon_{2}\right)\right\}=\left\{\Phi\left(\epsilon_{1}\right), \int d^{d-1} x \epsilon_{2}(x) \cdot \Phi(x)\right\} \\
&=\int d^{d-1} x \underbrace{\epsilon_{2}(x) \cdot\left[\Phi, \epsilon_{1}\right](x)} \\
& {\left[\epsilon_{1}, \epsilon_{2}\right](x) \cdot \Phi(x) } \\
&= \Phi\left(\left[\epsilon_{1}, \epsilon_{2}\right]\right)
\end{aligned}
$$

The Hamiltonian system of this type is called the system with a first class constraint.

Constraints on the phase space

$$
M=\text { phase space }=\left\{\left(q^{1}, \cdots, q^{n}, p_{1}, \cdots, p_{n}\right)\right\}
$$

$$
\begin{array}{ll}
11 & 11 \\
q & p
\end{array}
$$

A constraint $\longleftrightarrow(q, p)$ is allowed to be
only in a submanifold NC M
Locally, it is defined by constraint equations

$$
\varphi^{a}(a, p)=0 \quad a=1, \cdots, m \leqslant 2 n
$$

N has dimension $2 n-m$.
e.g. For $M=\mathbb{R}^{2 n}$,
(a) $y=p_{n}: N=\left\{\left(q^{1}, \cdots, q^{n}, p_{1}, \cdots, p_{n-1}, 0\right)\right\} \cong \mathbb{R}^{2 n-1}$.
(b) $\varphi^{\prime}=q^{n}, \varphi^{2}=p_{n}: N=\left\{\left(q^{1}, \cdots, q^{n-1}, 0, p_{1}, \cdots, p_{n-1}, 0\right)\right) \cong \mathbb{R}^{2 n-2}$
(c) $\varphi=\sum_{i=1}^{n}\left(\left(q^{i}\right)^{2}+\left(p_{i}\right)^{2}\right)-r: N \cong S^{2 n-1}$.

The constraint is consistent with the dynamics if the rime evolution sends N to itself. That is, if the Starting point is in N, it remains so afterwards.

This requires

$$
\begin{aligned}
& \frac{d \varphi^{a}}{d t}=\left\{\varphi^{a}, H\right\} \text { vanishes on } N \\
\Leftrightarrow & \left\{\varphi^{a}, H\right\}=\sum_{b} C_{b}^{a} \varphi^{b}
\end{aligned}
$$

for some function $C_{b}^{a}=C_{b}^{a}(9, p)$
(at least in a neighborhood of N).
Two typical cases:
A constraint of first class:

$$
\left\{\varphi^{a}, \varphi^{b}\right\}=0 \text { on } N
$$

A constraint of second class:
$\left(\left\{\varphi^{a}, \varphi^{b}\right\}\right)$ is an invertible matrix on N i.e. $\operatorname{det}\left\{\varphi^{a}, \varphi^{b}\right\} \neq 0$ on N.

Eng. (a) Mst class, (b) Ind class, (c) 2 at class.
Our main target is Est class constraint, but let us study the treatment of 2 ul class (which will be used also for 1 rt class).

Treatment of and class constraint

For a Ind cos constraint, the submanifold N itself can be regarded as a phase space, with

Poisson bracket $:=$ the Dirac bracket :
For functions f, g on N, take any extensions \tilde{f}, \tilde{g} to a neighborhood of N in M and put

$$
\{f, g\}_{N}:=\left.\left(\{\tilde{f}, \tilde{g}\}-\left\{\tilde{f}, \varphi^{a}\right\} D_{a b}\left\{\varphi^{b}, \tilde{g}\right\}\right)\right|_{N}
$$

where $D_{a b}$ is the inverse matrix of $\left.\left\{\varphi^{a}, \varphi^{b}\right\}\right|_{N}$.

- This does not depend on the choice of extensions.
\bigcirc Another choice $\tilde{f}^{\prime}=\tilde{f}+\Delta \tilde{f} ;\left.\Delta \tilde{f}\right|_{N}=0$.

$$
\begin{aligned}
\Rightarrow \Delta \tilde{f} & =\sum_{a} f_{a} \varphi^{a} \quad \text { for some } f_{a}^{\prime} \jmath \\
\Delta(f, s)_{N} & =\left.\left(\{\Delta \tilde{f}, \tilde{g}\}-\left\{\Delta \tilde{f}, \varphi^{b}\right\} D_{b c}\left\{\varphi^{c}, \tilde{s}\right)\right)\right|_{N} \\
& =\left.\sum_{a} f_{a}(\left\{\varphi^{a}, \tilde{g}\right\}-\underbrace{\left\{\varphi^{a}, \varphi^{b}\right\} D_{b c}}_{\delta_{c}^{a}}\left\{\varphi^{c}, \tilde{g}\right\})\right|_{N} \\
& =0 .
\end{aligned}
$$

- $\left\{f,\left.H\right|_{N}\right\}_{N}=\left.\{\tilde{f}, H\}\right|_{N}$.

Thus, the time evolution is generated by $H_{I_{N}}$ in the constrained phase space $\left(N,\{,\}_{N}\right)$.

- The constrained system can be quantized in the operator formalism in the standard way:

To be precise, one needs to check that the Dirac bracket \{, i_{N} has the properties required for Poisson bracket:
(i) antisymmetry: $\{f, g\}_{N}=-\{g, f\}_{N}$
(ii) derivation: $\{f, g h\}_{N}=\{f, g\}_{N} h+g\{f, h\}_{N}$
(iii) Jacob: identity: $\left\{f,\{s, h\}_{N}\right\rangle_{N}+$ cyclic $=0$
(iv) non-degeneracy: for any local coordinates $\left(x^{r}\right)_{r=1}^{2 n-n}$ on $N,\left\{x^{r}, x^{s}\right\}_{N}$ is invertible.

You may try to show these directly. However, there is a conceptually clearer picture in which this is automatic.

It is to view phase spaces as symplectic manifolds:
If ω is the symplectic form on M corresponding to the Poisson bracket $\{$,$\rangle , and if \varphi^{\prime}=\cdots=\varphi^{m}=0$ is
a 2 nd class constraint, then, ω restricted to N $=\left\{\varphi^{\prime}=\cdots=\varphi^{m}=0\right\}$ is non-degenerate, and hence is a symplectic form on N. The Dirac bracket $\{,\}_{N}$ is nothing but the Poisson bracket corresponding to $\omega /_{N}$.

To summarize,

$$
\begin{aligned}
& \text { Phase space } \longleftrightarrow \text { symplectic manifold } \\
& (M,(,\}) \quad(M, \omega) \\
& \left(N,\{,\}_{N}\right) \longleftrightarrow\left(N,\left.\omega\right|_{N}\right) .
\end{aligned}
$$

Given this, the Dirac bracket $\{,\}_{N}$ automatically has the required properties (i), (ii),(iii), (iv).

Reduced phase space for 1st class constraint
Now let us consider the system with a Lost class constraint

$$
\begin{aligned}
\varphi^{a}(q, p) & =0 \quad a=1, \cdots, m \\
\left\{H, \varphi^{a}\right\} & =\sum_{b} C_{b}^{a} \varphi^{b}, \\
\left\{\varphi^{a}, \varphi^{b}\right\} & =\sum_{c} C_{c}^{a b} \varphi^{c} .
\end{aligned}
$$

Introducing a Lagrange multiplier $\lambda_{a}(t)$, the action may be written as

$$
S=\int_{t_{i}}^{t_{t}} d t\left(\sum_{i} p_{i} \dot{q}^{i}-H(\varphi, p)+\sum_{a} \lambda_{a} \varphi^{a}(q, p)\right)
$$

[egg. Yang Mills theory:

$$
\left.P: \rightarrow \mathbb{E}(x), \quad q^{i} \rightarrow \mathbb{A}(x), \quad \lambda_{a} \rightarrow A_{0}(x), \quad \varphi^{a} \rightarrow \Phi(x)=\mathbb{D} \cdot \mathbb{E}(x)\right]
$$

Equations of motion ($E\left(\right.$ eq for $q\left(t_{0}\right), q\left(t_{r}\right)$ fixed):

$$
\left\{\begin{array}{l}
\dot{q}^{i}=\frac{\partial H}{\partial p_{i}}+\sum_{a} \lambda_{a} \frac{\partial \varphi^{a}}{\partial p_{i}} \\
\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}-\sum_{a} \lambda_{a} \frac{\partial \varphi^{a}}{\partial q^{i}} \\
\varphi^{a}=0
\end{array}\right.
$$

Rooks
(1) $\varphi^{a}(q, p)=0$ is consistently preserved on $\mathbb{U}=\left\{\varphi^{a}=0\right\} \subset M$:

$$
\dot{\varphi}^{a}=\dot{q}^{i} \frac{\partial \varphi^{a}}{\partial q^{i}}+\dot{p}_{i} \frac{\partial \varphi^{a}}{\partial p_{i}}=\underbrace{\left\{\varphi^{a}, H\right.}_{0 \text { on } N}\}+\sum_{b} \lambda_{b} \underbrace{\left\{\varphi^{a}, \varphi^{b}\right\}}_{0 \text { on } N}
$$

(2) There is an ambiguity $\cdots \quad \lambda_{a}(t)$ is not fixed.

Different $\lambda_{a}(t)$'s \leadsto different trajectories
\rightarrow We regard them all physically equivalent.
Physical observables $f(q, p)$ are those which do not change under the change of $\lambda_{a}(t)$,

$$
\dot{f}=\{f, H\}+\sum_{b} \lambda_{b}\left\{f, \varphi^{b}\right\}
$$

This must Vanish on N
Th other words,
$\varphi^{a}(a, p)$'s generate gauge transformations in M :

$$
\delta^{a} q^{i}=\left\{q^{i}, \varphi^{a}\right\}, \quad \delta^{a} p_{i}=\left\{p_{i}, \varphi^{a}\right\}
$$

Since $d^{a} \varphi^{b}=\left\{\varphi^{b}, \varphi^{a}\right\}=C_{c}^{b a} \varphi^{c}$ vanishes on $N=\left\{\varphi^{a}=0\right\}$, the gauge transformations map points of N to points of N :

Physical observables are functions on N which are invariant under gauge transtormations.
egg. (a) $\varphi=p_{n}$ in $M=\mathbb{R}^{2 n}$
$\delta q^{i}=\left\{q^{i}, p_{n}\right\}=\delta_{n}^{i}, \delta p_{i}=0$: raunslation in q^{n}.

Physical observables are functions of $\left(q_{1}^{1}, \cdots, q^{n}, p_{1}, \cdots, P_{n-1}, 0\right)$
that are invariant under q^{n}-translations
\cdots functions of $\left(q^{1}, \cdots, q^{n-1}, p_{1}, \ldots, p_{n-1}\right)$

Define the reduced phase space $M^{*}=N / \sim$
$x \sim y \Leftrightarrow x$ and y are related by a gauge transformation.
Functions on $M^{*}=$ gauge invariant functions on N
$=$ functions \tilde{f} on a neighborhood of N in M

$$
\text { s.t. }\left\{\tilde{f}, \varphi^{a}\right\}=f_{b}^{a} \varphi^{b}
$$

modulo addition of functions vanishing on N.
Theorem $M^{*}=N / \sim$ has a Poisson bracket:
f, g functions on M^{*}
$\leadsto \tilde{f}, \tilde{g}$ s.t. $\left(\tilde{f}, \varphi^{a}\right)=f_{b}^{a} \varphi^{b},\left\{\tilde{g}, \varphi^{a}\right\}=g_{b}^{a} \varphi^{b}$
$\{f, g\}_{M^{*}}$ is represented by $\{\tilde{f}, \tilde{g}\}$.
proof check points:
(1) $\{\tilde{f}, \tilde{g}\}$ defines a function on M^{*}.
(2) independent of the chore of \tilde{f}, \tilde{j}.
(3) $\{,\}_{M^{*}}$ has required properties for Poisson bracket.
(1)

$$
\begin{aligned}
& =\left\{f_{b}^{a}, \tilde{g}\right\} \varphi^{b}+f_{b}^{a} \underbrace{\left\{\varphi^{b}, \tilde{q}\right\}}_{-g_{c}^{b} \varphi^{c}}+\left\{\tilde{f}, g_{b}^{a}\right\} \varphi^{b}+\rho^{a} b \underbrace{\left\{\tilde{f}, \varphi^{b}\right\}}_{f_{c}^{b} \varphi^{c}} \\
& =\left(\left\{f_{b}^{a}, \tilde{q}\right)-f_{c}^{a} g_{b}^{c}+\left\{\tilde{f}, g_{b}^{a}\right\}+g_{c}^{a} f_{b}^{c}\right) \varphi^{b}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \tilde{f} \rightarrow \tilde{f}+\Delta \tilde{f} ; \Delta \tilde{f}=f_{a} \varphi^{a} \\
& \begin{aligned}
\Delta[\tilde{f}, \tilde{g}\rangle & =\left\{f_{a} \varphi^{a}, \tilde{g}\right\}=\left\{f_{a}, \tilde{g}\right\} \varphi^{a}+f_{a}\left\{\frac{\left\{\varphi^{a}, \tilde{g}\right.}{g^{a}} \varphi^{b}\right. \\
& \left.=\left(\left\{f_{a}, \tilde{q}\right\}+f_{b}\right\}_{a}^{b}\right) \varphi^{a} v
\end{aligned}
\end{aligned}
$$

(3) Take a (local) slice S_{x} of $N \rightarrow N / \sim$ defined by equations $X_{a}(9, p)=0, \quad a=1, \cdots, m$, in addition to $\varphi^{a}($ q. $p)=0, \quad a=1, \cdots, m$.

Since the equations $x_{1}=\cdots=x_{m}=0$ must be maximally violated by the gauge transformations $\left\{-, \varphi^{a}\right\}$,
$\operatorname{det}\left\{x_{a}, \varphi^{b}\right\} \neq 0 \quad$ on S_{x}.
Write $\left\{\Phi^{A}\right\}_{A=1}^{2 m}$ for $\left(X_{a}\right\}_{a=1}^{m} \cup\left\{\varphi^{a}\right\}_{a=1}^{m}$.

$$
\left.\left\{\Phi^{A}, \Phi^{B}\right\}\right|_{S_{X}}=\left.\left(\begin{array}{cc}
\left\{x_{a}, x_{b}\right\} & \left\{x_{a}, \varphi^{b}\right\} \\
\left\{\varphi^{a}, x_{b}\right\} & 0
\end{array}\right)\right|_{S_{X}}=:\left(\begin{array}{cc}
X & Y \\
-Y^{\top} & 0
\end{array}\right)
$$

is invertible as $Y_{a}^{b}=\left.\left\{X_{a}, \varphi^{b}\right\}\right|_{S_{X}}$ is invertible.
This means that $\int_{x}=\left\{\Phi^{A}=0, A=1, \cdots, 2 m\right\}$ is a Ind class constraint. In particular, the Dirac bracket $\left\{, \mathcal{Y}_{x}\right.$ is defined on S_{x}.
$\underline{\text { Claim }}\{,\}_{S_{X}}=\{,\}_{M^{*}}$ under $S_{X} \stackrel{\text { local }}{\cong} M^{*}$.
\because Let $f_{n} g$ be functions on S_{x}. They can be extended to gauge invariant functions on N and then to functions \tilde{f}, \tilde{g} difinal on a neighborhood of N in M st.

$$
\begin{aligned}
& \left\{\tilde{f}, \varphi^{a}\right\}=f_{a}^{a} \varphi^{b} \text { and }\left\{\bar{g}, \varphi^{a}\right\}=s_{b}^{a} \varphi^{b} \text {. Then } \\
& \{f, g\}_{S_{x}}=\left.\left(\{\tilde{f}, \tilde{s}\}-\left\{\tilde{f}, \Phi^{A}\right\} D_{A B}\left(\Phi^{B}, \tilde{g}\right\}\right)\right|_{S_{x}} \\
& {\left[\left.\left(\tilde{f}, \varphi^{a}\right\}\right|_{S_{x}}=\left.\left\{\varphi^{b}, \tilde{g}\right\}\right|_{S_{x}}=0\right.} \\
& =\left.\left(\{\tilde{f}, \tilde{g}\}-\left\{\tilde{f}, x_{a}\right\} D_{x_{a} x_{b}}\left\{x_{b}, \tilde{g}\right\}\right)\right|_{s_{x}} \\
& {\left[\left(\begin{array}{cc}
X & Y \\
-Y^{\top} & 0
\end{array}\right)^{-1}=\left(\begin{array}{ll}
O & -\left(Y^{-1}\right)^{\top} \\
Y^{-1} & Y^{-1} X\left(Y^{-1}\right)^{\top}
\end{array}\right)\right.} \\
& \Rightarrow D_{x_{a} x_{b}}=0 \\
& =\left.\{\tilde{f}, \tilde{g}\}\right|_{S_{x}} \text {. }
\end{aligned}
$$

On the other hand, $\{\tilde{f}, \tilde{q}\}$ represents $\{f, g\}_{M^{*}}$. Since $\{,\}_{S_{x}}$ has the properties required for Poisson bracket, \{, J Mt also does. V
Q.E.D.
\qquad

Once again, viewing phase spaces as symplectic manifold makes things more transparent.

A phase space $(M,[, 3)$ with a 1 st class constraint $\varphi^{\prime}=\cdot \cdot=\varphi^{m}=0 \quad$ (with some assumption)
is a symplectic manifold (M, w) with an action of a hie group G with a "moment map μ."

The reduced phase space corresponds to the "symplectic quotient $\mu^{-1}(0) / G$ ".

There is no need of extension of functions f nos \tilde{f} nor choice of local slice δ_{χ}.

Now, the system can be quantized in the operator formalism:

$$
\left[\hat{\vartheta}_{1}, \hat{\vartheta}_{2}\right]=i \hbar\left\{{\widehat{\left.O_{1}, \mathcal{O}_{2}\right\}_{M^{*}}}}^{\text {. }}\right.
$$

If we can find a global slice S_{X}, we just have to quantize S_{x} with its Dirac bracket $\left\}_{S_{x}}\right.$

$$
\left[\hat{ण}_{1}, \hat{ण}_{2}\right]=i \hbar \hat{\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{S_{x}}}
$$

The case $\left\{x_{a}, x_{b}\right\}=0$
In this case, we may find canonical coordmates of M in which the latter m-coordinates are $\chi_{1,}, \chi_{m}$:

$$
\begin{array}{r}
\left(q^{1}, \cdots, q^{n-m}, q^{n-m+1}, \cdots, q^{n}, p_{1}, \cdots, p_{n-m}, p_{n-m+1}, \cdots, p_{n}\right) \\
x_{1}^{\prime} \cdots x_{m}^{\prime \prime}
\end{array}
$$

Then, $\left\{\varphi^{a}, x_{b}\right\}=\frac{\partial \varphi^{a}}{\partial q^{i}} \underbrace{\frac{\partial x_{b}}{\partial p_{i}}-\frac{\partial \varphi^{a}}{\partial p_{i}} \underbrace{\partial q_{b}^{i}}_{0}}_{\delta_{n-m+b}^{i}}=\underset{\substack{1 \leqslant a \leqslant m \\ n-m+1 \leqslant n-m+b \leqslant n}}{\frac{\partial \varphi^{a}}{\partial q^{n-m+b}}}$
Since this is invertible, we may take

$$
\left(q^{\prime},-, q^{n-m}, \varphi^{\prime}, \cdots, \varphi^{m}, p_{1}, \cdots, p_{n-m}, x_{1}, \cdots, x_{m}\right)
$$

as (not necessarily canonical) coordinates of M.
Then, as coordinates of $S_{\chi}=\left\{\varphi^{\prime}=\cdots=\varphi^{n}=\chi_{1}=\cdots=\chi_{m}=0\right\}$, we may take $\left(q^{1}, \cdots, q^{n-m}, p_{1}, \cdots, p_{n-n}\right)$.

Claim These are canonical coordinates of S_{x} with respect to the Dirac bracket $\{,\}_{S_{X}}$.
() Let f, g be functions on S_{x} and as their extensions \tilde{f}, \tilde{g} to M, let us rake

$$
\begin{aligned}
\tilde{f}(q, p) & =f\left(q^{1}, \cdots, q^{n-m}, p_{1}, \cdots, p_{n-n}\right) \\
\bar{g}(q, p) & =g\left(q^{1}, \cdots, q^{n-m}, p_{1},-, p_{n-n}\right) \\
\{f, g\}_{S_{x}} & =\left.\left(\{\tilde{f}, \tilde{g}\}-\left\{\tilde{f}, \Phi^{A}\right\} D_{A B}\left\{\Phi^{B}, \tilde{g}\right\}\right)\right|_{S_{X}} . \\
\text { As }\left(x_{u}, x_{b}\right) & =0, \quad D=\left(\begin{array}{cc}
0 & -\left(Y^{-1}\right)^{\top} \\
Y^{-1} & 0
\end{array}\right),
\end{aligned}
$$

but $\left\{\tilde{f}, x_{a}\right\}=\left\{x_{b}, \tilde{s}\right\}=0$.

$$
\therefore\{f, g\}_{S_{x}}=\left.\{\tilde{f}, \tilde{g}\}\right|_{S_{x}}=\sum_{r=1}^{n} \frac{\partial f}{\partial q^{r}} \frac{\partial g}{\partial \rho_{r}}-\frac{\partial f}{\partial p_{r}} \frac{\partial g}{\partial q^{r}}
$$

In this case, the operator quantization rakes a particularly simple form:

$$
\begin{aligned}
& {\left[\hat{q}^{r}, \hat{p}_{s}\right]=i \hbar \delta_{s}^{r}} \\
& {\left[\hat{q}^{r}, \hat{q}^{s}\right]=\left[\hat{p}_{r}, \hat{p}_{s}\right]=0}
\end{aligned}
$$

Example Maxwell theory (free U(1) gauge theory)
The Gauss law consmant is

$$
\Phi(x)=\mathbb{D} \cdot \mathbb{E}(x)=0 .
$$

As the slice, we can rake the Coulomb gauge

$$
\chi(x)=\nabla \cdot \mathbb{A}(x)=0
$$

which does satisfy $\{X(x), X(y)\}=0$. Then the modes of $\mathbb{E}(x)$ and $A(x)$ satisfying Gauss law $\nabla \cdot \mathbb{E}(x)=0$ and Coulomb gauge $\nabla \cdot \mathbb{A}(x)=0$ form canonical conjugate pairs and can be quantized in the Canonical way.

We may also do path-integral quantization:
Notation $q^{*}=\left(q^{1}, \cdots, q^{n-m}\right), p^{*}=\left(p_{1}, \cdots, p_{n-n}\right)$

$$
q^{!}=\left(q^{n-m+1}, \cdots, q^{n}\right), p^{!}=\left(p_{n-m+1}, \cdots, p_{n}\right)=\left(x_{1}, \cdots, x_{m}\right)=\chi
$$

$\left(q^{*}, p^{*}\right) \in S_{x}$ determines the value of q !

$$
\begin{aligned}
& \Rightarrow q^{!}=q^{!}\left(q^{k}, p^{*}\right) \text {. } \\
& Z\left(t_{f}, q_{f}^{x} ; t_{i} \cdot q_{i}^{*}\right)=\int_{q^{*}\left(t_{f}\right)=q_{f}^{*}, q^{\prime}\left(t_{i}\right)=q_{i}^{+}} \theta q^{k} D p^{k} e^{\frac{i}{\hbar} \int_{t_{i}}^{t_{t}} d t\left(\operatorname{Pr} \dot{q}^{r}-H I_{S_{x}}\right)} \\
& =\int_{q^{k}\left(t_{t}\right)=q_{t}^{*}, q^{v}\left(t_{i}\right)=q_{i}^{b} \quad X\left(q(t), p\left(t_{t}\right)\right.} \delta q^{*} D p^{*} D q^{\prime} D p^{\prime} \prod_{t} \delta\left(p^{\prime}(t)\right) \cdot \underbrace{\left.e^{\frac{i}{\hbar} \int_{t_{i}}^{t_{t}} d t\left(p_{i} \dot{q}^{i}\right.}-H\right)} \underbrace{\delta\left(q^{\prime}(t)-q^{!}\left(q^{*}(t), p^{*}(t)\right)\right)} \\
& \delta\left(\varphi(q(t), p(t)) \operatorname{det}\left(\frac{\partial \varphi^{a}}{\partial q^{n-m+b}}(q(t), p(t))\right)\right. \\
& \left\{\varphi_{a}, \chi_{b}\right\} \\
& =\int_{q^{b}\left(t_{t}\right)=q_{+}^{k}, q^{k}\left(t_{i}\right)=q_{i}^{i}} D \prod_{t} \delta\left(x(q(t), p(t)) \operatorname{det}\left(\left(\varphi^{a}, x_{b}\right\}(q(t), p(t))\right)\right. \\
& e^{\frac{i}{\hbar} \int_{t_{i}}^{t_{t}} d t\left(p_{i} \dot{q}^{i}-H(p, \varepsilon)+\lambda_{a} y^{a}(q, p)\right)}
\end{aligned}
$$

Yang. Mills theory $M=\left\{\left(A_{i a}(*), E_{i a}(*)\right)\right\}$

$$
\begin{gathered}
H=\int d^{d-1} x\left(\frac{e^{2}}{2} \sum_{i, a} E_{i a}(x)^{2}+\frac{1}{L e^{2}} \sum_{i=j} F_{i j a}(x)^{2}\right) \\
\varphi(\mathbb{A}, \mathbb{E})^{a}(x)=(\mathbb{D} \cdot \mathbb{E})_{a}(x) \\
x(\mathbb{A}, \mathbb{E})_{a}(x)=(\mathbb{Q} \cdot \mathbb{A})_{a}(x) \\
\left\{\varphi^{a}(x), x_{b}(y)\right\}=(\mathbb{\nabla} \cdot \mathbb{D} \delta(x-y))_{b}^{a} \\
\left\{x_{a}(x), x_{b}(y)\right)=0 \quad v . \\
Z=\int D \mathbb{A} D \mathbb{E} d A_{0} \prod_{t}\left(\prod_{x} \delta(\nabla \cdot \mathbb{A}(t, x)) \cdot \operatorname{det}(\mathbb{\nabla} \cdot \mathbb{D} \delta(x-y)(t))\right) \\
\quad \exp \left(\frac{i}{\hbar} \int d^{2} x\left(\mathbb{E} \cdot \dot{A}-\frac{e^{2}}{2} \mathbb{E}^{2}-\frac{1}{2 e^{2}} \sum_{i, j} F_{i j}^{2}+A_{0} \mathbb{D} \cdot \mathbb{E}\right)\right)
\end{gathered}
$$

integrate out

$$
\stackrel{\mathbb{E}}{=} \int \nabla A \prod_{x} \delta(\nabla \cdot A(x)) \operatorname{det}(\nabla \cdot \mathbb{D} \delta(x-y)) e^{\frac{i}{t} S[A]}
$$

-..agrees with the cartier result with
gauge fixing condition $X=\nabla \cdot A$.

