Introduction to perturbation theory
Consider the theory of a single real variable ϕ with measure $d \Phi$ and action

$$
S_{E}(\phi)=\frac{1}{2} a \phi^{2}+\frac{\lambda}{4!} \phi^{4}
$$

partition function

$$
Z=\int_{\mathbb{R}} d \phi e^{-S_{E}(\phi)}=\int_{\mathbb{R}} d \phi e^{-\frac{1}{2} a \phi^{2}} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda}{4!}\right)^{n} \phi^{4 n}
$$

Its perturbative expansion is

$$
Z_{\text {pert }}:=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda}{4!}\right)^{n} \int_{\mathbb{R}} d \phi e^{-\frac{1}{2} a \phi^{2}} \phi^{4 n}
$$

It is not convergent.
(If it had a convergence radius $R>0, Z_{\text {pert }}(x)=Z(\lambda)$ for $|\lambda|<R$, but $Z(\lambda)$ is not obviously analytic at $\lambda=0$: the integral is badly divergent for real negative λ.

Instead, it is an asymptotic expansion of $Z(\lambda)$:

$$
\left.\lambda^{-N}\left(z(\lambda)-Z_{\text {pert }}^{\leqslant N}(\lambda)\right) \rightarrow 0 \text { as } \lambda\right\rangle 0
$$

Qtuncation at order $n \leqslant N$

Each term of $Z_{\text {pert }}$ is a correlation function of the free theory with action $S_{E \text {, free }}(\phi)=\frac{1}{2} a \phi^{2}$:

$$
Z_{\text {pert }}=Z_{\text {free }} \cdot \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda}{4!}\right)^{n}\left\langle\phi^{4 n}\right\rangle_{\text {free }}
$$

Similarly for correlation functions

$$
\begin{aligned}
\langle f(\phi)\rangle & =\frac{1}{z} \int_{\mathbb{R}} d \phi e^{-\delta_{E}(\phi)} f(\phi) \sim \\
\langle f(\phi)\rangle_{\text {pert }}: & =\frac{1}{z_{\text {pert }}} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda}{4!}\right)^{n} \int_{\mathbb{R}} d \phi e^{-\delta_{E} \text { tree }(\phi)} f(\phi) \phi^{4 n} \\
& =\frac{\text { Free } \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda}{4!}\right)^{n}\left\langle f(\phi) \phi^{4 n}\right\rangle_{\text {free }}}{\text { Z/rree } \cdot \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda}{4!}\right)^{n}\left\langle\phi^{4 n}\right\rangle_{\text {free }}}
\end{aligned}
$$

Recall: free correlators can be computed as the sum of
Wick contractions

$$
\begin{aligned}
\left\langle\phi^{4}\right\rangle_{\text {free }} & =\vec{\phi} \overline{\phi \phi}+\sqrt{\phi \phi \phi} \phi+\sqrt{\phi \phi \phi} \phi \\
& =3 \cdot a^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{\text {pert }} / Z_{\text {free }}=1+\left\langle-\frac{\lambda}{4!} \phi^{4}\right\rangle_{\text {free }}+\frac{1}{2!}\left\langle\left(-\frac{\lambda}{4!} \phi^{4}\right)^{2}\right\rangle_{\text {free }}+\cdots \\
& \left\langle-\frac{\lambda}{4!} \phi^{4}\right\rangle_{\text {free }}=-\frac{\lambda}{4!} \overparen{\Phi} \phi \stackrel{\Gamma}{\phi} \times 3 \quad A \\
& =\frac{-1}{4 \cdot 2}\left(a^{-1}\right)^{2} \\
& \frac{1}{2!}\left\langle\left(-\frac{\lambda}{4!} \phi^{4}\right)^{2}\right\rangle_{\text {free }} \\
& =\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2}\left\{\begin{array}{l}
n \widehat{\phi} \\
\phi \phi \phi+3 \times \vec{\phi} \boldsymbol{Q} \phi \times 3 \quad B
\end{array}\right. \\
& +\overparen{\Phi \phi \phi \phi \phi \phi \phi \phi} \times\binom{ 4}{2}^{2} \times 2 \quad C
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\frac{1}{2(4 \cdot 2)^{2}}+\frac{1}{4^{2}}+\frac{1}{2 \cdot 4!}\right\}(-\lambda)^{2}\left(a^{-1}\right)^{4}
\end{aligned}
$$

$\underline{\text { Diagramatic presentation: }}$
propagator $\overparen{\Phi \Phi}=a^{-1} \quad \rightarrow \quad$ line $\quad \square$ interaction $-\frac{\lambda}{4!} \phi^{4} \approx$ vertex

$A=\infty \quad B=\frac{1}{2!}(\infty)^{2}$

D

$$
z_{\text {pert }} / z_{\text {fec }}=1+\infty+\frac{1}{2!}(\infty)^{2}+\infty \infty+\Theta+\cdots
$$

Sum of $\frac{\text { vacuum }}{\uparrow}$ diagrams no external line

$$
\stackrel{!}{=} \exp (\underbrace{\infty}+\infty+\cdots)
$$

Sum of Connected vacuum diagrams

$$
\begin{gathered}
\langle\phi \phi\rangle_{\text {pert }}=\frac{\langle\phi \phi\rangle_{\text {free }}+\left\langle\phi \phi\left(-\frac{\lambda}{4!} \phi^{4}\right)\right\rangle_{\text {free }}+\cdots}{1+\left\langle-\frac{\lambda}{4!} \phi^{4}\right\rangle_{\text {free }}+\cdots} \\
=\square+\square+\square+\square
\end{gathered}
$$

Sem of diagrams with two external lines without vacuum diagram
($=$ sum of connected diagrams $\left.(\phi \phi)_{\text {conn }}\right)$

$$
\begin{aligned}
& 0=-\frac{\lambda}{4!} \hat{\phi}(\phi \phi \phi \phi) \phi \times 4 \cdot 3=-\frac{\lambda}{2}\left(a^{-1}\right)^{3} \\
& \underline{O Q}=\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2} \phi(\phi \phi \phi \phi)(\phi \phi \phi \phi) \phi \times 2 \cdot 4^{2} \cdot 3^{2}=\frac{(-\lambda)^{2}}{4}\left(a^{-1}\right)^{5}
\end{aligned}
$$

$$
\Omega=\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2} \phi(\phi \phi \Phi \phi) \phi \times 2 \cdot 4 \cdot 3 \cdot\binom{4}{2} \cdot 2=\frac{(-\lambda)^{2}}{4}\left(a^{-1}\right)^{5}
$$

$$
Q=\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2} \phi(\phi \phi \phi \phi)(\phi \phi \phi \phi) \phi \cdot 2 \cdot 4^{2} \cdot 3!=\frac{(-\lambda)^{2}}{6}\left(a^{-1}\right)^{5}
$$

$\langle\phi \phi \phi \phi\rangle_{\text {pert }}=$ sum of diagrams with 4 external lines $\frac{\text { without vacuum diagrams }}{!!}$

$$
\stackrel{\Gamma!}{\stackrel{r!}{\bullet}\langle\phi \phi \phi \phi\rangle_{\text {conn }}}+\underbrace{\langle\phi \phi\rangle_{\text {conn }} \cdot\langle\phi \phi\rangle_{\text {conn }} \times 3}_{\alpha}
$$

$\alpha=$ connected part

$$
\begin{aligned}
& B= \text { disconnected part } \\
&(1+q+\cdots) \times(1+q+\cdots)+(-+\Omega+\cdots) \times \\
&(-+\Omega+\cdots)
\end{aligned}
$$

$$
\left.X=-\frac{\lambda}{4!}{ }^{\phi} \phi \phi \phi \phi\right)_{\phi}^{\phi} \times 4!=-\lambda\left(a^{-1}\right)^{4}
$$

$$
=\frac{(-\lambda)^{2}}{2}\left(a^{-1}\right)^{6}
$$

$$
\begin{aligned}
& \sim=\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2} \phi \\
& \phi \phi \phi \phi \phi \phi \phi \phi^{\phi} \times 2 \cdot(4 \cdot 3)^{2} \cdot 2 \\
&=\frac{(-\lambda)^{2}}{2}\left(a^{-1}\right)^{6}
\end{aligned}
$$

Generalizations
more interactions

$$
\langle\phi \phi \phi\rangle_{\text {pert }}=\langle\phi \phi \phi\rangle_{\text {conn }}+\langle\phi\rangle_{\text {conn }}\langle\phi \phi\rangle_{\text {conn }} \times 3+\langle\phi\rangle_{\text {conn }}^{3}
$$

$$
\begin{aligned}
& S_{E}(\phi)=\underbrace{\frac{1}{2} a \phi^{2}}_{\text {free }}+\underbrace{\frac{\lambda_{3}}{3!} \phi^{3}+\frac{\lambda_{4}}{4!} \phi^{4}(+\cdots)}_{\text {interactions }} \\
& z_{\text {pert }} / z_{\text {ore }}=\exp (\square+\square+\cdots) \\
& \langle\phi\rangle_{\text {pert }}=0+0+\cdots\left(=\langle\phi\rangle_{\text {conn }}\right) \\
& \langle\phi \phi\rangle_{\text {pert }}=\langle\phi \phi\rangle_{\text {conn }}+\langle\phi\rangle_{\text {conn }} \cdot(\phi\rangle_{\text {conn }} \\
& C \xrightarrow{O}+\cdots
\end{aligned}
$$

n variables

$$
\begin{aligned}
& S_{E}(\phi)=\underbrace{\frac{1}{2} \sum_{i,} \phi_{i} A_{i j} \phi_{j}}_{\text {free }}+\underbrace{\frac{\lambda}{4!} \sum_{i} \phi_{i}^{4}}_{\text {interaction }} \\
& \begin{aligned}
Z_{\text {pert }} / Z_{\text {rue }} & =\exp (O O+Q O+\cdots) \\
O O & =-\frac{\lambda}{4!} \sum_{i} \phi_{i} \phi_{i} \phi_{i} \phi_{i} \times 3=\frac{-\lambda}{4-2} \sum_{i}\left(A^{-1}\right)_{i i}^{2} \\
& \vdots \\
\left\langle\phi_{i} \phi_{j}\right\rangle_{\text {port }} & =i-Q_{j}+: Q_{j}+\underbrace{}_{i}+Q_{j}+O_{j} \\
i-j & =A_{i j}^{-1}
\end{aligned} \quad=\left(\phi_{i} \phi_{j}\right)_{\text {lon n }}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{}_{j}=-\frac{\lambda}{4!} \sum_{k} \widehat{\phi}_{i}\left(\phi_{k} \hat{\phi}_{k} \phi_{l} \widehat{\phi}_{k}\right) \phi_{j} \times 4.3 \\
& =\frac{-\lambda}{2} \sum_{k} A_{i k}^{\prime} A_{k k}^{-1} A_{k j}^{-1}, \\
& i \circlearrowleft j=\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2} \sum_{h=l} \widehat{\phi}_{i} \phi_{h} \widehat{\sigma}_{h} \phi_{h} \Phi_{h} \phi_{l} \phi_{l} \phi_{l} \phi_{l} \phi_{j} \times 2 \cdot 4^{2} \cdot 3! \\
& =\frac{(-\lambda)^{2}}{6} \sum_{k l} A_{i k}^{-1}\left(A_{l l}^{-1}\right)^{3} A_{l j}^{-1},
\end{aligned}
$$

$$
{ }_{i}^{i_{2}} \sum_{i 4}^{i_{3}}=-\frac{\lambda}{4!}{ }_{\sum_{i}}^{\phi_{j}} \phi_{j} \phi_{j}, \phi_{j} \phi_{j}^{\phi_{i j}} \times 4!
$$

$\phi_{i 2}>p_{i 4}$

$$
=-\lambda \sum_{j} A_{i, j}^{-1} A_{i, j}^{-1} A_{i_{3 j}}^{-1} A_{i s j}^{-1}
$$

$$
\begin{aligned}
{ }_{i} & =\frac{1}{2!}\left(-\frac{\lambda}{4!}\right)^{2} \sum_{i 4}^{\phi_{i j}} \phi_{j} \phi_{j} \phi_{j} \phi_{j} \sum_{h} \phi_{k} \phi_{k} \phi_{L} \phi_{h} \times 2 \cdot(4 \cdot 3)^{2} \cdot 2 \\
& =\frac{(-\lambda)^{2}}{2} \sum_{i l} A_{i, j}^{-1} A_{i, j}\left(A_{j l}^{1}\right)^{2} A_{k i 3}^{-1} A_{k i 4}^{-1}
\end{aligned}
$$

Scalar field in d-dimensons

$$
\begin{aligned}
& S_{E}[\phi]=\int d^{2} x\left(\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& z_{\text {pert }} / z_{\text {tree }}=\exp (O O+\infty O+\cdots) \\
& O=\frac{-1}{4 \cdot 2} \int d^{d} x(\overline{\phi(x) \phi}(x))^{2} \\
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle_{\text {pert }}=\frac{-}{1}+\frac{0}{1}+\frac{00_{2}}{1}+\frac{Q_{2}}{1}+\nabla_{2} \\
& \sqrt{2}=\stackrel{\phi}{{ }^{2}}\left(x_{1}\right) \phi\left(x_{2}\right)=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{e^{-i p\left(x_{1}-x_{2}\right)}}{p^{2}+m^{2}} \\
& \frac{\square}{1}=\frac{-\lambda}{2} \int d^{2} x \stackrel{\rightharpoonup}{\phi\left(x_{1}\right) \phi}(x) \stackrel{\square}{\phi) \phi}(x) \Phi(x) \phi\left(x_{2}\right) \\
& \prod_{2}=\frac{(-\lambda)^{2}}{6} \int d^{2} x d^{2} y \stackrel{\rightharpoonup}{\phi\left(x_{1}\right) \phi(x)}(\stackrel{\phi(x) \phi(y)}{ })^{3} \overline{\phi(y) \phi\left(x_{2}\right)}
\end{aligned}
$$

$$
\text { (} \left.\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right)_{p e r t}=\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right)_{\text {conn }}
$$

Minkowski limit

$$
S[\phi]=\int d^{2} x(\underbrace{\left(\frac{1}{2} \partial^{\alpha} \phi \partial_{r} \phi-\frac{m^{2}}{2} \phi^{2}\right.}_{\text {free }} \underbrace{\left.-\frac{\lambda}{4!} \phi^{4}\right)}_{\text {interaction }}
$$

$Z_{\text {pert, }}\left\langle\phi\left(x_{1}\right)-\Phi\left(x_{s}\right)\right\rangle_{\text {pert }}$ is obtained from the result of Euclidean theory by the replacement

$$
\begin{aligned}
\phi(x) \phi(y) & \rightarrow \int \frac{d^{d} p}{(2 \pi)^{2}} \frac{e^{-i p(x-y)}}{p^{2}-m^{2}+i \cdot 0} \\
-\lambda \int d^{d} x_{E} & \rightarrow-i \lambda \int d^{d} x
\end{aligned}
$$

Gauge theory (e.g. QCD)
variables. A_{μ} gauge potential of gauge group G

- ψ Diracfermion in a representation R of C

$$
\mathcal{L}=-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu}+i \bar{\psi} \varnothing_{A} \psi-m \bar{\psi} \psi
$$

gaugefixing by $\partial^{\mu} A_{F}=$ o

$$
\begin{aligned}
\sim \tilde{\mathcal{L}}= & \mathcal{L}-\frac{1}{\left.2 e^{2}\right\}}\left(\partial^{\mu} A_{\mu}\right)^{2}+i \partial^{\mu} \bar{C} D_{\mu} C ; C, \bar{C}: F P . \text { ghosts } \\
\widetilde{\mathcal{L}}=\mathcal{L}_{\text {free }} & +\mathcal{L}_{\text {int }} \quad\left(\text { rescale } A_{\mu} \rightarrow e A_{\mu}\right) \\
\mathcal{L}_{\text {free }}= & -\frac{1}{4}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{L}-\partial A_{\mu}\right)-\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2} \\
& +i \bar{\psi} \partial \psi-m \bar{\psi} \psi+i \partial^{\mu} \bar{C} \partial_{\mu} C \\
\mathcal{L}_{\text {int }}=- & \frac{e}{2}\left(\partial^{r} A^{\nu}-\partial^{\nu} A^{\mu}\right) \cdot\left[A_{\mu}, A_{\nu}\right]-\frac{e^{2}}{4}\left[A^{\mu}, A^{\nu}\right] \cdot\left[A_{\mu}, A_{\nu}\right] \\
& +i e \bar{\psi} X \Psi \psi+i e \partial^{\mu} \bar{C}\left[A_{\mu} C\right]
\end{aligned}
$$

Perturbative expansion of partition / correlation functions can be computed using

$$
A_{\mu}=e^{9} A_{r a}, \quad C=e^{a} C_{a}, \bar{C}=e^{a} \bar{C}_{a}
$$

propagators

$$
\begin{aligned}
& \sim=A_{\mu a}(x) A_{u b}(y)=\delta_{a b} \int \frac{e^{d} p}{(2 \pi)^{2}} \frac{-i e^{-i p(x-y)}}{p^{2}+i \cdot 0}\left(\eta_{\mu \nu}-(1-\xi) \frac{p_{r} p_{c}}{p^{2}+i \cdot 0}\right) \\
& \leftarrow=\overleftarrow{\psi(x) \bar{\Psi}(y)}=\int \frac{d^{2} p}{(2 \pi)^{1}} \frac{i e^{-i p(x-y)}}{p^{2}-m^{2}+i \cdot 0}(p+m), \\
& \cdots-\widetilde{ }=C_{a}(x) \bar{C}_{b}(y)=\delta_{a b} \int \frac{d^{d} p}{(2 \pi)^{2}} \frac{e^{-i p(x-y)}}{p^{2}+i \cdot 0}, \quad \text { and }
\end{aligned}
$$

vertices

$$
\begin{aligned}
& \overbrace{}^{\}}=-\frac{i e}{2} \int d^{\alpha} x\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \cdot\left[A_{\mu} A_{\nu}\right] \text {, } \\
& \overbrace{}^{2}=-\frac{i e^{2}}{4} \int d^{4} x\left[A^{m}, A^{\nu}\right] \cdot\left[A_{\mu}, A \nu\right], \\
& \leftrightarrow \leftarrow=i e \int d^{d} x i \bar{\psi} A \psi \text {, } \\
& -\in\}_{-C}=\text { ie } \int d^{4} x \text { i } \partial^{m} C \cdot\left[A_{\mu}, C\right] \text {. }
\end{aligned}
$$

eg,

$$
\begin{aligned}
& \left\langle A_{\mu}(x) A_{u}(y)\right\rangle_{\text {pert }}=\cdots+\cdots \\
& \text { +~~n }+ \text { mim }+\cdots \text { non } \\
& \langle\psi(x) \bar{\psi}(y)\rangle_{\text {pert }}=\square+\leftarrow^{\sim} \underbrace{2} \leftarrow+\cdots
\end{aligned}
$$

In general,

- $Z_{\text {pert }} / Z_{\text {free }}=$ sum of vacuum diagrams
$!\exp$ (sum of connected vacuum diagrams)
- For $\Phi_{1}, \cdots, \Phi_{s}=$ elementary fields inserted at points
egg. $\phi\left(x_{1}\right) \cdots \phi\left(x_{s}\right)$ in ϕ^{4} theory
e.g. $A_{\mu}\left(x_{1}\right) \cdots, \psi\left(y_{1}\right), \cdots, \bar{\psi}\left(z_{1}\right), \cdots$ in $Q C D$

$$
\begin{aligned}
\left\langle\Phi_{1}\right. & \left.\cdots \Phi_{s}\right\rangle_{\text {pert }} \\
& !! \\
& \stackrel{\sum}{=} \sum_{\{1, \cdots, s\}} \pm \underbrace{ \pm}\left\langle\prod_{i \in I_{1}} \Phi_{i_{1}}\right\rangle_{\text {conn }} \ldots\left\langle\prod_{i \in I_{l}} \Phi_{i s}\right\rangle_{\text {com }} \\
& \left.=I_{1}^{u} \cup I_{l}\right\}
\end{aligned}
$$

Sum over decompositions of

$$
\{1, \cdots, 5\} \text { to non-empty }
$$

sublets $I_{1}, \cdots, I_{l} \subset\{1, \cdots, 5\}$

* In particular, no term has a vacuum diagram factor.

Decomposition to connected parts
Here we explain
(i) $Z_{\text {pert }} / Z_{\text {free }} \stackrel{\bullet}{=} \exp$ (sum of connected vacuum diagrams)
(ii)

$$
\begin{aligned}
& \left\langle\Phi_{1} \cdots \Phi_{s}\right\rangle_{\text {pert }} \\
& \quad!\sum_{\{1, \cdots, s\}} \pm \underbrace{\square}\left\langle\prod_{i \in I_{1}} \Phi_{i_{1}}\right\rangle_{\text {conn }} \ldots\left\langle\prod_{i \in I_{l}} \Phi_{i s}\right\rangle_{\text {com }} \\
& \quad \doteq \quad=I_{1}^{U} \cdots I_{l} \prod_{\text {permutation of fermionic }} \phi_{i}^{\prime} s
\end{aligned}
$$

Sum over decompositions of

$$
\begin{aligned}
& \{1, \cdots, s\} \text { to } \underbrace{\text { supply }}_{\text {sublets } I_{1}, \cdots, I_{\ell} \subset\{1, \cdots, s\}}
\end{aligned}
$$

* In particular, no term has a vacuum diagram factor.
(ii) follows from (i) Define

$$
\begin{aligned}
& Z_{\text {pert }}(J):=\left[\int D \Phi e^{-S_{\text {free }}(\Phi)-S_{\text {int }}(\Phi)+J \cdot \Phi}\right]_{\text {pert }} \\
& \quad=\sum_{n=0}^{\infty} \frac{1}{n!} \int D \Phi e^{-S_{\text {free }}(\Phi)}(-S_{\text {int }}(\Phi)+\underbrace{J \cdot \Phi}_{\uparrow})^{n}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left\langle\Phi_{1}\right. & \left.\cdots \Phi_{s}\right\rangle_{\text {pert }} \\
& =\left.\frac{1}{Z_{\text {pert }}(J)} \frac{\partial}{\partial J_{1}} \cdots \frac{\partial}{\partial J_{s}} Z_{\text {pert }}(J)\right|_{J=0}
\end{aligned}
$$

On the other hand, (i) implies

$$
Z_{\text {pert }}(J)=Z_{\text {free }} \cdot \exp \left(Z_{\text {conn }}(J)\right) \text {, where }
$$

$Z_{\text {conn }}(J)=$ sum of connected vacuum diagrams
$\binom{J \cdot \Phi$ is a part of interaction and corresponds }{ to a vertex of the form J-. }
Thus,

$$
\begin{aligned}
& \left\langle\Phi_{1} \cdots \Phi_{s}\right\rangle_{\text {pert }}=\left.e^{-Z_{\text {conn }}(J)} \frac{\partial}{\partial J_{1}} \cdots \frac{\partial}{\partial J_{s}} e^{Z_{\text {comp }}(J)}\right|_{J=0} \\
& \begin{array}{l}
=\sum_{\{1, \cdots, S\}} \pm\left.\prod_{i, \in I_{1}} \frac{\partial}{\partial J_{i_{1}}} Z_{\text {conn }}(J) \cdots \prod_{i_{l} \in I_{l}} \frac{\partial}{\partial J_{i l}} Z_{\text {conn }}(J)\right|_{J=0} \\
=I_{1}^{U} \cdots I_{l}
\end{array} \\
& =\sum_{\{1, \cdots, s\}} \pm\left\langle\prod_{i_{1} \in \tau_{1}} \Phi_{i_{i}}\right\rangle_{\text {conn }} \cdots\left\langle\prod_{i_{l} \in I_{l}} \Phi_{i_{l}}\right\rangle_{\text {conn }} \\
& =I_{1}^{\omega}{ }^{u} I_{l}
\end{aligned}
$$

Thus, it remains to show (i)
Notation in this discussion: for a diagram D, we write $[D]$ for the contribution of D to $Z_{\text {pert }} / Z_{\text {free }}$.

Thus $Z_{\text {pert }} / Z_{\text {free }}=\sum_{D}[D]$
Case 1 -Tint $=V$, a single type of vertex
P.y. ϕ^{4} theory without source term.

Then $z_{\text {pert }} / Z_{\text {free }}=\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle V^{n}\right\rangle_{\text {free }}$
Suppose a connected diagram C has v_{c} vertices.
Then $[C]$ is a term in $\frac{1}{v_{C}!}\left\langle V^{V_{C}}\right\rangle_{\text {free. }}$
Also, $[\underbrace{C \cdots C}_{m}]$ is a term in $\frac{1}{\left(m v_{c}\right)!}\left\langle V^{m v_{c}}\right\rangle_{\text {free }}$, and is included in its part
$\left(\begin{array}{l}\text { number of ways to } \\ \text { decompose } m V_{c} \text { elements } \\ \text { to } m \text { groups of } V_{c} \text { elements }\end{array}\right)$

$$
=\binom{m v_{c}}{v_{c}}\binom{m v_{c}-v_{c}}{v_{c}} \cdots\binom{2 v_{c}}{v_{c}}\binom{v_{c}}{v_{c}} \times \frac{1}{m!}
$$

number of ways to put $m V_{c}$ forget the labels elements to m labeled boxes of the boxes

$$
=\frac{\left(m v_{c}\right)!}{\left(V_{c}!\right)^{m} m!}
$$

$\therefore[\underbrace{C \cdots}_{n} C]$ is a term in

$$
\begin{aligned}
& \frac{1}{\left(m v_{c}\right)!}\left\langle V^{v_{c}}\right\rangle_{\text {free }} \cdots\left\langle V^{v_{c}}\right\rangle_{\text {free }} \times \frac{\left(m v_{c}\right)!}{\left(v_{c}!\right)^{m} m!} \\
= & \frac{1}{m!}(\underbrace{\frac{1}{V_{c}!}}_{[C]+\text { others }}\langle\underbrace{v_{c}}\rangle_{\text {free }}^{m})^{\left(V^{m}\right.}
\end{aligned}
$$

If C_{1}, \cdots, C_{h} are connected diagrams of $V_{C_{1}}, \cdots, V_{C_{k}}$ vertices,
is a term in $\frac{1}{\left(m_{1} v_{c_{1}}+\cdots+m v_{c_{L}}\right)!}\left\langle V^{m_{1} v_{c_{1}}+\cdots+m v_{c_{2}}}\right\rangle_{\text {free }}$
and is included in

$$
\begin{aligned}
& \frac{1}{\left(m_{1} v_{c_{1}}+\cdots+m V_{c_{n}}\right)!}\left\langle V^{v_{c_{1}}}\right\rangle_{\text {free }}^{m_{1}} \cdots\left\langle V^{v_{c_{k}}}\right\rangle_{\text {free }}^{m_{k}} \\
& \times\left(\begin{array}{l}
\text { number of ways to decompose } m_{1} v_{C_{1}}+\cdots+m V_{C_{k}} \\
\text { elements to } m_{1} \text { groups of } V_{C_{1}} \text { elements, } \cdots, \\
\cdots, m_{k} \text { groups of } V_{C_{k}} \text { elements }
\end{array}\right) \\
& \frac{\left(m_{1} v_{c_{1}}+\cdots+m v_{c_{k}}\right)!}{\left(v_{\left.c_{1}!\right)^{m_{1}} \cdots\left(v_{c_{k}}!\right)^{m_{k}}} \frac{1}{m_{1}!\cdots m_{k}!}\right.} \\
& =\frac{1}{m_{1}!}\left(\frac{1}{V_{c_{1}!}}\left\langle V^{V_{c_{1}}}\right\rangle_{\text {free }}\right)^{m_{1}} \cdots \frac{1}{m_{k}!}\left(\frac{1}{V_{c_{k}}!}\left\langle V^{V_{c h}}\right\rangle_{\text {free }}\right)^{m_{k}} \\
& \therefore[\underbrace{C_{1} \cdots C_{1}}_{m_{1}} \cdots \underbrace{C_{k} \cdots C_{L}}_{m_{k}}]=\frac{1}{m!}\left[C_{1}\right]^{m_{1}} \cdots \frac{1}{m_{k}!}\left[C_{k}\right]^{m_{k}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& Z_{\text {pert }} / Z_{\text {tree }}=\sum_{D}[D] \\
& \quad=\sum_{C_{1}, \cdots, C_{h}}\left[C_{1} \cdots C_{1} \cdots C_{h} \cdots C_{h}\right]
\end{aligned}
$$

connected

$$
\begin{aligned}
& {[\underbrace{C_{1} \cdots C_{1}}_{m_{1}} \cdots \underbrace{C_{k} \cdots C_{k}}_{m_{w}}]=\frac{1}{m_{1}!}\left[C_{1}\right]^{m_{1}} \cdots \frac{1}{m_{k}!}\left[C_{k}\right]^{m_{k}} } \\
&=\prod_{C \text { connected }}^{\sum_{m_{2}=0}^{\infty} \frac{1}{m_{c}!}[C]^{m_{c}}} \\
&=\underbrace{\exp _{C_{\text {connected }}}^{\left.\sum_{i}[C]\right)}}_{\exp ([C])} .
\end{aligned}
$$

Case 2 $-S_{\text {int }}=V_{1}+\cdots+V_{N}:$ multiple types of vertices e.g. ϕ^{4} theory with a source $J \cdot \phi$ e.s. $Q C D$ with on without a source.

Then, $z_{\text {per }} / z_{\text {free }}=\sum_{n_{1}, \cdots n_{N}} \frac{1}{n_{1}!\cdot n_{N}!}\left\langle V_{1}^{n_{1}} \cdots V_{N}^{n_{N}}\right\rangle_{\text {free }}$
Suppose a connected diaghm C has V_{c}^{\prime} vertices of type V_{1} V_{c}^{2} vertices of type V_{2}, \cdots, V_{c}^{N} vertices of type V_{N}.

Then $[C]$ is a term in $\frac{1}{V_{c}^{\prime}!-V_{c}^{N}!}\left\langle V_{1}^{V_{c}^{\prime}} \ldots V_{N}^{V_{c}^{N}}\right\rangle_{\text {free }}$.
Also $[\underbrace{C \ldots C}_{m}]$ is a term in $\frac{1}{\left(m v_{c}^{\prime}!\cdots\left(m V_{c}^{N}\right)!\right.}\left\langle V_{1}^{m v_{c}^{\prime}}-V_{N}^{m v_{c}^{N}}\right\rangle_{\text {free }}$
and is included in its part

$$
\frac{1}{\left(m v_{c}^{\prime}\right)!\cdots\left(m v_{c}^{N}\right)!}\left(\left\langle V_{1}^{v_{c}^{\prime}} \cdots V_{N}^{v_{c}^{N}}\right\rangle_{\text {tree }}\right)^{m}
$$

number of ways to distribute $m V_{c}^{\prime}$ elements of type 1 , $m v_{c}^{2}$ elements to type $2, \cdots, m v_{c}^{N}$ elements of type N to m unlabeled boxes, where each box admit V_{c}^{\prime} elements of type $1, \cdots, V_{c}^{N}$ elements of type N

$$
\frac{\left(m V_{c}^{\prime}\right)^{\prime}}{\left(V_{c}^{\prime}!\right)^{m}} \cdots \frac{\left(m V_{c}^{N}\right)!}{\left(V_{c}^{N}!\right)^{n}} \cdot \frac{1}{m!}
$$

$$
\begin{aligned}
& =\frac{1}{m!}\left(\frac { 1 } { V _ { c } ^ { ! } ! \cdots V _ { c } ^ { N } ! } \left\langleV_{1}^{\left.\left.v_{c}^{\prime} \cdots V_{N}^{v_{c}^{N}}\right\rangle_{\text {free }}\right)^{m}}\right.\right. \\
& \therefore[\underbrace{C \cdots C}_{m}]=\frac{1}{m!}[C]^{m}
\end{aligned}
$$

For $i=1, \ldots, h$, let C_{i} be a connected diagram with $V_{C_{i}}^{j}$ vertices of type $V_{j} \quad(j=1, \cdots, N)$. Then

and is inclucled in its part

$$
\prod_{j=1}^{N} \frac{1}{\left(\sum_{i=1}^{k} m_{i} V_{c_{i}}^{j}\right)!} \prod_{i=1}^{k}\left\langle V_{1}^{v_{c_{i}}^{\prime}} \ldots V_{N}^{v_{c_{i}}^{N}}\right\rangle_{\text {free }}^{m_{i}}
$$

$\times\left(\begin{array}{l}\text { number of ways to distribute } \sum_{i=1}^{n} m_{i} v_{c_{i}}^{j} \text { elements of type } j \\ (\hat{j}=1, \cdots, N) \text { to } m_{i} \text { unlabeled boxes, where each box } \\ \text { admit } v_{c_{i}}^{\prime} \text { elements of tope } 1, \cdots, v_{c, i}^{*} \text { elements of type } N \\ (i=1, \cdots, k) .\end{array}\right)$

$$
\begin{aligned}
= & \prod_{j=1}^{N} \frac{1}{\left(\sum_{i=1}^{k} m_{i} V_{c_{i}}^{j}\right)!} \prod_{i=1}^{k}\left\langle V_{1}^{v_{c_{i}}^{\prime}} \ldots V_{N}^{V_{c_{i}}^{N}}\right\rangle_{\text {tree }}^{m_{i}} \\
& \quad \times \prod_{j=1}^{N}\left(\frac{\left(\sum_{i=1}^{k} m_{i} V_{c_{i}}^{j}\right)!}{\prod_{i=1}^{k}\left(m_{i} V_{c_{i}}^{j}\right)!} \cdot \prod_{i=1}^{k} \frac{\left(m_{i} V_{c_{i}}^{j}\right)!}{\left(V_{c_{i}}^{j}!\right)^{m_{i}}}\right) \frac{1}{m_{1}!\cdots m_{k}!} \\
= & \prod_{i=1}^{k} \frac{1}{m_{i}!}\left(\frac{1}{V_{c_{i}!}^{1}!\cdots V_{c_{i}}^{N}!}\left\langle V_{1}^{V_{c_{i}}^{\prime}} \cdots V_{N}^{V_{c_{i}}^{N}}\right\rangle_{\text {free }}\right)^{m_{i}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& [\underbrace{C_{1} \cdots C_{1}}_{m_{1}} \cdots \underbrace{C_{k}}_{m_{k}}] C_{k}]=\frac{1}{m_{1}!}\left[C_{1}\right]^{m_{1}}-\frac{1}{m_{k}!}\left(C_{k}\right]^{m_{k}} \ldots \\
& Z_{\text {pert }} / Z_{\text {lire }}=\sum_{D}[D]=\sum_{C_{1},-C_{k} \text { conn }}\left[C_{1} \cdots C_{1}-C_{k}-C_{k}\right] \\
& \quad \stackrel{*}{=} \prod_{C \text { conn }} \sum_{m_{c}=0}^{\infty} \frac{1}{m_{c}!}[C]^{m_{c}} \\
& \quad=\prod_{C \text { conn }} \exp [C]=\exp \left(\sum_{C \text { coon }}[C]\right)
\end{aligned}
$$

