Particle spectrum and interactions
from correlation functions

Under a basic assumption, from the correlation functions

$$
\left\langle\Theta_{1}\left(x_{1}\right) \cdots \mathcal{O}_{s}\left(x_{s}\right)\right\rangle=\langle 0| T \Theta_{1}\left(x_{1}\right) \cdots \bigcup_{s}\left(x_{s}\right)|0\rangle
$$

we can read off the - particle spectrum and - interactions among particles.

Spectrum from two point functions
Consider a QFT formulated on Minkowski space \mathbb{R}^{d} $\mathscr{O}=$ space of states.
\exists action of Poincare group:

$$
\left\{\begin{array}{l}
\text { translation } \Delta x^{\mu} P_{\mu} \\
\text { Lorentz } U(\Lambda): \Lambda \in S O(d-1,1)
\end{array}\right.
$$

$P_{\mu}=(H,-\mathbb{P})$ commutes with each other
$\sim \exists$ basis of \mathscr{C} in which P_{r} are diagonalized.

Assumption There are N particles of masses m_{1}, \cdots, m_{N} and \mathscr{H} is spanned by

A state $|0\rangle$ with $P_{\mu}=0$
Corresponding to the vacuum without any particle.

- A state $\left|\mathbb{P}_{1}, i_{1} ; \cdots ; \mathbb{P}_{l}, i_{l}\right\rangle \quad(\ell \geqslant 1)$ with
i_{1}-th particle of momentum \mathbb{P}_{1},
[2 -th
\mathbb{P}_{2},
i_{l}-th particle of momentum P_{e}.
It has energy $E=\sum_{a=1}^{e} \omega_{\mathbb{P} a}^{i a} ; \omega_{\mathbb{P}}^{i}=\sqrt{\mathbb{P}^{2}+\omega_{i}^{2}}$ and momentum $\mathbb{P}=\sum_{u=1}^{l} \mathbb{P a}$.

Remark

- We have seen that this is the case in free field theories, (up to the ground state energy (see below)).

But the assumption is very non-trivial for a genera QFT which is not necessarily free.

- $|0\rangle$ is the unque ground state and all states have non-negative energies $E \geqslant 0$
$\left(\begin{array}{l}\text { We have seen examples where the ground state has } \\ \text { a non-zero energy } E_{0} \text {, but we just "set it off" } \\ \text { by king } H-E_{0} \text { as the new Hamitonian }\end{array}\right)$
Also, the Poincare relation $U(\Lambda)^{-1} P^{\mu} U(\Lambda)=\Lambda_{u}^{\mu} p^{\nu}$ and the uniqueness of the ground state implies
that $|0\rangle$ is Lorentz invariant,

$$
U(\Lambda)|0\rangle=(0\rangle
$$

- The particles may have spin and other quantum numbers (such as charges under internal symmetries). Then (\mathbb{P}, i) may be replaced by $\left(\mathbb{P}, i ; S, q_{1},-\cdots\right)$. spin other For simplicity, for now, we assume that all the particles are scalar (no spin) and have no additions quantum numbers.
- For a one particle state $|\mathbb{p}, i\rangle$, energy is determmal by the total momentum $\mathbb{P}=\mathbb{P} ; E=\sqrt{\mathbb{P}^{2}+m_{i}^{2}}$

But for sizes with two or more particles, for each total momentum \mathbb{P}, the possible values of $E=\sum_{a} \sqrt{\mathbb{P}_{a}^{2}+m_{r a}^{2}}$ is not bounded above. es. for two particles of the same type with $\mathbb{P}_{1}+\mathbb{P}_{2}=\mathbb{P}, E$ can take any value st. $\quad 2 E_{\mathbb{R} / 2} \leqslant E<\infty$.
two or more particles

Organization/normalization of basis:

$$
\begin{aligned}
\{|0\rangle\} \cup\{|\mathbb{P}, \lambda\rangle\}_{\mathbb{P}} & =\text { total momentum } \\
\lambda & =\text { all other labels }
\end{aligned}
$$

- For one particle states, $\lambda=i$ the particle species (discrete label).
- For two or more particle states, $\lambda=$ particle species (discrete) + relative momenta (continuous).

$$
\left.|\mathbb{P}, \lambda\rangle \text { has } \mathbb{P}=\mathbb{P} \quad \begin{array}{rl}
E & =\sqrt{\mathbb{P}^{2}+m_{\lambda}^{2}}=: \omega_{\mathbb{P}}^{\lambda}
\end{array}\right\} p_{\mathbb{P}, \lambda}^{\mu}:=\left(\omega_{\mathbb{P},}^{\lambda}, \mathbb{P}\right)
$$

and is related to $|0, \lambda\rangle$ with $\mathbb{P}=\mathbb{0} \& E=m_{\lambda}$ by

$$
|\mathbb{P}, \lambda\rangle=U\left(\Lambda_{m_{\lambda, ~}}\right)|0, \lambda\rangle
$$

where $\Lambda_{m, p}$ is the Lorentz boost in the direction of \mathbb{p} Sending $\binom{m}{0}$ to $\binom{\sqrt{\mathbb{R}^{2}+m^{2}}}{\mathbb{P}}$.

They are normalized so that

$$
\left\langle\mathbb{P}, \lambda \mid \mathbb{P}^{\prime}, \lambda^{\prime}\right\rangle=(2 \pi)^{d-1} 2 \omega_{\mathbb{P}}^{\lambda} \delta^{d-1}\left(\mathbb{P}-\mathbb{R}^{\prime}\right) \delta_{\lambda, \lambda^{\prime}} .
$$

eeg. For a particle of mass m, we may use creation/ann/hilation operators of real scalar $\left[a(\mathbb{P}), a\left(\mathbb{P}^{\prime}\right)^{+}\right]=\delta^{d-1}\left(\mathbb{P}-\mathbb{P}^{\prime}\right), \ldots$ to describe the states:

One particle state: $\lambda=\cdot$,

$$
\begin{aligned}
& |0, \cdot\rangle=a(0)^{+}|0\rangle \times \sqrt{(2 \pi)^{d-1} 2 m} \\
& |\mathbb{P}, \cdot\rangle=U\left(\Lambda_{m, \mathbb{p}}\right)|0, \cdot\rangle=a(\mathbb{P})^{+}|0\rangle \times \sqrt{(\pi)^{d-1} 2 \omega_{\mathbb{R}}}
\end{aligned}
$$

two particle sate: $\lambda=91$,

$$
|0 ; q\rangle=a(q)^{+} a(-q)^{+}|0\rangle \times C_{q, m}
$$

some constant
with $\mathbb{P}=0 \& E=2 \omega_{q}$

$$
|p ; q\rangle=U\left(\Lambda_{2 \omega_{q}, \mathbb{p}}\right)|0 ; q\rangle
$$

l-particle state: $\lambda=\left(q_{1}, \cdots, q_{l}\right) ; q_{1}+\cdots+q_{l}=0$,

$$
\begin{aligned}
\left|0 ; q_{1}, \cdots, q_{l}\right\rangle & =a\left(q_{1}\right)^{+} \ldots a\left(q_{l}\right)^{+}|0\rangle \times C_{q_{1}, \cdots, q_{l}, m} \text { some constant } \\
\text { with } \mathbb{P} & =0, E=\omega_{q_{1}}+\cdots+\omega_{q_{l}}=: m_{q_{1}, \cdots, q_{l}} \\
\left|\mathbb{p} ; q_{1}, \cdots, q_{l}\right\rangle & =U\left(\Lambda_{m_{q_{1}}, \cdots q_{l}}, p\right)\left|0 ; q_{1}, \cdots, q_{l}\right\rangle
\end{aligned}
$$

Exercise: For $\Lambda \in S O(d-1,1)$ and $\omega_{\mathbb{P}}=\sqrt{\mathbb{R}^{2}+m^{2}}$ detine $\Lambda(\mathbb{P})$ by $\Lambda\binom{\omega_{\mathbb{P}}}{\mathbb{P}}=\binom{\omega_{\Lambda(\mathbb{P})}}{\Lambda(\mathbb{P})}$. Then
(1) $U(\Lambda) a(\mathbb{P}) U(\Lambda)^{-1}=\sqrt{\frac{\omega_{\Lambda(\mathbb{P})}}{\omega_{\mathbb{P}}}} a(\Lambda(\mathbb{P}))$
(2) $\quad d^{d-1} \mathbb{P} / \omega_{\mathbb{p}}$ is invariont under $\mathbb{P} \rightarrow \Lambda(\mathbb{P})$.
(3) $\left\langle\mathbb{p} ; \vec{q} \mid \mathbb{P}^{\prime} ; \vec{q}^{\prime}\right\rangle \propto \sqrt{\mathbb{R}^{2}+m_{\vec{q}}^{2}} \delta^{\alpha-1}\left(\mathbb{p}-\mathbb{P}^{\prime}\right)$

The ibuntity operstor on \mathcal{H} may be expanded as

$$
i d_{x}=|0\rangle\langle 0|+\sum_{i=1}^{N} \int \frac{d^{d-1} \mid \mathbb{P}}{(2 \pi)^{\alpha-1} 2 \omega_{\mathbb{P}}^{i}}|\mathbb{P}, i\rangle\langle\mathbb{P}, i|
$$

+ progection to multipartick siates

$$
=|0\rangle\langle 0|+\sum_{C_{\lambda}} \int_{\lambda} \frac{d^{d-1} \mathbb{p}}{(2 \pi)^{\alpha-1} 2 \omega_{\mathbb{p}}^{\lambda}}|\mathbb{p}, \lambda\rangle\langle\mathbb{p}, \lambda| .
$$

syabol for mixed discrete-continuous sum

Let us consider the two point function

$$
\langle O(x) O(s)\rangle=\langle 0| T O(x) O(y)|0\rangle
$$

of a hermitian scalar operator $\mathcal{O}=\Theta^{+}$
st. $\langle\Theta(x)\rangle=\langle 0| O(x)|0\rangle=0$.
Inserting id ge = above in the middle, we fund for $x^{\circ}>y^{\circ}$

$$
\begin{aligned}
& \langle 0| O(x) O(y)|\delta\rangle=\int_{\lambda} \int \frac{d^{d-1} p}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}^{\lambda}}\langle 0| O(x)|p, \lambda\rangle\langle\mathbb{p}, \lambda| O(v)|0\rangle \\
& \langle 0| O(k)|(\mathbb{1}, \lambda\rangle=\underbrace{\langle 0| e^{i P x} O(0) \underbrace{-i p x}|\mathbb{P} \lambda\rangle}_{\langle 0|} e^{-i P_{\mathbb{P}, \lambda}}| \mathbb{P}, \lambda\rangle \\
& =e^{-i P_{\mathbb{P}, \lambda} x}\langle 0| \Theta(0)|\mathbb{P}, \lambda\rangle \\
& U\left(\Lambda_{m_{\lambda}, \mathbb{P}}\right)|0, \lambda\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-i P_{Q, \lambda} x}\langle 0| O(0)|0, \lambda\rangle
\end{aligned}
$$

Similarly, $\langle\mathbb{P}, \lambda| O(y)|0\rangle=e^{i P_{1 p, \lambda} y}\langle 0, \lambda| O(0)|0\rangle$

$$
\left.\therefore\langle 0| O(x) O(y)|0\rangle=\sum_{\lambda} \int \frac{d^{d-1} \mathbb{p}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}^{\lambda}} e^{-i P_{\mathbb{p}, \lambda}(x-y)}|\langle 0, \lambda| O(0)| d\right\rangle\left.\right|^{2}
$$

similarly for $\langle 0| O(y) \cup(x)|0\rangle$ for $\left.y^{0}\right\rangle x^{0}$

$$
\begin{aligned}
& \langle 0| T O(x) O(y)|0\rangle \\
& =\sum_{\lambda} \int^{\left.\int \frac{d^{d-1} \mathbb{p}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}^{\lambda}} e^{\left.-i \omega_{\mathbb{p}}^{\lambda} \mid x^{0}-y^{0}\right)+i \mathbb{p} \cdot(x-y)}|\langle 0, \lambda| O(0)| 0\right\rangle\left.\right|^{2}} \quad \begin{aligned}
& \frac{d^{d} \rho}{(2 \pi)^{d}} \frac{i e^{-i p(x-y)}}{p^{2}-m_{\lambda}^{2}+i \cdot 0}=D_{F}(x-y)_{m_{\lambda}} \\
= & \int_{0}^{\infty} \frac{d M^{2}}{2 \pi} \rho\left(M^{2}\right) D_{F}(x-y)_{M}
\end{aligned}
\end{aligned}
$$

where $\left.\rho\left(M^{2}\right):=\sum_{\lambda} 2 \pi \delta\left(M^{2}-m_{\lambda}^{2}\right)|\langle 0, \lambda| O(0)| 0\right\rangle\left.\right|^{2}$

$$
\begin{aligned}
& =\sum_{i=1}^{N} 2 \pi \delta\left(M^{2}-m_{i}^{2}\right) Z_{i}
\end{aligned}+\underbrace{\rho_{\text {mut }}\left(M^{2}\right)}_{\text {multi }}
$$

Fourier transform of the two point function:

$$
\begin{aligned}
& \int d^{d} x e^{i p x}\langle 0| T O(x) O(0)|0\rangle \\
& \quad=\int_{0}^{\infty} \frac{d M^{2}}{2 \pi} \rho\left(M^{2}\right) \frac{i}{p^{2}-M^{2}+i \cdot 0} \\
& \quad=\sum_{i=1}^{N} \frac{i Z_{i}}{p^{2}-m_{i}^{2}+i 0}+\int_{4 m_{m m}^{2}}^{\infty} \frac{d M^{2}}{2 \pi} P_{m \omega t i}\left(M^{2}\right) \frac{i}{p^{2}-M^{2}+i \cdot 0}
\end{aligned}
$$

pole for each particle branch cut on $\left[4 m_{\text {min }}^{2}, \infty\right)$ wish $Z_{i} \neq 0$

Asymptotic states

Scattering process

$$
\left.|\psi\rangle_{\text {in }} \stackrel{\text { time evolution }}{\leftarrow} \mid \psi \text {, free }\right\rangle
$$

$$
\mid X, \text { free }) \stackrel{\text { time evolution }}{\longleftarrow}|x\rangle_{\text {out }}
$$

δ-matrix

$$
\langle x, \text { free }| S \mid \psi, \text { free }\rangle:={ }_{\text {out }}\langle x \mid \psi\rangle_{\text {in }}
$$

We need $|\psi\rangle_{\text {in }}$ and $|x\rangle_{\text {out }}$.

For simplicity, consider a theory with a single species of scalar particle of mass m.

Suppose \exists a hermitian scalar operator \bigcup st.

$$
\langle 0| O(x)|0\rangle=0, \quad\langle 0| O(x)|0\rangle=\sqrt{z} \neq 0 .
$$

Then $\langle\mathbb{P}| O(x)|0\rangle=\sqrt{z} e^{i p_{\mathbb{P}} x}=\sqrt{z} e^{i \omega_{\mathbb{p}} t-i \mathbb{P} \cdot x}$.

For a positive energy wave packet $f(x)$

$$
f(x)=\int \frac{d^{d-1} \mathbb{k}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{k}}} \tilde{f}(\mathbb{k}) e^{-i P_{k} x}
$$

define

$$
O_{f}(t):=\frac{-i}{\sqrt{Z}} \int d^{d-1} x f(t, x) \stackrel{\leftrightarrow}{\partial}_{t} \bigcup(t, x)
$$

Surly $\Theta_{f}(t)|0\rangle$:

$$
\begin{aligned}
\langle 0| \Theta_{f}(t)|0\rangle & =0 \\
\langle\mathbb{P}| \Theta_{f}(t)|0\rangle & =-i \int d^{d-1} \times \int \frac{d^{d-1} \mathbb{k}}{(2 \pi)^{\alpha-1} 2 \omega_{\mathbb{k}}} \tilde{f}(\mathbb{k}) e^{-i\left(P_{\mathbb{k}}-P_{\mathbb{P}}\right) x} i\left(\omega_{\mathbb{k}}+\omega_{\mathbb{P}}\right) \\
& =\tilde{f}(\mathbb{P}) \quad(t \text {-independent })
\end{aligned}
$$

cf.

$$
\begin{aligned}
\langle 0| O_{f}(t)|\mathbb{P}\rangle & =-i \int d^{d-1} \times \int \frac{d^{d-1} \mathbb{k}}{(2 \pi)^{\alpha-1} 2 \omega_{\mathbb{k}}} \tilde{f}(\mathbb{k}) e^{-i\left(P_{\mathbb{k}}+P_{\mathbb{p}}\right) x} i\left(\omega_{\mathbb{k}}-\omega_{\mathbb{p}}\right) \\
& =0
\end{aligned}
$$

multiparticle state $\langle\mathbb{P}, \lambda| \mathcal{O}_{f}(t)|0\rangle=$

$$
\begin{aligned}
& -i \int d^{d-1} x \int \frac{d^{d-1} \mathbb{k}}{(2 \pi)^{\lambda-1} 2 \omega_{\mathbb{k}}} \tilde{f}(\mathbb{k}) e^{-i\left(P_{\mathbb{k}}-P_{\mathbb{P}, x}\right) x} i\left(\omega_{\mathbb{k}}+\omega_{\mathbb{P}}\right)\langle 0, \lambda| O_{(0)}|0\rangle \\
& =\frac{\omega_{\mathbb{P}}+\omega_{\mathbb{P}}^{\lambda}}{2 \omega_{\mathbb{R}}} \tilde{f}(\mathbb{P})\langle 0, \lambda| O(0)|0\rangle e^{i\left(\omega_{\mathbb{P}}^{\lambda}-\omega_{\mathbb{R}}\right) t}
\end{aligned}
$$

For a test state $|\psi\rangle$,

$$
\begin{aligned}
& \langle\psi| U_{f}(t)|0\rangle=\langle\psi \mid 0\rangle\langle 0| \hat{v}_{f}(t)|0\rangle \\
& +\int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{P}}}\langle\Psi \mid \mathbb{P}\rangle\langle\mathbb{P}| \cup_{f}(t)|0\rangle=\tilde{f}(\mathbb{P})
\end{aligned}
$$

$L(\rightarrow \infty \downarrow$ Wild oscillation of
as a function of λ

$$
\therefore\langle\psi| O_{f}(t)|0\rangle \stackrel{|t| \rightarrow \infty}{\longrightarrow} \int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}}\langle\psi \mid \mathbb{p}\rangle \tilde{f}(\mathbb{P})
$$

ie. $U_{f}(t)|0\rangle \xrightarrow{t \rightarrow \pm \infty} \int \frac{d^{d-1} \mathbb{P}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{P}}}|\mathbb{P}\rangle \tilde{f}(\mathbb{P})=:|f\rangle$

Note: $|f\rangle=U(T) U(-T)|f\rangle$

$$
\left.=U(T) \underbrace{\int \frac{d^{d-1} \mathbb{p}}{(2 \pi)^{d-1} 2 \omega_{\mathbb{p}}}} \right\rvert\, \mathbb{P}) \tilde{f}(\mathbb{P}) e^{-i \omega_{\mathbb{P}}(-T)}
$$

free propagation of one particle with wave packet f at $t=-T$
its time evolution to $t=0$

$$
\begin{array}{ll}
T \rightarrow \infty:|f\rangle=|f\rangle_{\text {in }} \\
T \rightarrow-\infty:|f\rangle=|f\rangle_{\text {out }}
\end{array}
$$

Thus

$$
U_{f}(t)|0\rangle \xrightarrow{t \rightarrow \pm \infty}|f\rangle=|f\rangle_{\text {in }}=|f\rangle_{\text {out }}
$$

adjoint (

$$
\langle 0| O_{f}(t)^{+} \xrightarrow{t \rightarrow \pm \infty}\langle f|={ }_{\text {in }}|f|={ }_{\text {out }}\langle f|
$$

By a similar computation, we find $\langle 0| O_{f}(t)|\psi\rangle \xrightarrow{(t) \rightarrow \infty} 0$ for any test state $|\psi\rangle$.

$$
\begin{aligned}
& \langle 0| O_{f}(t) \rightarrow 0 \text { as } t \rightarrow \pm \infty \\
& O_{f}(t)^{+}|0\rangle \rightarrow 0 \text { as } t \rightarrow \pm \infty
\end{aligned}
$$

$f_{1}(x), \cdots, f_{n}(x)$: wave packets with no overlap at $(t) \rightarrow \infty$

$$
\begin{aligned}
& \bigcup_{f_{1}}(-T)-\bigcup_{f_{n}}(-T)|0\rangle \\
& \quad=U(T) U(T)^{-1} \prod_{i=1}^{n} \frac{-i}{\sqrt{z}} \int d^{d-1} x_{i} f_{i}\left(-T, x_{i}\right) \stackrel{\partial}{t}_{t} \cup\left(-T, x_{i}\right)|0\rangle \\
& \quad=U(T) \underbrace{\prod_{i=0}^{n} \frac{-i}{\sqrt{z}} \int d^{d-1} x_{i} f_{i}\left(-T, x_{i}\right) \stackrel{\leftrightarrow}{\partial_{t}} \cup\left(0, x_{i}\right)|0\rangle}
\end{aligned}
$$

free propagation of n particles with wave packets f_{1}, \cdots, f_{n} at $t=-T$
its time evolution to $t=0$.

$$
\begin{aligned}
\therefore\left|f_{1}, \cdots, f_{n}\right\rangle_{i n} & =\lim _{T \rightarrow \infty} \bigcup_{f_{1}}(-T) \ldots \bigcup_{f_{n}}(-T)|0\rangle \\
& =\lim _{T_{1} \rightarrow \infty} \cdots \lim _{T_{n} \rightarrow \infty} \bigcup_{f_{1}}\left(-T_{1}\right) \ldots \bigcup_{f_{n}}\left(-T_{n}\right)|0\rangle
\end{aligned}
$$

The ordering does not matter since f_{1}, \ldots, f_{n} has no overlap at $t \rightarrow-\infty$.

$$
\begin{aligned}
& \bigcup_{f_{1}}(T) \cdots \bigcup_{f_{n}}(T)|0\rangle \\
& \quad=U(T)^{-1} U(T) \prod_{i=1}^{n} \frac{-i}{\sqrt{z}} \int d^{d-1} x_{i} f_{i}\left(T, x_{i}\right) \stackrel{\leftrightarrow}{\partial_{t}} \cup\left(T, x_{i}\right)|0\rangle \\
& =U(T)^{-1} \prod_{i=0}^{n} \frac{-i}{\sqrt{z}} \int d^{d-1} x_{i} f_{i}\left(T, x_{i}\right) \stackrel{\leftrightarrow}{\partial_{t}} \cup\left(0, x_{i}\right)|0\rangle
\end{aligned}
$$

free propagation of n particles with wave packets f_{1}, \cdots, f_{n} at $t=T$
its time reversal to $t=0$

$$
\begin{aligned}
\therefore\left|f_{1}, \cdots, f_{n}\right\rangle_{o u t} & =\lim _{T \rightarrow \infty} \bigcup_{f_{1}}(\tau) \cdots \bigcup_{f_{n}}(\tau)|0\rangle \\
& =\lim _{T_{1} \rightarrow \infty} \cdots \lim _{T_{n} \rightarrow \infty} O_{f_{1}}\left(T_{1}\right) \cdots \bigcup_{f_{n}}\left(T_{n}\right)|0\rangle
\end{aligned}
$$

The ordering does not matter since $f_{1}, \cdots f_{n}$ has no overlap at $t \rightarrow+\infty$.

LSZ reduction formula

$$
\begin{aligned}
& \left.\left\langle g_{1}, \cdots, g_{n} \text { free }\right| S \mid f_{1}, f_{2}, \text { free }\right\rangle={ }_{\text {ont }}\left\langle g_{1},-, g_{n} \mid f_{1}, f_{2}\right\rangle_{\text {in }}=\text { ? } \\
& O_{f}(-T)-O_{f}(T)=-\int_{-T}^{T} d t \frac{\partial}{\partial t} O_{f}(t) \\
& =\frac{i}{\sqrt{z}} \int_{-T}^{T} d t \int d^{d x} \underbrace{\partial^{2} O}_{f \partial_{t}^{2} O-\partial_{t}^{2} f\left(f \partial_{t} O-\partial_{t} f O\right)} \\
& =\left(\nabla^{2}-m^{2}\right) f \\
& \text { as } f(t, x) \rightarrow 0 \text { as }|x| \rightarrow \infty \text {, } \\
& \text { spatial partial integration is allowed. } \\
& =\frac{i}{\sqrt{z}} \int_{-T}^{T} d t \int d^{\alpha-1} x f\left(\partial_{t}^{2}-\nabla^{2}+m^{2}\right) \cup \\
& =\frac{i}{\sqrt{z}} \int_{[-T, T] \times \mathbb{R}^{d-1}} d^{d} x\left(\partial^{2}+m^{2}\right) O
\end{aligned}
$$

Taking its adjoint

$$
\mathcal{O}_{g}(\tau)^{+}-\bigcup_{g}(-\tau)^{+}=\frac{i}{\sqrt{z}} \int_{[-T, T] \times \mathbb{R}^{d-1}} d^{1} \times g^{*}\left(\partial^{2}+m^{2}\right) O
$$

Consider $\quad X_{T_{1} \cdots T_{n}, T_{1}^{\prime}, T_{2}^{\prime}}:=$

$$
\begin{aligned}
& \prod_{i=1}^{n} \int_{\left[-T_{i}, T_{i}\right] \times \mathbb{R}^{d-1}} d^{d} y_{i} \frac{i}{\sqrt{z}} g_{i}\left(y_{i}\right)^{*} \prod_{j=1}^{2} \int_{\left[-T_{j}^{\prime}, T_{j}^{\prime}\right] \times \mathbb{R}^{d-1}} d^{d} x_{j} \frac{i}{\sqrt{z}} f_{j}\left(x_{j}\right) \\
& x\left(\partial_{y_{1}}^{2}+m^{2}\right) \cdots\left(\partial_{y_{n}}^{2}+m^{2}\right)\left(\partial_{x_{1}}^{2}+m^{2}\right)\left(\partial_{\alpha_{2}}^{2}+m^{2}\right) \\
& \langle 0| T O\left(y_{1}\right) \cdots O\left(y_{n}\right) \cup\left(x_{1}\right) \cup\left(x_{2}\right)|0\rangle \\
& \int_{\left[-T_{1}, T_{1}\right) \times \mathbb{R}^{d-1}} d^{d} y_{1} \frac{i}{\sqrt{z}} g_{1}\left(y_{1}\right)^{*}\left(\partial_{y_{1}}^{2}+m^{2}\right)\langle 0| T O\left(y_{1}\right) \ldots U\left(x_{2}\right)|0\rangle \\
& \xrightarrow[T_{1} \rightarrow \infty]{ }\langle 0| \mathcal{O}_{g_{1}}(\infty)^{\dagger} T\left(O\left(y_{2}\right) \cdots \cup\left(x_{2}\right)\right)|0\rangle \\
& -\langle 0| T\left(O\left(y_{2}\right) \cdots O\left(x_{2}\right)\right) U_{y_{1}(-\infty)^{+}|0\rangle=0}=0
\end{aligned}
$$

Thus

$$
X_{\vec{\tau}_{1}} \vec{\tau}^{\prime} \xrightarrow{T_{i} \rightarrow \infty} \prod_{i=2}^{n} \cdots \prod_{j=1}^{2} \cdots \cdots\langle 0| U_{j}(\infty)^{+} T\left(O\left(y_{2}\right)-U\left(x_{2}\right)|0\rangle\right.
$$

Repeating this for T_{2}, \cdots, T_{n}, we fond

$$
X_{\vec{T}, \vec{\tau}^{\prime}} \xrightarrow{T_{1}, T_{2}, T_{n} \rightarrow \infty} \prod_{\prod_{=1}}^{2} \cdots \cdots \underbrace{\langle 0| U_{S_{1}}(\infty)^{+} \cdots U_{g_{n}}(\infty)^{+}}_{\operatorname{uur}\left\langle g_{1}, \cdots, g_{n}\right|} T \mid O_{(x,)} \theta_{\left(r_{2}\right)})|0\rangle
$$

Further limits:

$$
\begin{aligned}
& \xrightarrow{T_{1}^{\prime} \rightarrow \infty} \int_{\left[-T_{2}^{\prime}, T_{2}^{\prime}\right] \times \mathbb{R}^{d-1}} d^{d} x_{2} \frac{i}{\sqrt{z}} f_{2}\left(x_{2}\right)\left(\partial_{x_{2}}^{2}+m^{2}\right) \\
& \\
& \quad\left(\operatorname{oont}\left(g_{1}, \cdots, g_{n}\right) \cup\left(x_{2}\right) \cup_{f_{1}}(-\infty) \mid 0\right)-\left(g_{\text {ont } \left.\left._{1}, \cdots, g_{n}\right) \cup_{f_{1}}(\infty)\left(\partial_{\left(x_{2}\right)}\right)|0\rangle\right)}\right.
\end{aligned}
$$

$\xrightarrow{T_{2 \rightarrow \infty}^{\prime}}$ out $\left\langle g_{1}, \cdots g_{n} \bigcup_{f_{2}(-\infty) \bigcup_{f_{1}}(-\infty)|0\rangle} \mid f_{1}, f_{2}\right\rangle_{\text {in }}$

$$
\operatorname{lont}_{o_{1}}\langle g_{1}, \cdots, g_{n} \underbrace{\bigcup_{f_{1}}(\infty) \underbrace{\bigcup_{0}}_{f_{2}(-\infty)|0\rangle}}_{\bigcup_{f_{1}}(\infty)|0\rangle}
$$

$+\operatorname{out}\left\langle g_{1}, \cdots, g_{n} \Theta_{+_{1}}(\infty) \mathcal{O}_{f_{2}}(\infty) \mid 0\right\rangle$

$$
\begin{aligned}
& =\left\langle g_{1}, \cdots, g_{n} \mid f_{1}, f_{2}\right\rangle_{\text {in }}-{ }_{\text {out }}\left\langle g_{1}, \cdots, g_{n} \mid f_{1}, f_{2}\right\rangle_{\text {out }} \\
& \left.\left.=\left\langle g_{1}, \cdots, g_{n}, \text { free }\right| S \mid f_{1}, f_{2}, \text { free }\right\rangle-\left\langle g_{1}, \cdots, g_{n} \text {. free }\right| f_{1}, f_{2} \text {, free }\right\rangle
\end{aligned}
$$

We obrained a formula

$$
\begin{aligned}
& \left.\left\langle s_{1}, \cdots, g_{n}, f_{r e e}\right| S \mid f_{1}, f_{2}, \text { free }\right\rangle \\
& \left.=\left\langle g_{1}, \cdots, g_{n}, \text { free }\right| f_{1}, f_{2}, \text { free }\right\rangle \\
& +\prod_{i=1}^{n} \int^{2} d^{2} y_{i} \frac{i}{\sqrt{z}} g_{i}\left(y_{i}\right)^{*}\left(\partial_{y_{i}}^{2}+m^{2}\right) \prod_{j=1}^{2} \int^{d} d^{d} x_{j} \frac{i}{\sqrt{z}} f_{j}\left(x_{j}\right)\left(\partial_{x_{j}}^{2}+m^{2}\right) \\
& \\
& \quad\langle 0| T O\left(y_{1}\right) \cdots O\left(y_{n}\right) O\left(x_{1}\right) O\left(x_{2}\right)|0\rangle
\end{aligned}
$$

describing S-matrix by correlation functions.
This is the $\frac{L S Z}{\uparrow}$ reduction formula.
Lehmann, Symanzik, Zimmermann

