Symplectic view on constrained systems

As discussed briefly in the class, some of the constructions (Osac bracket for 2nd class; reduced phase space for 1st class) can be understood transparently when we view phase spaces as symplectic manifolds. Here I explain that. phase space = symplectic manifold A phase space is a manifold M with a Poisson bracket S. Y which is a bilinear map from the space of smooth functions on M to itself, satisfying (i) antisymmetry: $\{f, g\} = -\{g, f\},\$ (ii) derivation: (f, gh) = (f, g)h + g(f, h),(III) Jacobi identity: {fils, h) }+ {9, {h, f}} + { h { f, 97 }= 0, (iv) non-degeneracy: for any local wordinate system (22) the matrix with entries $\{\chi^{T}, \chi^{T}\}$ is invertible. Remarks . Often, (iv) is dropped in the definition of Poisson bracket. In that definition, a phase space is a manifold with a non-degenerate Poisson bracket. · Antisymmetric invertible matrix exists only when the size is even.

Thus, the dimension of M is even,
$$\dim M = 2h$$
 (NEN).
• Some of you may consider the phase space as a space with
a class of coordinates $(q', ..., q^n, P_1, ..., P_n)$ by which Poison bracket
is given by $\{f, g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q^i} \frac{\partial g}{\partial P_i} - \frac{\partial f}{\partial P_i} \frac{\partial g}{\partial q^i}\right)$. Relation to that
is given by Darboux's theorem: For an-dimensional manifold
M with a Poisson bracket $\{i, j\}$, at any point $X \in M$, one
(an find a coordinate system $(q', ..., q^n, P_i, ..., P_n)$ on a neighborhood
of x st. $\{q', P_j\} = \delta_j^i$, $fq'(q') = \{P_i, P_j\} = 0$.

A symplectic manifold is a manifold M with a symplectic form

$$W$$
 which is a non-degenerate closed 2-form.
Remarks · "closed" means $dW = 0$.
· "non-degenerate" means : for any local wordinate system (x^{T}),
the matrix with entries $W(\frac{2}{2x}, \frac{2}{3x^{2}})$ is invertible.
Again, as antisymmetric matrix can be inveritible only when
the size is even, the dimension of M must be even, an (nEZ).
"non-degeneracy" can also be described as, assuming
 $dimM=2n$, $W^{n}=Wn-mW \neq 0$ everywhere.

n

Poisson bracket
$$\iff$$
 symplectric form
A Poisson bracket $\{.\}$ determines a symplectic form ω , and
vice versa: For a local coordinate system $(X^{2})_{i=1}^{2n}$,
 $\sum_{J} \{X^{T}, X^{J}\} \omega(\frac{2}{\partial \chi^{2}}, \frac{2}{\partial \chi^{k}}) = -\delta_{K}^{2}$.
 $(ie. (2^{T}, X^{T}) = minus the inverse matrix of $\omega(\frac{2}{\partial \chi^{2}}, \frac{2}{\partial \chi^{2}}))$
In a Darbox coordinate $(q_{1}^{1}, q_{1}^{n}, h_{1}, p_{n})$,
 $(f_{1}, S) = \sum_{i} (\frac{2f}{\partial q_{i}}, \frac{2g}{\partial p_{i}} - \frac{2f}{\partial p_{i}}, \frac{2g}{\partial z_{i}})$
 $: \omega = \sum_{i} \lambda q_{i} \wedge dp^{c}$.
We may write the relationship in a coordinat-free? way:
For a function f on M , let X_{f} be the vector field defined by
 $X_{f} g = \{f, g\}$
for any direction g on M . Then, the relationship is
 $\{f_{1}, g\} = \omega(X_{f}, X_{g})$.
Indeed, since $X_{f}g = X_{f}^{2} \partial z g \approx \{f, g\} = \partial_{k} f(z^{k}, z^{1} \beta \partial z g)$
we find $X_{j}^{1} = \partial_{k} f(X^{k}, z^{k})$ and hence$

 $\omega(X_{f}, X_{5}) = \omega_{z_{J}} X_{f}^{z} X_{5}^{J} = \omega_{z_{J}} \partial_{\kappa} f(x^{\kappa}, x^{z}) \partial_{L} g\{x^{\tau}, x^{\tau}\}$ $= -\partial_{k} f J_{L} g \left(\chi^{k}, \chi^{k} \right) = \partial_{k} f \left(\chi^{k}, \chi^{k} \right) \partial_{L} g = \{f, g\}, V$ From the symplectric rice, the vector field X_f is characterized by $vf = \omega(v, X_f)$ for any vector field V on M. A useful commutation relation For any pair of functions f and g on M, $[X_{f}, X_{g}] = X_{(f,g)}$ proof For another function h. Jacob: identify $\{f, \{s, h\}\} + \{g, \{h, f\}\} + \{h, \{f, s\}\} = 0$ $X_{f} X_{s} h = \{f, h\} = \{f, s\}, h\}$ $-X_{3}X_{4}h$ $= -\chi_{\text{Ef, 57}}h$ verds [Xf, Xg]h = Xff. 51h. As h is arbitrary, this means the Claimed relation. D

The case of second class constraint

Let
$$(M, (., 1))$$
 be a 2n-dimensional phase space and
let NCM a submanifold of 2nd class construct.
That is, for any point x of N , there is an open neighborhood U
of x in M with a set of functions $(4^{\alpha})_{n=1}^{m}$ on U such that
 $N_{\Omega}U = \{(4^{\alpha}---9^{m}=0)\}$ and $det((4^{\alpha}, 9^{\alpha})\neq 0$ on $N_{\Omega}U$.
Rick As $(4^{\alpha}, 9^{\alpha})$ is an antisymmetric and invertible matrix, its
size must be even. That is, the codimension m of N in M
must be even.
Let ω be the symplectic form corresponding to $\{.\}$. We
denote by $\omega|_{N}$ the restriction of ω to N . It is a closed
 2 -form $\infty N = d(\omega)|_{N} = 0$.
Theorem
(i) $\omega|_{N}$ is non-degenerate.
In particular, it is a symplectic form on N
(ii') The Dirac bracket $\{.\}_{N}$ is the Poisson bracker
corresponding to $\omega|_{N}$.

proof It is enough to prove the statements at/near any point
$$p$$
 of N .
Choose local coordinates $(\mathcal{X}^r)_{r=1}^{2n-m}$ on a neighborhood of p in N .
We can find extensions $\tilde{\mathcal{X}}^r$ of \mathcal{X}^r defined on a neighborhood U
of p in M s.t.

$$\{\widehat{\mathbf{x}}^{\prime}, \varphi^{4}\}|_{N_{1}U} = o$$

Construction: Let
$$\widehat{\chi}''$$
 be any extansion of χ'' and put
 $\widehat{\chi}' = \widehat{\chi}'' - (\widehat{\chi}', \varphi^b) P_b \zeta \varphi^c$.
Note: $\{\varphi^a, \varphi^b\}$ is invertible at P , hence it invertible
in a neighborhood of p in M . Due here is the inverse.
Thus $\widehat{\chi}''$ are defined on a neighborhood U of P in M and
 $\{\widehat{\chi}'', \varphi^a\}|_{NnU} = (\{\widehat{\chi}'', \varphi^a\} - \{\widehat{\chi}'', \varphi^b\} D_{bc} \{P', P^a\})|_{NnU}$
 $= 0, \quad \underline{Ok}.$
Natrowing down U if necessary, $(\widehat{\chi}', -, \widehat{\chi}^{n-m}, \varphi', -, \varphi^m)$

 $\begin{pmatrix} \omega_{rs} & \omega_{rb} \\ \omega_{as} & \omega_{ab} \end{pmatrix} \text{ of } - \begin{pmatrix} \{\tilde{\chi}^{r}, \tilde{\chi}^{s}\} & \{\tilde{\chi}^{r}, \varphi^{b}\} \\ \{\varphi^{s}, \tilde{\chi}^{s}\} & \{\varphi^{s}, \varphi^{b}\} \end{pmatrix}$ (1) The inverse

entrs in to the symplectic form on U:

$$\begin{split} \omega|_{U} &= \frac{1}{L} \, \omega_{15} \, t \widetilde{\chi}^{*} h \widetilde{\chi}^{*} + \, \omega_{15} \, t \widetilde{\chi}^{*} h (\Psi^{b} + \frac{1}{L} \, \omega_{a5} \, d\Psi^{a} h \Psi^{b}, \\ As \left(\widetilde{\chi}^{*}, \Psi^{*} \right)|_{N \cap U} &= 0, \text{ this inverse is of the form} \left(\begin{array}{c} \omega_{15} & 0 \\ 0 & \omega_{ab} \end{array} \right) \\ \text{on } N_{n} U. \text{ In particular, } (\omega_{15}) \text{ is invertible on } N_{n} U. \\ Thus, & \omega|_{N \cap U} &= \frac{1}{L} \, \omega_{15} \, d\chi^{*} \, n d\chi^{5} \quad \text{ is non-degenerate.} \end{split}$$

$$\begin{aligned} \text{(ii) Let } f(\chi) = \int (\chi) \, bc \, functions \, of \, \chi \in N_{n} U. \text{ As their} \\ extensions to U, \text{ take } \widetilde{f}(\widetilde{\chi}, \Psi) &= \int (\widetilde{\chi}) \, \& \, \widetilde{g}(\widetilde{\tau}, \Psi) = g(\widetilde{\tau}). \text{ Then} \\ \left\{ f, 5 \, J_{N} \, \Big|_{N \cap U} \, = \left(\left\{ \widetilde{f}, \widetilde{g} \, \right\} - \left\{ \widetilde{f}, \Psi^{a} \right\} \right) \mathcal{L}_{bb} \left\{ \Psi^{b}, \widetilde{g} \, f \right\} \right) \Big|_{N \cap U} \\ &= \left\{ \left\{ \widetilde{f}, \widetilde{g} \, \right\} \, \Big|_{N \cap U} \, = \, \frac{\partial f}{\partial \widetilde{\chi}^{*}} (\widetilde{\chi}) \, \frac{\partial g}{\partial \widetilde{\chi}^{*}} (\widetilde{\chi}) \, \frac{\partial f}{\partial \widetilde{\chi}^{*}} (\widetilde{\chi}) \, \frac{\partial g}{\partial \widetilde{\chi}^{*}} (\widetilde{\chi}) \, \frac{\partial f}{\partial \widetilde{\chi}^{*}} (\widetilde{\chi}) \, \frac{\partial g}{\partial \widetilde{\chi}^{*}} (\widetilde{\chi})$$

The case of first class constraint

Let
$$(M, \{.\})$$
 be a phase space and let $\{\varphi^{a} = 0\}_{a=1}^{m}$ be
a first cluss constraint. It must obey
 $\{\varphi^{a}, \varphi^{b}\} = C_{c}^{ab} g^{c}$
for some function C_{c}^{ab} . Here we assume that C_{c}^{ab} is a constant.
By Jacobi identity of Poisson bracket, C_{c}^{ab} may be regarded as
the Structure constrants of a Lie algebra g :
 $[e^{a}, e^{b}] = C_{c}^{ab} e^{c}$ for a basis $[e^{a}]_{a=1}^{m}$ CJ.
Recall that we have vector fields X_{pa} and $xz X_{pa}f = f(P, f, f)$
They satisfy $[X_{P^{a}}, X_{P^{b}}] = X_{fP^{a}}, \varphi^{b}s = C_{c}^{ab} \times P^{c}$. In other words,
if we write $X_{s} = \Im_{a} X_{P^{a}}$ for $\Im = \Im_{a} e^{-c} e J$,
 $[X_{s}^{a}, X_{T}] = X_{[s, T]}$.
This means that J acts on M . Also, if we write
 $M_{s} = \Im_{a} \varphi^{a}$ for $\Im = \Im_{a} e^{a} e J$,
we have
 $X_{s} M_{T} = M_{[s, T]}$.
Taked $X_{s}M_{T} = \Im_{a} X_{P^{a}} \varphi^{b} = \Im_{a} \Lambda_{b} \{P^{a}, \varphi^{b}\} = \Im_{a} \Lambda_{b} C_{c}^{ab} \varphi^{c}$.

Another disamption the graction on M integrates to an action
of a connected Lie group G which has g as its Lie algebra,

$$g=\text{Lie}(G)$$
. By the sign of (X), it must be a right action
(See exercise hole of):
 $X_3 f(x) = \frac{d}{dt} f(x e^{t3}) \Big|_{t=0}$.
Then (XX) integrates to
 $M_2(Xg) = M_{gNg^{-1}}(x)$ (XX).
When we view the phase space as a symplectric manifold,
the structure we are having is said succentry as
"(M, w) has a Hamiltonian G-action"
Or more specifically as
"G acts on M preserving a symplectric form ω
with a moment map $M: M \to g^{*}$."

" a moment map
$$\mu: M \to \mathfrak{I}^{*}$$
 is a map satisfying
(i) For $\forall \mathfrak{F} \in \mathfrak{I}$, $d(\mu, \mathfrak{F}) = -i_{X\mathfrak{F}} \omega$.
(ii) It is G -equivariant.
[Note $\mathfrak{I}^{\mathfrak{I}} = \operatorname{Hom}_{\mathfrak{R}}(\mathfrak{I}, \mathfrak{R})$, the space of linear forms on \mathfrak{I} .
There is a right G -action on $\mathfrak{I}^{\mathfrak{I}}$: for $\mathfrak{f} \in \mathfrak{I}^{*}$ and $\mathfrak{g} \in \mathfrak{G}$,
 $\mathfrak{f} \mathfrak{g} \in \mathfrak{I}^{*}$ is given by $\langle \mathfrak{f} \mathfrak{I}, \mathfrak{F} \rangle = (\mathfrak{f}, \mathfrak{g} \mathfrak{F} \mathfrak{I}^{*})$ for $\mathfrak{f} \in \mathfrak{I}$.
For $\mathfrak{f} \in \mathfrak{I}$, $\langle \mu, \mathfrak{F} \rangle$ is a IR-valued function on M .
Then (i) and (ii) means the following:
(i) For any vector field \mathcal{V} on M ,
 $\mathcal{U}(\mu, \mathfrak{F}) = -\omega(\mathfrak{X}\mathfrak{F}, \mathcal{V}) = \omega(\mathfrak{V}, \mathfrak{X}\mathfrak{F})$.
(ii) For $\mathfrak{X} \in \mathfrak{M}$ and $\mathfrak{g} \in \mathfrak{G}$, $\mu(\mathfrak{X}\mathfrak{g}) = \mu(\mathfrak{x})\mathfrak{g}$. In other works,
 $\langle \mu(\mathfrak{X}\mathfrak{g}), \mathfrak{F} \rangle = \langle \mu(\mathfrak{u}), \mathfrak{g}\mathfrak{F}\mathfrak{F} \rangle$ for $\mathfrak{F} \in \mathfrak{I}$.
If we denote $\mathfrak{M}\mathfrak{g} = \langle \mu, \mathfrak{F} \rangle$, there read
(i) $\mathcal{V}\mathfrak{M}\mathfrak{g} = \omega(\mathfrak{V}, \mathfrak{X}\mathfrak{g})$.
(ii) $\mathfrak{M}\mathfrak{g}(\mathfrak{X}\mathfrak{g}) = \mathfrak{M}\mathfrak{g}\mathfrak{g}\mathfrak{g}^{-1}(\mathfrak{X})$.

Let us check that is indeed the case.
• G action preserves
$$\omega$$
, $g^*\omega = \omega$ $\forall g$.
As G is connected, this is equivalent to its infihitesimal form:
 $\lambda_{X_S} \omega = o$ $\forall g \in J$
We test it for vector fields X_f, X_g :
 $(d_{X_g} \omega)(X_f, X_g)$
 $= X_S \omega(X_f, X_g) - \omega([X_S, X_F], X_g) - \omega(X_f, [X_g, X_g])$
 $X_{\mu g} \{f, g\} - \omega([X_S, f], X_g) - \omega(X_f, [X_g, X_g])$
 $= \{\mu_g, \{f, g\}\} - \{[\mu_g, f], g\} - \{f, \{\mu_g, g\}\}\}$
 $= 0$ by Jacobi identity.
• $V\mu_g = \omega(v, X_g)$ follows from $X_g = X_{\mu g}$ and $Vt = \omega(v, X_f)$.
• $M_g(x_g) = M_{g}g^{-1}(x)$ is norming but (X^*) .
Thus, indeed, G preserves the symplectic form ω and
 $M_g = 3_a y^a$ defines a moment map $\mu: M \to J^*$.

Conversely, if there is a G-action on M preserving
$$\omega$$
 with
a moment map $\mu: M \rightarrow \mathfrak{T}^*$, it defines a 1st class constraint
on the corresponding phase space : $\mathcal{Y}^a := Mea$ for a basis
 $(e^a)_{a=1}^m$ of $\mathfrak{T} = Lie(G)$.

Symplectic quotients

Let
$$(M, \omega)$$
 be a symplectic manifold and suppose a Lie group G
acts on M preserving ω with a moment map $\mu: M \rightarrow \mathfrak{P}^*$.
Under some assumption, another symplectic manifold called
the symplectic quotient is assocrated to this.
First, we consider the subspace $\mu'(\mathfrak{d}) = \{x \in M \mid \mu(x) = \mathfrak{d} \} \subset M$.
By G-equivariance of μ , if $\mu(x) = \mathfrak{d}$ then $\mu(\mathfrak{d}\mathfrak{d}) = \mathfrak{d}$.
Thus G acts on the subspace $\mu'(\mathfrak{d})$.
Assumption: the G action on $\mu^{\tau}(\mathfrak{d})$ is free
Then at any $\mathfrak{d} \in \mu'(\mathfrak{d})$, $d\mu \mathfrak{d} : \mathsf{T}\mathfrak{d} M \rightarrow \mathfrak{I}^*$ is surjective.
 $\boxed{\odot}$ For $\mathcal{V} \in \mathsf{T}\mathfrak{d} M$ and $\mathfrak{d} \in \mathfrak{G}$, $(d\mu_{\mathfrak{d}}(\mathfrak{v}), \mathfrak{d}) = \omega(\mathfrak{v}, X_{\mathfrak{d}}(\mathfrak{d}))$.
As the G-action is free, $\mathfrak{f} \in \mathfrak{I} \mapsto X_{\mathfrak{f}}(\mathfrak{a}) \in \mathsf{T}\mathfrak{M}$ is injective.
By non-degeneracy of ω , $\{d\mu_{\mathfrak{d}}(\mathfrak{v}) \mid \mathfrak{v} \in \mathsf{T}\mathfrak{d} M \}$

Thus the condition
$$\mu = 0$$
 twis down d.o.f. just by diag.
 $\mu^{2}(s) \subset M$ is a submanifold of dimension dim M-din G.
We make an additional technical and the quotient map
 $\pi : \mu^{2}(s) \longrightarrow \mu^{2}(s)/G$ defines a principal G-bundle.
(This is automotic if G is compact.)
The task is to construct a symplectic form on $\mu^{2}(s)/G$.
Preparetion For $x \in \mu^{2}(s)$, $g_{x} := \{X_{g}(x)\}g_{x}g_{y}\} \subset T_{x}\mu^{2}(s)$,
 $\omega_{x}|_{T_{x}}\mu^{2}(s) \times g_{x} = 0$
 $\boxed{\bigcirc} \forall v \in T_{x}\mu^{2}(s), \forall g \in g, \quad \omega(v, X_{g}(s) = (d\mu_{x}(s), g) = VM_{g}.$
But μ_{s} is constantly 0 on $\mu^{2}(s)$ and hence $VM_{g} = 0$
 $\boxed{\bigcirc}$ during lifts $x \in \mu^{2}(s)$ and $\tilde{v}, \tilde{w} \in T_{x}\mu^{2}(s)$, choose
 $wishing lifts $x \in \mu^{2}(s)$ and $\tilde{v}, \tilde{w} \in T_{x}\mu^{2}(s)$ ("Lift"
means $\pi(x) = \beta$ and $\pi_{x}\tilde{v} = v, \tilde{w}$).$

need to check (i) independent of the choice of lifts.
(ii) closed, dw = 0
(lif) non-degenerate.
(i) Choice of
$$\tilde{\mathcal{V}}$$
 & $\tilde{\mathcal{W}}$ (some $x \in \pi^{-1}(q_{1})$):
Another choice of $\tilde{\mathcal{V}}$ is $\tilde{\mathcal{V}} + X_{S}(x)$ for some $\tilde{S} \in \mathbb{J}$.
But this does not change $\mathcal{O}_{X}(\mathcal{V}, \mathcal{W})$ by preparation.
Some for $\tilde{\mathcal{W}}$.
(choice of $x \in \pi^{-1}(q_{1})$:
Another choice is xg for some $g \in G$.
As the lifts of $\mathcal{V} = \mathcal{W}$, we may take $\tilde{\mathcal{V}}S$, in g .
Then $\mathcal{O}_{gue}(\tilde{\mathcal{V}}S, \tilde{\mathcal{V}}S) = (S^{+}\omega)_{X}(\tilde{\mathcal{V}}, \tilde{\mathcal{W}}) = \mathcal{O}_{X}(\tilde{\mathcal{V}}, \tilde{\mathcal{W}})$. OK
(ii) dw = 0?
Take \mathcal{U} . \mathcal{U} is $\mathfrak{T}_{S}(\mu^{-1}\mathcal{V}_{G})$. Extend then is vector fields on
a neighborhood \mathcal{U} of p with lifts to vector fields $\tilde{\mathcal{V}}_{1}, \tilde{\mathcal{V}}_{2}$
on $\pi^{-1}(\mathcal{U})$ st. $[\tilde{\mathcal{V}}_{1}, \tilde{\mathcal{V}}_{1}]$ are lifts of $[\mathcal{V}_{1}, \mathcal{V}_{2}]$. This is
possible by taking \mathcal{U} st. $\pi^{-1}(\mathcal{U}) \cong \mathcal{U} \times G$ (etc.)

 $d\bar{\omega}(\upsilon_1,\upsilon_2,\upsilon_3) = \upsilon_1\bar{\omega}(\upsilon_2,\upsilon_3) + cyclic - \bar{\omega}([\upsilon_1,\upsilon_2],\upsilon_3) - cyclic$ = $\widetilde{\mathcal{V}}_{i} \, \omega \, (\widetilde{\mathcal{V}}_{i}, \widetilde{\mathcal{V}}_{s}) + \omega ([\widetilde{\mathcal{V}}_{i}, \widetilde{\mathcal{V}}_{s}], \widetilde{\mathcal{V}}_{s}) - c_{j} c_{i} c_{i}$ $d\omega \, (\widetilde{\mathcal{V}}_{+}, \widetilde{\mathcal{V}}_{*}, \widetilde{\mathcal{V}}_{*}) = 0 \, .$ $\widehat{}$ dw=0 OK. (III) To non-degenerate? Take x (µ (o). As Wx is non-degenerate on TxM×TxM and D on Jx×Txpilo) and since Nx pilo) = TxM/Txpilo) has the same dimension as Jx, Wx induces a non-degenerate bilinear form on Nx µ (0) × Jx. Thus, for the decomposition $T_x M \cong T_x \mu'(o) \oplus N_x \mu'(o) \cong T_x \mu'(o) / \sigma_x \oplus J_x \oplus N_x \mu'(o)$ Wx is represented by a matrix * 0 * maximal rank O O X This means that Wx is non-degenerate on Tx prive x Tx prive of x That is, Wp: Tp MO/G × Tp MO/G -> IR is non-degenerate. ÛK.

(i), (ii), (iii) are all checked.
Thus,
$$\overline{\omega}$$
 is a symplectic form on $\mu^{(10)}/G$.
The symplectic manifold ($\mu^{(10)}/G$, $\overline{\omega}$) is called
the symplectic quotien of (M, ω) by G action with
moment map μ .

Reduced phase space = symplectic quotient

Finally, we would like to show that, under the assumptions made, the reduced phase space (M*, f, Jm-) corresponds to the symplectic quotient ([11'(0)/G, W). Note that $N = \{ \varphi' = \dots = \varphi^m = 0 \} = \langle \mu = 0 \} = \mu^T(0)$ and the equivalence relation ~ in N is equal to G-equivalence. Thus $M^* = N/_{\sim} = \mu^2 los/_{\sim}$ Therefore, the question is whether the Poisson bracket (,)M" corresponds to the symplectic form W. This is judged by

examining, say, for functions f and g on M^{*}, whether

$$\begin{cases} f, g \end{pmatrix}_{M^{4}}^{*} = \overline{\omega} (X_{f}, X_{g}).$$
Recall that, if \overline{f} and \overline{g} are extension of f and g to a neighborhood
of N in M st. $\{\overline{g}, \varphi^{n}\} = f_{n}^{*} \varphi^{b}, \{\overline{g}, \varphi^{n}\} = g_{n}^{*} \varphi^{b}, \text{ Han}$

$$\{f, 5\}_{M^{4}}^{*} = \{\overline{f}, \overline{g}\} = \omega(X_{\overline{f}}, X_{\overline{g}}).$$
Recall also that, if $\overline{X}_{\overline{f}}$ and \overline{X}_{g} are lifts of $X_{\overline{f}}$ and $X_{\overline{f}}$ to $[\overline{r}^{1}(o), \overline{\omega}(X_{\overline{f}}, X_{\overline{g}}) = \omega(\overline{X}_{\overline{f}}, \overline{X}_{\overline{g}}).$
Thus the question is whether $X_{\overline{f}}^{*}$ and $X_{\overline{f}}^{*}$ are lifts of $X_{\overline{f}}$ and $X_{\overline{g}}$.
We first consider $X_{\overline{f}}^{*}$.
The answer is YES as $X_{\overline{f}}^{*} \varphi^{n} = \{\overline{f}, \varphi^{n}\} = f_{0}^{*} \varphi^{b} = o$ on N.
Then, $\pi_{k}X_{\overline{f}} = X_{\overline{f}}^{*}$?
 $X_{\overline{f}}^{*}$ is characterized by $\widehat{\psi}\overline{f} = \widehat{\omega}(\widehat{\psi}, X_{\overline{f}}) \quad \forall \overline{\psi} \in T_{\overline{h}}(h^{-1}(\sigma_{\overline{h}}^{*}), and X_{\overline{f}}^{*}$ is characterized by $\widehat{\psi}\overline{f} = \widehat{\omega}(\widehat{\psi}, X_{\overline{f}}) \quad \forall \overline{\psi} \in T_{\overline{h}}(h^{-1}(\sigma_{\overline{h}}^{*}), and X_{\overline{f}}^{*}$ is characterized by $\widehat{\psi}\overline{f} = \widehat{\omega}(\widehat{\psi}, X_{\overline{f}}) \quad \forall \overline{\psi} \in T_{\overline{h}}(h^{-1}(\sigma_{\overline{h}}^{*}), and X_{\overline{f}}^{*}$ is characterized by $\widehat{\psi}\overline{f} = \omega(\widehat{\psi}, X_{\overline{f}}) \quad \forall \overline{\psi} \in T_{\overline{h}}(h^{-1}(\sigma_{\overline{h}^{*}}), and X_{\overline{f}}^{*}$ is characterized by $\widehat{\psi}\overline{f} = \omega(\widehat{\psi}, X_{\overline{f}}) \quad \forall \overline{\psi} \in T_{\overline{h}}(h^{-1}(\sigma_{\overline{h}^{*}), and X_{\overline{h}}^{*})$

Then, as $\tilde{f} = f \circ \pi$, $\tilde{\nabla} \tilde{f} = \tilde{\nabla} (f \circ \pi) = \pi \tilde{\nabla} f = \nabla f$. $: v_{f} = \widetilde{v}_{f} = \omega(\widetilde{v}, X_{f}) = \widetilde{\omega}(\pi, \widetilde{v}, \pi, X_{f}) = \widetilde{\omega}(v, \pi, X_{f}).$ This shows The XF = XF indeed, have XF is a lift of XF. Smilarly Xz is a life of Xg. $\tilde{\omega}(X_{f}, X_{5}) = \omega(X_{\tilde{f}}, X_{\tilde{5}}) = \{\tilde{f}, \tilde{5}\} = \{\tilde{f}, \tilde{5}\}_{M^{*}}$ The Poisson bracket {, } Me corresponds to the symplectric form W.