Symmetry twisted partition function

Consider a mechanics with a set of variables $q=\left(q_{1}, \ldots, q_{n}\right)$ and Lagrangian $L(q, \dot{q})$.

Suppose there is a 1-parameter group of symmervies g_{α}, and let ∂ be the corresponding Noether charge.
(Noethe charge corresponding to $\delta q=\left.\frac{d}{d \alpha} g_{\alpha}(\varepsilon)\right|_{\alpha=0}$.)
Show that

$$
\begin{aligned}
& T_{\partial e} e^{\frac{i \alpha}{\hbar} \hat{\partial}} e^{-\frac{T}{\hbar} \hat{H}} \\
& =\int_{D q} e^{-\frac{1}{\hbar} \int_{S_{T}^{\prime}} d \tau L_{E}\left(q_{1} \frac{d q}{d \tau}\right)} \\
& q(\tau+T)=g_{\alpha}(q(\tau)) \\
& = \\
& =z_{\alpha}\left(S_{T}^{1}\right)
\end{aligned}
$$

This is the symmetry-twisted partition function.

Examples
Compute $\operatorname{Tr}_{\partial e} e^{\frac{i \alpha}{\hbar} \hat{Q}} e^{-\frac{T}{\hbar} \hat{H}}$ in operator formalism and $Z_{\alpha}\left(S_{T}^{1}\right)$ in path-integrd, and check that the results agree, in the following) examples:
(1) 2d harmonic oscillator and rotational symmetry
variables: $q=\left(q_{1}, q_{2}\right)$
Lagrangian: $L=\frac{m}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)-\frac{m \omega^{2}}{2}\left(q_{1}^{2}+q_{2}^{2}\right)$
Symmetry: $g_{\alpha}\binom{q_{1}}{q_{2}}=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)\binom{q_{1}}{q_{2}} \quad \alpha \sim \alpha+2 \pi$
(2) Free particle in a Circle (with a theta term)
variable $q \sim q+2 \pi R$
Lagrangian: $L=\frac{m}{2} \dot{q}^{2}(+\theta \dot{q})$
Symmetry: $g_{\alpha}(q)=q+\alpha \quad \alpha \sim \alpha+2 \pi R$
(3) Free particle in a plane
variables: $q=\left(q_{1}, q_{2}\right)$
Lagrangian: $L=\frac{m}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)$
Symmetry: $g_{\alpha}\binom{q_{1}}{q_{2}}=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)\binom{q_{1}}{q_{2}} \quad \alpha \sim \alpha+2 \pi$

X In this example, the partition function was ill-defined.
(See example (1) for lecture 1.)
However, the twisted partition function is well-defonal as long as the twist is non-tvivid, $\alpha \nsim 0$.

This is an important use of twisted partition function.

A possibly convenient fact:
Generalized zeta function $\zeta(s, a)=\sum_{n=0}^{\infty}(n+a)^{-s}$
also is absolutely convergent for $\operatorname{Re}(S)>1$ and has analytic continuation which is regular at $S=0$, with

$$
\zeta(0, a)=\frac{1}{2}-a, \quad \zeta^{\prime}(0, a)=\log \Gamma(a)-\frac{1}{2} \log 2 \pi .
$$

Here $P(a)$ is Gamma function.
$\left(A\right.$ convenient property: $\Gamma(a+1)=a \Gamma(a), \Gamma(a) P(1-a)=\frac{\pi}{\sin \pi a}$.)
Using this

$$
\begin{aligned}
\prod_{n=1}^{\infty} \frac{x}{n+y} & =\exp \left(\sum_{n=1}^{\infty}(\log x-\log (n+y))\right. \\
& =\exp (\log x \cdot \zeta(0,1)+\zeta(0,1+y)) \\
& =\exp \left(-\frac{1}{2} \log x+P(1+y)-\frac{1}{2} \log 2 \pi\right) \\
& =\frac{\Gamma(1+y)}{\sqrt{2 \pi x}} .
\end{aligned}
$$

