ALMAを用いたz~1.4における 星形成銀河の分子ガスの性質

世古明史 (京都大学)

太田 耕司, 岩室 史英 (京都大学), 廿日出 文洋, 矢部 清人 (国立天文台), 秋山 正幸 (東北大学), 田村 直之 (東京大学)

銀河の激動進化期

銀河進化 =ガスから星への転換史

星形成率密度

・z~2前後で宇宙における 星形成は最も活発

銀河の形態

- ・z<1では形態確立
- ・z>3では不規則な形態

Hopkins & Beacom 2006, ApJ, 651, 142

z~1-3付近:銀河の激動進化期

分子ガスの重要性

分子ガス = 星形成の母体

- ・質量(Mgas) → 作られうる星の質量の指標
- ・星質量に対する割合(fgas) → どれだけガスを星に転換してきたのか表す指標 *fgas=M(H2)/(M(H2)+M★)
 - 星質量やmetallicityに依存すると思われる

激動進化期の分子ガス研究

- main sequence銀河のCO観測
 - $M_{gas} > 2 \times 10^{10} M_{sun}$
 - f_{gas} 34 % @z~1.2 44 % @z~2.2

(近傍のspirals 2-14%)

・fgasの星質量への依存性

- M★大→f_{gas}小 (M★>10^{10.5} M_{sun})

・fgasのmetallicityへの依存性は?

SFR [Msun/yr]

Tacconi et al. 2013, ApJ, 768, 74

● z~1.4の星形成銀河 20天体 @SXDS領域 FMOSの分光観測で赤方偏移、metallicityが決まっている

- ・ALMA (アタカマ大型ミリ波サブミリ波干渉計)
- ・2012年8月
- ・観測輝線 :CO(J=5-4)
- ・観測周波数: 221-254 GHz (Band-6)
- Tsys : 66-100 K
- ・積分時間 : 8-15 min (1天体あたり)
- noise : 0.5-1.1 mJy/beam (50 km/s binning)

観測結果 | line profile

分子ガス(H₂)質量

CO輝線光度

CO輝線比

$$L'_{\rm CO} = (c^2/2k) \ \nu_{\rm obs}^{-2} \ D_{\rm L}^2 \ (1+z)^{-3} \int S_{\rm CO} dv$$

[K km/s pc²]

$\frac{\int S_{\rm CO(5-4)} dv}{\int S_{\rm CO(1-0)} dv} \sim 6 \quad \mbox{(e.g, BM/BX)}$

Carilli & Walter 2013, ARA&A, 51, 105

$$M(\mathrm{H}_{2}) = \alpha \times L'_{\mathrm{CO}(1-0)}$$

CO-to-H₂ 変換係数

- metallicityが小さい銀河ほど 変換係数は大きい

Genzel et al. 2012, ApJ, 746, 69

MgasとfgasのM★依存性

スタッキング解析 | M★依存性

low mass

high mass

MgasとfgasのM★依存性

fgasのM★依存性

MgasとfgasのM★依存性 (metal固定)

MgasとfgasのM★依存性 (metal固定)

Mgasとfgasのmetal依存性 (M*固定)

Mgasとfgasのmetal依存性 (M*固定)

・Mgas、fgasともmetallicity依存性はあまり見られない

- ・z~1.4の星形成銀河の分子ガスの性質
- ・Mgas, fgas の M★, metallicity への依存性 → M★, metallicity 広範囲のサンプル20天体の CO(5-4)輝線観測
- ・スタッキング解析の結果 M★が 大 → M_{gas} は あまり変わらない f_{gas} は 小

<u>metallicity</u> にはあまり依存しない

2020年代

ALMA (個人的には2020年までに)

- 激動進化期のmassiveな銀河はあと2-3年でほとんど 理解できる(だろう)
- low mass銀河 & 中間redshift の CO観測

2020年代

ALMA (個人的には2020年までに)

- 激動進化期のmassiveな銀河はあと2-3年で大きく 進む(だろう)
- low mass銀河 & 中間redshift の CO観測
- Milky Way Progenitor (ただし、extended ALMA?)

SKA (竹内さんの講演?)

- 銀河の激動進化期における HI ガス
- 近傍銀河(z<0.1)の inflow ガスの直接検出