アブストラクト:
"We study the number and the distribution of low mass Pop III stars in the Milky Way. In our numerical model, hierarchical formation of dark matter minihalos and Milky Way sized halos are followed by a high resolution cosmological simulation, which can predict the spatial distribution of Pop III survivors in the Milky Way. We model the Pop III formation in H2 cooling minihalos without metal under UV radiation of the Lyman-Werner bands. Assuming a Kroupa IMF from 0.15 to 1.0 Msun for low mass Pop III stars, as a working hypothesis, we try to constrain the theoretical models in reverse by current and future observations. We find that the number of survivors is proportional to the halo mass and the number of Pop III per minihalo. Thus, the distribution of survivors reflects that of dark matter and the survivors tend to concentrate on the center of halo and subhalos. We also evaluate the observability of Pop III survivors in the Milky Way and dwarf galaxies, and constraints on the number of Pop III survivors per minihalo. The higher latitude fields require lower sample sizes because of the high number density of stars in the galactic disk, the required sample sizes are comparable in the high and middle latitude fields by photometrically selecting low metallicity stars with optimized narrow band filters, and the required number of dwarf galaxies to find one Pop III survivor is less than ten at <100 kpc for the tip of redgiant stars. Provided that available observations have not detected any survivors, the formation models of low mass Pop III stars with more than ten stars per minihalos are already excluded."