

XENON1T Electronic Recoil Events excess: New Physics or Background? XENON collaboration + X. Mougeot

arXiv:2006.09721

Masaki Yamashita for the XENON collaboration

2020/08/05 Kamioka Seminar

Masaki Yamashita, ISEE, Nagoya

www.xenonexperiment.org : https://twitter.com/XENONexperiment : https://www.facebook.com/XENONexperiment

: https://www.instagram.com/xenon_experiment/

Outline

•XENON1T Detector

- •What is Electronic Event?
- Background model
 - + Tritium
 - + Solar Axion
 - + neutrino magnetic moment
 - + Bosonic dark matter
- Future prospect

XENON1T Experiment

Masaki Yamashita, ISEE, Nagoya

Masaki Yamashita

XENON1T at Gran Sasso, Italy

gran sasso, Italy

nsity, m

Muon Inte

- Laboratori Nationali del Gran Sasso in Italy

XENON10

XENON100

2005-2007 2008-2016 25 kg - 15cm drift 161 kg - 30 cm drift ~10⁻⁴³ cm² ~10⁻⁴⁵ cm²

Masani ramasina, iole, nagoya

XENON1T

2012-2018 3.2 ton - 1 m drift ~10⁻⁴⁷ cm²

2019-202x 8 ton - 1.5 m drift ~10⁻⁴⁸ cm²

XENONnT

XENON1T Detector

- Direct Dark Matter
 (WIMP) search detector
- •3.2 tonne total/1 tonne fiducial LXe
- •Two phase Xe TPC
- •~250 x 3 inch PMTs
- •2012-2018 (terminated)

Masaki Yamashita, ISEE, Nagoya

Two-phase Xe Time Projection Chamber

ER

Scintillation light - S1 Ionization electron -S2

Two signals for each event:

- 3D event imaging: x-y (S2) and z (drift time)
- self-shielding, surface event rejection, single vs multiple scatter events
- Particle identification using S2/S1 ratio (nuclear recoil vs beta, gamma)

Interaction with dark matter nuclear recoil

Masaki Yamashita, ISEE, Nagoya

electronic recoil

Two-phase Xe Time Projection Chamber

Two-phase Xe Time Projection Chamber

XENON1T WIMPs Search - 2018

One ton-year of search for WIMPs induced nuclear recoils

Masaki Yamashita, ISEE, Nagoya

Most stringent result on WIMP Dark Matter down to 3 GeV/c² masses [PRL 121, 111302 + PRL 123, 251801]

WIMP Search Result

Masaki Yamashita, ISEE, Nagoya

Phys.Rev.Lett. 121 (2018) no.11, 111302

.... 10 1000 30 100 300 3 Dark matter particle mass [GeV/ c^2]

DarkSide-50

LUX, PANDAX-II

CRESST-III

XENON1T Electronic Recoil band band

Masaki Yamashita, ISEE, Nagoya

Nuclear recoil energy scale -> Electronic recoil energy scale

In the past ...

Nature 568, 532–535

The direct observation of 2vECEC in ¹²⁴Xe with the XENON1T dark-matter detector. The corresponding half-life of 1.8×10^{22} years is the longest measured directly so far.

Masaki Yamashita, ISEE, Nagoya

https://doi.org/10.1038/s41586-019-1124-4

(2013)

Signal Efficiency and Fiducial volume

Similar selection criteria as WIMPs search in 2018

High acceptance for ER energy > 2 keV

Masaki Yamashita, ISEE, Nagoya

Reduced fiducial volume for ER search

The Low Energy Excess (ER)

ENVIRONMENTAL RESEARCH

Excess is most abundant between 2-3 keV

Masaki Yamashita, ISEE, Nagoya

Excess between 1-7 keV!

Expectation: 232±15

Observation: 285

20

Background model

Search for an excess above background.

Predicted energy spectra based on detailed modeling of each background component Rates constrained by measurements and/or time dependence

Masaki Yamashita, ISEE, Nagoya

Background fit

Masaki Yamashita, ISEE, Nagoya

Unbinned profile likelihood analysis

$$\mathcal{L}(\mu_s, \boldsymbol{\mu_b}, \boldsymbol{\theta}) = \text{Poiss}(N|\mu_{tot})$$

$$\times \prod_{i}^{N} \left(\sum_{j} \frac{\mu_{b_j}}{\mu_{tot}} f_{b_j}(E_i, \boldsymbol{\theta}) + \frac{\mu_s}{\mu_{tot}} f_s(E_i) \right)$$

$$\times \prod_{m} C_{\mu_m}(\mu_{b_m}) \times \prod_{n} C_{\theta_n}(\theta_n),$$

$$\mu_{tot} \equiv \sum_{j} \mu_{b_j} + \mu_s,$$

Profile over the nuisance parameters

Combining the likelihoods of the 2 partitions

$$\mathcal{L} = \mathcal{L}_{\mathrm{a}} imes \mathcal{L}_{\mathrm{b}}$$

What is this?

Masaki Yamashita, ISEE, Nagoya

Signal? (Beyond Standard Model)

What is this?

Masaki Yamashita, ISEE, Nagoya

Signal? (Beyond Standard Model)

Solar Axions

- QCD axion
- = Axions would also be produced in the
- Sun, with kinetic energies ~ keV

Neutrio Magnetic moment

In the (extended) SM:

A larger value would imply new physics, and possibly solve Dirac vs Majorana.

Bosonic Dark matter

- candidate for Warm Dark Matter
- -Axion-like particles like QCD axions.
- -allows for ALPs to take on higher masses than QCD axions

What is this?

Background?

β-decay of tritium?

Low-energy (Q value 18.6 keV) Long half life (12.3 years) Atmospherically "abundant" and cosmogenically produced in xenon

Removed by purification system?

Masaki Yamashita, ISEE, Nagoya

Signal? (Beyond Standard Model)

Solar Axions

- QCD axion
- = Axions would also be produced in the
- Sun, with kinetic energies ~ keV

Neutrio Magnetic moment

In the (extended) SM:

A larger value would imply new physics, and possibly solve Dirac vs Majorana.

Bosonic Dark matter

- candidate for Warm Dark Matter
- -Axion-like particles like QCD axions.
- -allows for ALPs to take on higher masses than QCD axions

Statistical Inference

Unbinned likelihood ratio tests

Profiled over nuisance parameters

$$q(\mu_s) = -2\ln\frac{\mathcal{L}(\mu_s, \hat{\hat{\boldsymbol{\mu}}}_b, \hat{\hat{\boldsymbol{\theta}}})}{\mathcal{L}(\hat{\mu}_s, \hat{\boldsymbol{\mu}}_b, \hat{\boldsymbol{\theta}})},$$

statistical significance: \rightarrow q(0)

Neutrino Magnetic Moment

-dimensional confidence interval $\mu_{
u}$

smoothly transitions from upper- to two-sided limit at 3σ. (K.D. Morå, arXiv:1809.02024)

Tritium Solar Axion Neutrino magnetic moment + others

Masaki Yamashita, ISEE, Nagoya

Masaki Yamashita

The XENON1T ER Background

- ER is the dominant background
- Surface background & neutron distribution are not uniform. • Spatial likelihood is taken into consideration.

Masaki Yamashita, ISEE, Nagoya

Lowest background rate ever achieved in this energy range!

E

Decent matching across the whole energy range 1-210 keV

(76 +/- 2) events/(t·y·keV) in [1, 30] keV

Tritium (³H) ?

Masaki Yamasnita, ISEE, Nagoya

NAGOYA UNIVERSITY

Low energy (Q-value 18.6keV)

Long half life (12.3 years)

Two possible ways to introduce tritium:

Cosmogenic production

Atmospherically abundant

Tritium Fit

Tritium favored over background-only at 3.2σ

Masaki Yamashita, ISEE, Nagoya

30

Xe

Tritium hypothesis

Cosmogenic activation of xenon: ~32 tritium atoms/kg/day (Zhang, 2016)

1 ppm water in bottles implies tritium forms predominately HTO.

Efficient removal (99.99%) in purification system (SAES getter with hydrogen removal unit)

From purification and handling, this component seems unlikely.

(note: tritium from activation While underground is negligible.)

31

Tritium Hypothesis

Any T in xenon gas prior to filling would be removed.

What about T emanating from materials in equilibrium with removal?

Masaki Yamashita, ISEE, Nagoya

Atmospheric abundance in materials

(assume same for HT)

Required $(H_2O + H_2)$:Xe concentration to explain excess

H₂O:Xe concentration constrained from light yield measurement

*IAEA/WMO, "Global Network of Isotopes in Precipitation. The GNIP Database." https://nucleus.iaea.1723org/wiser(2015).

HTO:H₂O concentration* $5-10 \times 10^{-18} \text{ mol/mol}$

60–120 ppb

H_2O

O(1) ppb

H₂

H₂:Xe concentration not constrained by any measurement.

O2-equivalent concentration is **<ppb** from xenon purity measurement (e-lifetime)

H₂ would require equilibrium emanation rate ~100x higher than electronegative impurities.

Tritium Hypothesis

Any T in xenon gas prior to filling would be removed.

What about T emanating from materials in equilibrium with removal?

Masaki Yamashita, ISEE, Nagoya

Atmospheric abundance in materials

(assume same for HT)

Required $(H_2O + H_2)$:Xe concentration to explain excess

H₂O:Xe concentration constrained from light yield measurement

*IAEA/WMO, "Global Network of Isotopes in Precipitation. The GNIP Database." https://nucleus.iaea.1723org/wiser(2015).

HTO:H₂O concentration* $5-10 \times 10^{-18} \text{ mol/mol}$

60–120 ppb

 H_2O

O(1) ppb

H_2

H₂:Xe concentration not constrained by ...y measurement.

O2-equivalent concentration is **<ppb** from xenon purity measurement (e-lifetime)

H₂ would require equilibrium emanation rate ~100x higher than electronegative impurities.

Atmospheric abundance in materials

HTO:H₂O concentration*

$5-10 \times 10^{-18} \text{ mol/mol}$

And there are additional uncertainties...

Unknown radiochemistry in liquid xenon environment (isotopic exchange,

O(1) ppb

*IAEA/WMO, "Global Network of Isotopes in https://nucleus.iaea.1723org/wiser(2015).

measurement.

O2-equivalent concentration is **<ppb** from xenon purity measurement (e-lifetime)

H₂ would require equilibrium emanation rate ~100x higher than electronegative impurities.

Tritium Solar Axion Neutrino magnetic moment + others

Masaki Yamashita, ISEE, Nagoya

Masaki Yamashita

Production

•ABC axion (Redondo 2013, Dimopoulos 1986)

- (atomic recombination, Bremsstrahlung, Compton)
- •Primakoff (Primakoff 1951, Dicus 1978)
- •M1 transition of 57Fe (Moriyama 1995)

Masaki Yamashita, ISEE, Nagoya

Axions would also be produced in the Sun, with

However, solar axion is not a dark matter.

Masaki Yamashita, ISEE, Nagoya

Fitting Axions to the Excess

- Unbinned profile likelihood analysis
- XENON1T BG + Axion (ABC, Primakov, 57Fe)
- + Tritium background will com later.

Masaki Yamashita, ISEE, Nagoya

Solar Axion Results

3D confidence volume (90% C.L.)

•
$$g_{ae} = 0$$

•
$$g_{a\gamma} = g_a^e$$

Masaki Yamashita, ISEE, Nagoya

Allowed Parameter Space

Tension: Red giants White dwarfs HB stars

- •extra cooling
- if axions take away energy from starts too much...

Masaki Yamashita, ISEE, Nagoya

In tension with astrophysical constraints from stellar cooling (arXiv 2003.01100)

Allowed Parameter Space

•3D confidence volume (90% C.L.)

Projected onto 2D regions

Masaki Yamashita, ISEE, Nagoya

Profile over Primakoff

Considering the Inverse Primakoff Process

Interesting additions from theorists to our data analysis

Re-examining the Solar Axion Explanation for the XENON1T Excess

Christina Gao,¹ Jia Liu,² Lian-Tao Wang,^{2,3} Xiao-Ping Wang,⁴ Wei Xue,⁵ and Yi-Ming Zhong⁶

can weaken the tension with stellar **Cooling constraint** Masaki Yamashita, ISEE, Nagoya

(arXiv 2006.14598v1)

Tritium + solar axion

Axion + ³H favored over ³H hypothesis at 2.1σ

Tritium (3H) is almost zero, but likelihood ratio L_{signal} vs L_{bg} is small so the significance is reduced.

Can we distinguish the two hypothesis by additional checks?

Masaki Yamashita, ISEE, Nagoya

Tritium Solara Axion Neutrino magnetic moment + others

Masaki Yamashita, ISEE, Nagoya

Masaki Yamashita

Summary and Interpretations of the Excess **XENON1T observes ER excess events in 1-7 keV region**

Neutrino Magnetic Moment (3.2σ)

v magnetic moment enhance the cross section. (Solar v in this case)

Masaki Yamashita, ISEE, Nagoya

Summary

Background?

β-decay of tritium?

Low-energy (Q value 18.6 keV) **3.2** Long half life (12.3 years) Atmospherically "abundant" and cosmogenically produced in xenon

Removed by purification system?

Masaki Yamashita, ISEE, Nagoya

Signal? (Beyond Standard Model)

Solar Axions 3.5σ - QCD axion

= Axions would also be produced in the

Sun, with kinetic energies ~ keV

Neutrio Magnetic moment 3.20

In the (extended) SM:

3.0σ

A larger value would imply new physics, and possibly solve Dirac vs Majorana.

Bosonic Dark matter

- candidate for Warm Dark Matter
- Axion-like particles like QCD axions.
- allows for ALPs to take on higher masses than QCD axions

More detail on analysis (FAQ)

Masaki Yamashita, ISEE, Nagoya

INSTITUTE FOR SPACE-EARTH to the energy threshold <~2keV !

Fluctuations and correlations

statistical fluke? (see 17 keV dip)

funny correlation? (1-10 keV rising steadily)

Note: we use an unbinned profile likelihood analysis

Masaki Yamashita, ISEE, Nagoya

Uniformity, Energy threshold, time dependency...

Masaki Yamashita, ISEE, Nagoya

Energy Calibration at Low Energy

 $E = W(n_{ph} + n_e)$

g1 and g2: detector-specific gain constants

Calibration of XENON1T down to **2.8 keV**

Masaki Yamashita, ISEE, Nagoya

$$E = W\left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$$

XENON1T results are ... inconclusive. Then?

Masaki Yamashita

docomo 4G

7 26% 🔳

 \sim

XENONexperiment @XENONexperiment

XENON1T observed an excess of electronic events at low energy. What's the origin of such excess in your opinion? (see arxiv.org/abs/2006.09721) Ps. If "other option", write below (e.g. blue spaghetti monster)

ツイートを翻訳	
Solar axions	19%
Neutrino magnetic moment	7%
Tritium or other bkg	55%
Statistical fluctionation	19%

Others

arXiv 88 posts

Masaki Yamashita, ISEE, Nagoya

Next Step: XENONnT

Sensitivity Paper :arXiv:2007.08796

New Apparatus in XENONnT

Rutron veto

- Inner region of lacksquareexisting muon veto
- optically separate
- 120 additional PMTs \bullet
- Gd in the water tank \bullet
- 0.5 % Gd₂(SO₄)₃ \bullet

Masaki Yamashita, ISEE, Nagoya

purification

- Faster xenon cleaning
- 5 L/min LXe (2500 slpm)
- XENON1T ~ 100 slpm ullet

222R distillation

- Reduce Rn (²¹⁴Pb) from pipes, cables, cryogenic system
- New system, PoP in XENON1T

Will Coronavirus Freeze the Search for Dark Matter?

An experiment under 4,600 feet of Italian rock wasn't immune from the pandemic's interruption.

Masaki Yamashi

Masatoshi Kobayashi and Danilo Tatananni with the closed-up detector. "We did it," they wrote Dr. Aprile. Masatoshi Kobayashi

Next Steps: XENONnT

XENONnT will discriminate axions from tritium with ~ few months of data

Summary

- ER Excess Events in XENON1T
 - Solar Axion 3.5σ
 - -Neutrino Magnetic Moment (3.2σ)
 - -Bosonic Dark Matter (3.0σ)
 - -Tritium Background (3.0σ)
 - -Solar Axion + Tritium + Background (2.1 σ)
- XENONnT will tell us next year (commissioning phase now)
- •Stay tune!

