Small toric degenerations of Fano threefolds

SERGEY GALKIN

Abstract

We show which of the smooth Fano threefolds admit degenerations to toric Fano threefolds with ordinary double points.

1. Main theorem.

Theorem 1.1. These and only these families of non-toric smooth Fano threefolds Y do admit small degenerations to toric Fano threefolds:
(1) 4 families with $\operatorname{Pic}(Y)=\mathbb{Z}: Q, V_{4}, V_{5}, V_{22}$;
(2) 16 families $V_{2 . n}$, for $n=12,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32$;
(3) 16 families $V_{3 . n}$, for $n=7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$;
(4) 8 families $V_{4 . n}$, for $n=1,2,3,4,5,6,7,8$.

Here $V_{\rho, n}$ is a variety indexed $\rho . n$ in table [5] of Fano threefolds with Picard number ρ. All these degenerations are listed in the tables below.

By theorem l.]l we answer Batyrev's question [2] [question 3.9]: Which of the smooth Fano threefolds admit small toric degenerations?
Definition 1.2. Deformation is a flat proper morphism $\pi: \mathcal{X} \rightarrow \Delta$, where Δ is a unit disc $\{|t|<1\}$, and \mathcal{X} is an irreducible complex manifold.

All the deformations we consider are projective (π is a projective morphism over Δ). Denote fibers of π by X_{t}, and let $i_{t \in \Delta}$ be the inclusion of a fiber $X_{t} \rightarrow \mathcal{X}$. If all fibers $X_{t \neq 0}$ are nonsingular, then the deformation π is called a degeneration of $X_{t \neq 0}$ or a smoothing of X_{0}. If at least one such morphism π exists, we say that varieties $X_{t \neq 0}$ are smoothings of X_{0}, and X_{0} is a degeneration of $X_{t \neq 0}$.

For a coherent sheaf \mathbb{F} on \mathcal{X} over Δ and $t \in \Delta$ the symbol \mathbb{F}_{t} stands for the restriction $i_{t}^{*} \mathbb{F}$ to the fiber over t. In particular there is a well-defined restriction morphism on Picard groups $i_{t}^{*}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{t}\right)$.
Definition 1.3 ([$\mathbb{Z}]$). Degeneration (or a smoothing) π is small, if X_{0} has at most Gorenstein terminal singularities (see [TI] or [?]), and for all $t \in \Delta$ the restriction $i_{t}^{*}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}\left(X_{t}\right)$ is an isomorphism.

All 3-dimensional terminal Gorenstein toric singularities are nodes i.e. ordinary double points analytically isomorphic to $(x y=z t) \subset \mathbb{A}^{4}=\operatorname{Spec} \mathbb{C}[x, y, z, t]$.
Definition 1.4. Principal invariants of smooth Fano threefold X is a set of 5 numbers ($\rho, r, \operatorname{deg}, b, d$) where $\rho=\operatorname{rk} \operatorname{Pic}(X)=\operatorname{dim} H^{2}(X)$ is Picard number, $b=\frac{1}{2} \operatorname{dim} H^{3}(X)$ is a half of third Betti number, $\operatorname{deg}=\left(-K_{X}\right)^{3}$ is (anticanonical) degree, r is Fano index defined in $\mathbb{L} .6$ and d is (anticanonical) discriminant defined in ■.7.
Remark 1.5. All smooth threefolds Y from I.ll satisfy the following conditions: Y is rational (see e.g. [T0]), $\operatorname{deg}(Y) \geqslant 20, \rho(Y) \leqslant 4, b(Y) \leqslant 3$, moreover $b(Y)=3$ only if Y is $V_{2.12}$ and $b(Y)=2$ only if Y is V_{4} or $V_{2.19}$.
Definition 1.6. The index of a (Gorenstein) Fano variety X is the greatest $r \in \mathbb{Z}$ such that anticanonical divisor class $-K_{X}$ equals $r H$ for some integer Cartier divisor class H.
Definition 1.7. Let $H \in \operatorname{Pic}(X)$ be a Cartier divisor an on n-dimensional variety X, and D_{1}, \ldots, D_{l} be a base of lattice $H^{2 k}(X, \mathbb{Z}) /$ tors. Define $d^{k}(X, H)$ as a discriminant of the quadratic form $\left(D_{1}, D_{2}\right)=\left(H^{n-2 k} \cup D_{1} \cup D_{2}\right)$ on $H^{2 k}(X, \mathbb{Z}) /$ tors. For a Gorenstein threefold X denote by $d(X)=d^{1}\left(X,-K_{X}\right)$ the anticanonical discriminant of X. If X is a smooth variety and H is an ample divisor, then hard Lefschetz theorem states that $d^{k}(X, H)$ is nonzero.

We give only a sketch of a proof of the main theorem, and we refer the reader to an earlier version of this paper [I] for details.

Consider a toric Fano threefold X with ordinary double points.

[^0]
(2) [14, 21] Every such threefold X admits a smoothing - a Fano threefold Y.
(3) [3, [20, [15] Principal invariants of Y can be expressed via invariants of X.
(4) [7] Explicit classification of smooth Fano threefolds [4, [5, [6, [, 区, 区] shows that every family Y is completely determined by its principal invariants.
(5) If some smooth Fano threefold Y admits a degeneration to a nodal toric Fano X, then the pair (Y, X) comes from the steps above.

Y	ρ	deg	b	$[d]$	$(v, p, f)(X)$	$\#(X)$
V_{22}	1	22	0	22	$(13,9,13)$	1
V_{4}	1	32	2	8	$(8,6,6)$	1
V_{5}	1	40	0	10	$(7,3,7)$	1
Q	1	54	0	6	$(5,1,5)$	1

Y	ρ	deg	b	$[d]$	$(v, p, f)(X)$	$\#(X)$
$V_{2.12}$	2	20	3		$(14,12,12)$	1
$V_{2.17}$	2	24	1		$(12,8,12)$	1
$V_{2.19}$	2	26	2		$(11,8,10)$	1
$V_{2.20}$	2	26	0		$(11,6,12)$	2
$V_{2.21}$	2	28	0		$(10,5,11)$	2
$V_{2.21}$	2	28	0		$(11,6,12)$	1
$V_{2.23}$	2	30	1		$(9,5,9)$	1
$V_{2.22}$	2	30	0		$(10,5,11)$	1
$V_{2.22}$	2	30	0	$[-24]$	$(9,4,10)$	1
$V_{2.24}$	2	30	0	$[-21]$	$(9,4,10)$	1
$V_{2.25}$	2	32	1		$(8,4,8)$	1
$V_{2.25}$	2	32	1		$(9,5,9)$	1
$V_{2.26}$	2	34	0		$(10,5,11)$	1
$V_{2.26}$	2	34	0		$(8,3,9)$	1
$V_{2.26}$	2	34	0		$(9,4,10)$	1
$V_{2.27}$	2	38	0		$(7,2,8)$	1
$V_{2.27}$	2	38	0		$(8,3,9)$	2
$V_{2.28}$	2	40	1		$(7,3,7)$	1
$V_{2.29}$	2	40	0		$(7,2,8)$	1
$V_{2.29}$	2	40	0		$(8,3,9)$	1
$V_{2.30}$	2	46	0	$[-12]$	$(6,1,7)$	1
$V_{2.31}$	2	46	0	$[-13]$	$(6,1,7)$	1
$V_{2.31}$	2	46	0	$[-13]$	$(7,2,8)$	1
$V_{2.32}$	2	48	0		$(6,1,7)$	1
$V_{2.34}$	2	54	0		$(6,1,7)$	1

Y	ρ	deg	b	$[d]$	$(v, p, f)(X)$	$\#(X)$
$V_{3.7}$	3	24	1		$(12,7,13)$	1
$V_{3.10}$	3	26	0		$(11,5,13)$	1
$V_{3.11}$	3	28	1		$(10,5,11)$	1
$V_{3.12}$	3	28	0		$(10,4,12)$	1
$V_{3.12}$	3	28	0		$(11,5,13)$	1
$V_{3.13}$	3	30	0		$(10,4,12)$	2
$V_{3.13}$	3	30	0		$(9,3,11)$	1
$V_{3.14}$	3	32	1		$(8,3,9)$	1
$V_{3.15}$	3	32	0		$(10,4,12)$	1

$V_{3.15}$	3	32	0		$(9,3,11)$	3
$V_{3.16}$	3	34	0		$(8,2,10)$	1
$V_{3.16}$	3	34	0		$(9,3,11)$	1
$V_{3.17}$	3	36	0	$[28]$	$(8,2,10)$	2
$V_{3.17}$	3	36	0	$[28]$	$(9,3,11)$	1
$V_{3.18}$	3	36	0	$[26]$	$(8,2,10)$	1
$V_{3.18}$	3	36	0	$[26]$	$(9,3,11)$	1
$V_{3.19}$	3	38	0	$[24]$	$(7,1,9)$	1
$V_{3.19}$	3	38	0	$[24]$	$(8,2,10)$	1
$V_{3.20}$	3	38	0	$[28]$	$(7,1,9)$	1
$V_{3.20}$	3	38	0	$[28]$	$(8,2,10)$	1
$V_{3.20}$	3	38	0	$[28]$	$(9,3,11)$	1
$V_{3.21}$	3	38	0	$[22]$	$(8,2,10)$	1
$V_{3.22}$	3	40	0		$(7,1,9)$	1
$V_{3.23}$	3	42	0	$[20]$	$(7,1,9)$	1
$V_{3.23}$	3	42	0	$[20]$	$(8,2,10)$	1
$V_{3.24}$	3	42	0	$[22]$	$(7,1,9)$	1
$V_{3.24}$	3	42	0	$[22]$	$(8,2,10)$	1
$V_{3.25}$	3	44	0		$(7,1,9)$	1
$V_{3.26}$	3	46	0		$(7,1,9)$	1
$V_{3.28}$	3	48	0		$(7,1,9)$	1
Y	ρ	deg	b	$[d]$	$(v, p, f)(X)$	$\#(X)$
$V_{4.1}$	4	24	1		$(12,6,14)$	1
$V_{4.2}$	4	28	1		$(10,4,12)$	1
$V_{4.3}$	4	30	0		$(10,3,13)$	1
$V_{4.4}$	4	32	0	$[-40]$	$(9,2,12)$	1
$V_{4.5}$	4	32	0	$[-39]$	$(9,2,12)$	1
$V_{4.6}$	4	34	0		$(10,3,13)$	1
$V_{4.6}$	4	34	0		$(9,2,12)$	1
$V_{4.7}$	4	36	0		$(8,1,11)$	2
$V_{4.7}$	4	36	0		$(9,2,12)$	1
$V_{4.8}$	4	38	0		$(8,1,11)$	1
$V_{4.9}$	4	40	0		$(8,1,11)$	1

Any smooth Fano threefold not listed in the table does not admit any small toric degenerations, since none of nodal toric Fano threefolds has the proper invariants.

References

[1] Sergey Galkin: Small toric degenerations of Fano threefolds, preprint (2007), available at http://www.mi.ras.ru/~galkin
[2] V. V. Batyrev, Toric Degenerations of Fano Varieties and Constructing Mirror Manifolds, Collino, Alberto (ed.) et al., The Fano conference. Papers of the conference, Torino, Italy, September 29-October 5, 2002. Torino: Universita di Torino, Dipartimento di Matematica. 109-122 (2004), arXiv:alg-geom/9712034.
[3] H. Clemens, Double solids, Adv. Math. 47 (1983), 107-230.
[4] V. A. Iskovskikh, Anticanonical models of algebraic threefolds (Russian), Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 12, 59-157 (1979).
[5] S. Mori, S. Mukai, Classification of fano 3-folds with $b_{2} \geqslant 2$, Manuscr. Math., 36:147-162 (1981). Erratum 110: 407 (2003).
[6] S.Mori, S.Mukai, On fano 3-folds with $b_{2} \geqslant 2$, Algebraic varieties and analytic varieties, Proc. Symp., Tokyo 1981, Adv. Stud. Pure Math., 1:101-129 (1983), http://www.kurims.kyoto-u.ac.jp/~mukai/paper/Fano1983.pdt
[7] S.Mori, S.Mukai, Classification of Fano 3-folds with B_{2} \& 2, I, 'Algebraic and Topological Theories - to the memory of Dr. Takehiko Miyata', (M. Nagata ed.), Kinokuniya, 496-545 (1985), http://www.kurims.kyoto-u.ac.jp/~mukai/paper/Fano1985.pdt.
[8] V. A. Iskovskikh, Lectures on three-dimensional algebraic varieties. Fano varieties. (Lektsii po trekhmernym algebraicheskim mnogoobraziyam. Mnogoobraziya Fano.) (Russian) Moskva: Izdatel'stvo Moskovskogo Universiteta. 164 p. R. 0.30 (1988).
[9] S. Mukai, Fano 3-folds, Lond. Math. Soc. Lect. Note Ser. 179, 255-263 (1992).
[10] V. A. Iskovskikh, Yu. G. Prokhorov, Fano Varieties, volume 47 of Encyclopaedia Math. Sci. Springer-Verlag, Berlin.
[11] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Algebraic Geom., Sendai, June 24-29, 1985: Symp. Tokyo; Amsterdam e.a. 1987 p. 283-360.
[12] B. Nill, Gorenstein toric fano varieties, manuscripta mathematica, 116:183 (2005). Thesis: http://w210.ub.unituebingen.de/dbt/volltexte/2005/1888/pdf/nill.pdf.
[13] H. Clemens, Degeneration of Kahler manifolds, Duke Math. J. Volume 44, Number 2 (1977), 215-290.
[14] R. Friedman, Simultaneous resolutions of threefold double points., Math.Ann., 274(4):671-689 (1986).
[15] P. Jahnke, I. Radloff, Terminal fano threefolds and their smoothings, arXiv:math/0601769. Math. Zeitschrift 269 (2011) $1129-1136$.
[16] A. Kasprzyk, Toric fano 3-folds with terminal singularities, Tohoku Math. J., Volume 58, Number 1 (2006), $101-121$. arXiv:math/0311284.
[17] Y. Kawamata, Deformations of canonical singularities, J. Am. Math. Soc. 12, No. 1 (1999), 85-92 arXiv:alg-geom/9712018.
[18] M. Kreuzer, H. Skarke, PALP: A Package for Analyzing Lattice Polytopes with Applications to Toric Geometry, Computer Physics Communications, 157:87 (2004), arXiv:math/0204356.
[19] M. Kreuzer, H. Skarke, Classification of reflexive polyhedra in three dimensions. Advances in Theoretical and Mathematical Physics, 2:847 (1998), arXiv:hep-th/9805190.
[20] Y. Namikawa, J. Steenbrink, Global smoothing of Calabi-Yau threefolds, Invent. Math. 122 (1995), no. 2, $403-419$.
[21] Y. Namikawa, Smoothing fano 3-folds., J Alg. Geom., 6:307-324 (1997).

2. Applications and further discussion.

All applications of this result to mirror symmetry and classification of varieties are to appear in separate sequel papers [[$1,3,3,4]$.

References

[1] M. Akhtar, T. Coates, S. Galkin, A. Kasprzyk: Minkowski Polynomials and Mutations, SIGMA 8 (2012), 094 , 707 pages; arXiv:1212.1785, IPMU 12-0120.
[2] T. Coates, A. Corti, S. S. Galkin, A. M. Kasprzyk:
[3] T. Coates, A. Corti, S. S. Galkin, V. V. Golyshev, A. M. Kasprzyk: Mirror Symmetry and Fano Manifolds, to appear in Proceedings of 6th European Congress of Mathematics; arXIv:I212.1722, IPMU 12-0102.
[4] http://www.fanosearch.net, collaborative research blog (2010-2013).

[^0]: Date: March 7, 2013.

