
On Apery constants of homogeneous varieties.

S.GALKIN

Abstract. We do numerical computations of Apery constants for homogeneous varieties G/P for
maximal parabolic groups P in Lie groups of type An, n 6 10, Bn, Cn, Dn, n 6 7, E6, E7 , E8, F4

and G2. These numbers are identified to be polynomials in the values of Riemann zeta-function
ζ(k) for natural arguments k > 2.

1. Introduction

The article is devoted to the computations of Apery numbers for the quantum differential equa-
tion of homogeneous varieties, so first we introduce these 3 notions.

Let X be a Fano variety of index r: −KX = rH, and q be a coordinate on the anticanonical
torus Z−KX ⊗C∗ = Gm ∈ Pic(X)⊗C∗, and D = q d

dq
be an invariant vector field. Cohomologies

H
q
(X) are endowed with the structure of quantum multiplication ?, and associativity of ? implies

that first Dubrovin’s connection given by

(1.1) Dφ = H ? φ

is flat.
If we replace in equation 1.1 quantum multiplication with the ordinary cup-product, then it’s

solutions are constant Lefschetz coprimitive (with respect to H) classes in H
q
(X). Dimension µ

of the space of homolorphic solutions of 1.1 is the same and equal to the number of admissible
initial conditions (of the recursion on coefficients) modulo q, i.e. the rank of the kernel of cup-
multiplication by H in H

q
(X), that is the dimension of coprimitive Lefschetz cohomologies.

Solving equation 1.1 by Newton’s method one obtains a matrix-valued few-step recursion recon-
structing all the holomorphic solutions from these initial conditions.

Givental’s theorem states that the solution A = 1 +
∑

n>1 a(n)qn associated with the primitive

class 1 ∈ H0(X) is the I-series of the variety X (the generating function counting some rational
curves of X). Choose a basis of other solutions A1, . . . , Aµ−1 associated with homogeneous primitive
classes of nondecreasing codimension 1

Put A =
∑

n>0 a(n)tn and Ai =
∑

n>0 a
(n)
i tn. We call the number

lim
n→∞

a
(n)
i

a(n)

i-th Apery constant after the renown work [2], where ζ(3) and ζ(2) were shown to be of that kind
for some differential equations and such a presentation was used for proving the irrationality of
these two numbers. If there is no choosen basis, for any coprimitive class γ one still may consider

1One could also consider other bases, e.g. it is often exists a base with ith element Bi determined by the condition
Bi = ti(modtµ). But the answer in this base looks worse. Finally one may reject to choose any basis and express
everything invariantly in the dual space of primitive classes.
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the solution Aγ =
∑

n>1 a
(n)
γ qn = Pr0(γ +

∑
n>1 A

(n)
γ qn) and the limit

(1.2) Apery(γ) = lim
n→∞

a
(n)
γ

a(n)

Defined in that way, Apery is a linear map from coprimitive cohomologies to C. A linear map
on coprimitive cohomologies is dual 2 to some (nonhomogeneous) primitive cohomology class with
coefficients in C. We name it Apery characteristic class A(X) ∈ H6dim X(X, C).

Consider the homogeneous ring R = Q[c1, c2, c3, . . . ], deg ci = i and a map ev : R → C sending
c1 to Euler constant C 3, and ci to ζ(i).

The main conjecture we verify is the following

Conjecture 1.3. Let X be any Fano variety and γ ∈ H
q
(X) be some coprimitive with respect

to −KX homogeneous cohomology class of codimension n. Consider two solutions of quantum
D-module: A0 associated with 1 and Aγ associated with γ. Then Apery number for Aγ (i.e.

limk→∞
a
(k)
γ

a
(k)
0

) is equal to ev(fγ) for some homogeneous polynomial fγ ∈ R(n) of degree n.

Actually, in our case there is no Euler constant contributions, and the conjecture seems too
strong to be true - it would imply that some of differential equations studied in [1] has non-
geometric origin (at least come not from quantum cohomology), because their Apery numbers
does not seem to be of the kind described in the conjecture (e.g. Catalan’s constant, π3, π3

√
3).

From the other point of view, for toric varieties X the solutions of QDE are known to be pullbacks
of hypergeometric functions, coefficients of hypergeometric functions are rational functions of Γ-
values, and the Taylor expansion

(1.4) log Γ(1 + x) = Cx +
∑
k>2

ζ(k)

k
xk

suggests all Apery constants would probably be rational functions in C and ζ(k). So whether one
believes in toric degenerations or hypergeometric pullback conjecture, he would find natural to
believe in 1.3. Also Apery limits like 91

432
ζ(3) − 1

216
π3
√

3 may appear as ”square roots” or factors

(convolutions with quadratic character or something) of geometric ones like 912

4322 ζ(3)2 − 3
2162 π

6.
This is not even the second paper (the computations of this paper were described by Golyshev

2-3 years ago) discussing the natural appearance of ζ-values in monodromies of QDEs. In case
of fourfolds X the expression of monodromies in terms of ζ(3), ζ(2k) and characteristic numbers
of anticanonical section of X was given by van Straten [14], Γ-class for toric varieties appears in
Iritani’s work [9], and in general context in [10].

Let G be a (semi)simple Lie group, W be it’s Weyl group, P be a (maximal) parabolic subgroup
associated with the subset (or just one) of the simple roots of Dynkin diagram, and denote factor
G/P by X. X is a homogeneous Fano variety with rk Pic X equal to the number of chosen roots.
In case when G is simple and P is maximal we have Pic X = ZH, where H is an ample generator,
KX = −rH.

For homogeneous varieties with small number of roots in Dynkin diagram (being more precise,
with not too big total dimension of cohomologies) by the virtue of Peterson’s version of Quantum

2One may choose between Poincare and Lefschetz dualities. We prefer the first one.
3C = limn→∞(

∑n
k=1

1
k )− lnn
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Chevalley formula [4][Theorem 10.1] we explicitly compute the operator H? 4, and hence find 1.1

with all it’s holomorphic solutions. Then we do a numerical computation of the ratios
a
(k)
γ

a
(k)
0

for big

k (e.g. k = 20 or 40 or 100), and guess the values of the corresponding Apery constants, then
state some conjectures (refining 1.3) on what these numbers should be.

2. Grassmanian Gr(2,N)

Let V be the tautological bundle on Grassmanian Gr(2, N), consider H = c1(V ) and c2 = c2(V ).
Cohomologies H

q
(Gr(2, N), C) is a ring generated by H and c2 with relations of degree > N − 1.

So there is at least 1 primitive (with respect to H) Lefschetz cohomology class p2k in every even
codimension 2k, 0 6 k 6 N−2

2
. Since

dim H
q
(Gr(2, N), C) =

(
N

2

)
=

N−2
2∑

k=0

(2N − 3− 4k)

they exhaust all the primitive classes.

p0 = 1

p2 = c2 −
c2 · c2N−6

1

c2N−4
1

c2
1

. . .

The associated conjectural Apery numbers are listed in the following table, Apery numbers
associated with the primitive cohomology classes of codimension 2k are rational multiples of
ζ(2k) 'Q∗ π2k.

X µ p2 p4 p6 p8

Gr(2, 4) 2 0
Gr(2, 5) 2 ζ(2)
Gr(2, 6) 3 2ζ(2) 0
Gr(2, 7) 3 3ζ(2) 27

4
ζ(4)

Gr(2, 8) 4 4ζ(2) 16ζ(4) 0
Gr(2, 9) 4 5ζ(2) 111

4
ζ(4) 675

16
ζ(6)

Gr(2, 10) 5 6ζ(2) 42ζ(4) 108ζ(6) 0
Gr(2, 11) 5 7ζ(2) 235

4
ζ(4) 3229

16
ζ(6) 18375

64
ζ(8)

Gr(2, 12) 6 8ζ(2) 78ζ(4) 328ζ(6) 768ζ(8),
Gr(2, 13) 6 9ζ(2) 399

4
ζ(4) 7855

16
ζ(6) 96111

64
ζ(8),

Gr(2, 14) 7 10ζ(2) 124ζ(4) 695ζ(6) 7664
3

ζ(8),
Gr(2, 15) 7 11ζ(2) 603

4
ζ(4) 15113

16
ζ(6) 768085

192
ζ(8),

Remark 2.1. Gr(2, 5) case is essentially Apery’s recursion for ζ(2) (see remark 7.1).

4We used computer algebra software LiE [11] for the computations in Weyl groups. The script is avaiable at
http://www.mi.ras.ru/∼galkin/work/qch.lie, and the answer is available in [6]. We used PARI/GP computer
algebra software [12] for solving the recursion and finding the linear dependencies between the answers and zeta-
polynomials. Script for this routine is available at http://www.mi.ras.ru/∼galkin/work/apery.gp.
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Remark 2.2. Constants for p2 depend linearly on N , constants for p4 depend quadratically on N ,
constants for p6 looks like they grow cubically in N . So we conjecture constants for p2k is ζ(2k)
times polynomial of degree k of N .

The proof for the computation of p2 (in slightly another Q-basis) was given recently in [7]. Let us
describe a transparent generalization of this method for the all primitive p2k of Gr(2, N). Quantum
D-module for Gr(r, N) is the r’th wedge power of quantum D-module for PN−1 (solutions of QDE
for Gr(r, N) are r × r wronskians of the fundamental matrix of solutions for PN−1). Let N be
either 2n or 2n + 1. Consider the deformation of quantum differential equation for PN−1:

(2.3) (D − u1)(D + u1)(D − u2)(D + u2) · · · · · (D − un)(D + un) ·DN−2n − q

This equation has (at least) 2n formal solutions:

Ra =
∑

k−a∈Z+

1

Γ(k − u1)Γ(k + u1) · · · · · Γ(k − un)Γ(k + un) · Γ(k)N−2n
qk

for a = u1,−u1, . . . , un,−un. Let Si = R′
ui

R−ui
− R′

−ui
Rui

be the wronskians. Then Si =∑
k>0 s

(k)
i qk for i = 1, . . . , n are n holomorphic solutions of the wedge square of the deformed

equation 2.3. Using his explicit calculation for the monodromy of hypergeometric equation 2.3
and Dubrovin’s theory, Golyshev computes the monodromy of ∧2(2.3) and demonstrates the for-
mula of sinuses:

(2.4) lim
k→∞

s
(k)
i

s
(k)
j

=
sin(2πui)

sin(2πuj)

So in the base of S1, . . . , Sn Apery numbers are sin(2πui)
sin(2πu1)

. One then reconstructs the required

Apery numbers by applying the inverse fundamental solutions matrix to this vector of sinuses, and
limiting all ui to 0.

3. Other grassmannians of type A

Let V be the tautological bundle on Grassmanian Gr(3, N), consider H = c1(V ), c2 = c2(V )
and c3 = c3(V ).

Cohomologies H
q
(Gr(3, N), C) are generated by H, c2 and c3 with relations of degree > N − 2.

In particular, if N > 7, then 1, c2, c3, c2
2 and c2c3 generate H610(X, Q) = H

q
(X)/H>10(X) as

Q[c1]-module. So there is 1 primitive class in codimensions 0,2,3,4 and 5.

X µ p2 p3 p4 p5 p>6

Gr(3, 6) 3 0 −6ζ(3)
Gr(3, 7) 4 ζ(2) −7ζ(3) −17

4
ζ(4) −49

2
ζ(3)2 − 945

16
ζ(6)

Gr(3, 8) 5 2ζ(2) −8ζ(3) 0 −8ζ(2)ζ(3)− 4ζ(5) −32ζ(3)2 − 62ζ(6)
Gr(3, 9) 8 3ζ(2) −9ζ(3) 27

4
ζ(4) −27

2
ζ(2)ζ(3)− 9

2
ζ(5) ±(81

2
ζ(3)2 + 871

16
ζ(6)), . . .

Gr(3, 10) 10 4ζ(2) −10ζ(3) 16ζ(4) −20ζ(2)ζ(3)− 5ζ(5) ±(50ζ(3)2 + 32ζ(6)), . . .
Gr(3, 11) 13 5ζ(2) −11ζ(3) 111

4
ζ(4) −55

2
ζ(2)ζ(3)− 11

2
ζ(5) (−121

2
ζ(3)2 + 110

16
ζ(6))± 45

16
ζ(6), . . .

Remark 3.1. One may notice that the Apery constants of p2 and p4 for Gr(3, N) are equal to the
Apery constants of p2, p4 for Gr(2, N − 2). Why? Is it possible to make an analogous statement
for p6 (obviously one should choose another basis of two elements in H12(Gr(3, N)) to vanish
appearing ζ(3)2 terms)?
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Remark 3.2. p2 is linear of N , p4 is quadratic of N , p3 is linear of N , p5 is quadratic of N .

Remark 3.3. p5 is quadratic polynomial of N times ζ(2)ζ(3) plus linear polynomial of N times

ζ(5). Actually it is −p2p3−Nζ(5)
2

. This gives a suggestion on a method of separating e.g. ζ(4) and
ζ(2)2 in p4 — ζ(4) term should be only linear and ζ(2)2 is quadratic in N . Similarly the coefficient

at ζ(3)2 is quadratic in N (and in the choosen basis p6’th ζ(3)2-part is
p2
3

2
).

For Gr(4, N) we still do have a unique primitive class of codimension 5.

X µ p2 p3 p4 p′4 p5 p>6

Gr(4, 8) 8 0 −8ζ(3) −6ζ(4) 0 none 32ζ(3)2 + 50ζ(6) twice and
08

Gr(4, 9) 12 ζ(2) −9ζ(3) 21
4
ζ(4) ζ(4) −9

2
(ζ(2)ζ(3) + ζ(5)) (81

2
ζ(3)2+ 117

4
ζ(6))± 159

16
ζ(6),

. . .
Gr(4, 10) 18 2ζ(2) −10ζ(3) −2ζ(4) 2ζ(4) −10ζ(2)ζ(3)− 5ζ(5) 50ζ(3)2 + 31ζ(6), 50ζ(3)2,

06, . . .
Gr(4, 11) 24 3ζ(2) −11ζ(3) 15

4
ζ(4) 3ζ(4) −33

2
ζ(2)ζ(3)− 11

2
ζ(5) (121

2
ζ(3)2+ 35

2
ζ(6))± 197

16
ζ(6),

27
16

ζ(6),. . .

Remark 3.4. Apery of p3 for Gr(3, N) and Gr(4, N) coincide. Apery of p2 for Gr(4, N) is equal
to Apery of p2 for Gr(3, N − 2) and Apery of p2 for Gr(2, N − 4).

For Gr(5, 10) we have 20 Lefschetz blocks, they correspond to 20 solutions, and hence 19 Apery
constants. Some of them vanish, while some other coincide (because solutions differ only by some
character).

X µ p2 p3 p4 p′4 p5 p′5
Gr(5, 10) 20 0 −10ζ(3) −6ζ(4) 0 10ζ(5) −10ζ(5)
Gr(5, 11) 32 ζ(2) −11ζ(3) −21

4
ζ(4) ζ(4) 11(ζ(5)− ζ(2)ζ(3)) −11ζ(5)

4. B,C,D cases

The picture for other 3 series of classical groups is similar.
For 1 6 k 6 n let D(n, k) denote homogeneous space of isotropic (with respect to nonde-

generate quadratic form) k-dimensional linear spaces in 2n-dimensional vector space. D(n, k) =
OGr(k, 2n) = G/P where G is Spin(2n), and maximal parabolic subgroup P ⊂ G corresponds
to k’th simple root counting from left to right. Similarly define B(n, k) = OGr(k, 2n + 1) and
C(n, k) = SGr(k, 2n).

X µ Apery numbers
B(3, 2) 2 −2ζ(2).
B(4, 2) 3 ζ(2), −41

2
ζ(4).

B(4, 3) 3 −4ζ(2), −4ζ(3).
B(4, 4) 2 2ζ(3).
B(5, 2) 4 3ζ(2), 3

2
ζ(4) −1191

8
ζ(6).

B(5, 3) 8 02, −8ζ(3), −24ζ(4), 20ζ(5), 64
3
ζ(3)2 + 80

3
ζ(6), 32ζ(3)ζ(4) + 232

3
ζ(7), 256

21
ζ(3)3 +

320
7

ζ(3)ζ(6)− 480
7

ζ(4)ζ(5)− 1000
21

ζ(9).
B(5, 4) 8 −6ζ(2), −6ζ(3), −45ζ(4), 9ζ(2)ζ(3) + 21ζ(5), 15ζ(3)2 + 1141

24
ζ(6), 56ζ(2)ζ(5) +

30ζ(3)ζ(4) + 52ζ(7), 266
5

ζ(3)3 − 171
5

ζ(2)ζ(7)− 222
5

ζ(3)ζ(6)− 263
5

ζ(4)ζ(5) + 136
5

ζ(9).
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X µ Apery numbers
B(5, 5) 3 4ζ(3), 20ζ(5).
B(6, 2) 5 5ζ(2), 87

4
ζ(4), −485

8
ζ(6), −35073

32
ζ(8).

B(6, 3) 12 2ζ(2), −6ζ(3), −12ζ(4), −12ζ(2)ζ(3) + 18ζ(5), −36ζ(3)2 − 146ζ(6), 36ζ(3)2 +

2ζ(6), 24ζ(2)ζ(5) + 24ζ(3)ζ(4) + 76ζ(7), 360ζ(3)2ζ(2)−1080ζ(3)ζ(5)+1176ζ(8)
11

, 803ζ(3)3 −
528ζ(2)ζ(7) + 318ζ(3)ζ(6) − 244ζ(4)ζ(5) − 35ζ(9), 75ζ(3)3 − 336ζ(2)ζ(7) −
395ζ(3)ζ(6)− 22ζ(4)ζ(5)− 70ζ(9),. . .

B(6, 4) 18 −1ζ(2), −10ζ(3), −17
4
ζ(4), −14ζ(4), 5ζ(2)ζ(3) + 19ζ(5), 50ζ(3)2 + 317ζ(6),

−50ζ(3)2 − 4135
8

ζ(6),
B(6, 5) 14 −8ζ(2), −8ζ(3), −84ζ(4), 64ζ(2)ζ(3) + 16ζ(5), −64ζ(2)ζ(3), 80

3
ζ(3)2 + 24ζ(6),

110ζ(2)ζ(5) + 49
2
ζ(3)ζ(4) + 101

2
ζ(7),

B(6, 6) 5 6ζ(3), 18ζ(5), −18ζ(3)2 − 60ζ(6), 36ζ(3)3 + 360ζ(3)ζ(6) + 332ζ(9)
B(7, 2) 6 7ζ(2), 211

4
ζ(4), 1733

8
ζ(6), −76699

96
ζ(8), −5368203

640
ζ(10).

B(7, 7) 8 8ζ(3), 16ζ(5), −30ζ(3)2 − 60ζ(6), −112ζ(7), 256
3

ζ(3)3 + 480ζ(3)ζ(6) + 992
3

ζ(9), . . .

Remark 4.1. B(4, 4) case is essentially Apery’s recursion for ζ(3).

X µ Apery numbers
C(3, 2) 2 2ζ(2).
C(3, 3) 2 7

2
ζ(3).

C(4, 2) 3 4ζ(2), 16ζ(4).
C(4, 3) 4 ζ(2), −9ζ(3), −9

2
(ζ(2)ζ(3) + ζ(5)).

C(4, 4) 2 4ζ(3).
C(5, 2) 4 6ζ(2), 42ζ(4), 108ζ(6).
C(5, 3) 8 3ζ(2), −11ζ(3), 27

4
ζ(4), −33

2
ζ(2)ζ(3) − 11

2
ζ(5), 242

3
ζ(3)2 + 2383

48
ζ(6), −11ζ(2)ζ(5) −

99
4
ζ(3)ζ(4)− 11

3
ζ(7), 108ζ(3)3 − 38ζ(2)ζ(7) + 309

4
ζ(3)ζ(6)− 41

4
ζ(4)ζ(5) + 36ζ(9)

C(5, 4) 8 02, −10ζ(3), 30ζ(4), −5ζ(5), 250
3

ζ(3)2 + 175
3

ζ(6), −100
3

ζ(3)ζ(4)− 10
9
ζ(7), 2500

21
ζ(3)3 +

250ζ(3)ζ(6)− 150
7

ζ(4)ζ(5)− 10
21

ζ(9).
C(5, 5) 3 9

2
ζ(3) , −21

2
ζ(5).

C(6, 2) 5 8ζ(2), 78ζ(4), 328ζ(6), 768ζ(8).
C(6, 3) 12 5ζ(2), −13ζ(3), 111

4
ζ(4), −65

2
ζ(2)ζ(3)− 13

2
ζ(5), −169

2
ζ(3)2+ 155

16
ζ(6), 169

2
ζ(3)2+ 65

2
ζ(6),

C(6, 6) 4 ζ(3), −11ζ(5), −25ζ(3)2 − 15
2
ζ(6), 500

3
ζ(3)3 + 150ζ(3)ζ(6)− 131

3
ζ(9).

C(7, 2) 6 10ζ(2), 124ζ(4), 695ζ(6), 7664
3

ζ(8), 5760ζ(10).
C(7, 7) 8 11

2
ζ(3), −23

2
ζ(5), −121

4
ζ(3)2 − 15

2
ζ(6), 71

2
ζ(7), 1331

6
ζ(3)3 + 165ζ(3)ζ(6) − 263

6
ζ(9),

781
12

ζ(3)ζ(7)− 529
12

ζ(5)2 − 63
2
ζ(10),. . .

Remark 4.2. One may notice that Apery numbers for C(2, n) = SGr(2, 2n) coincide with Apery
numbers of Gr(2, 2n) except the last 0. The reason for this coincidence is that SGr(2, 2n) is a
quadratic hyperplane section of Gr(2, 2n), so by quantum Lefschetz (7.1) has almost the same
Apery numbers.

Remark 4.3. For general k spaces OGr(k,N) and SGr(k,N) are sections of ample vector bundles
over Gr(k,N) (symmetric and wedge square of tautological bundle). Is it possible to formulate a
generalization of quantum Lefshetz principle explaining the relations between Apery numbers of
OGr(k,N), SGr(k,N) and Gr(k,N)?
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X µ Apery numbers
D(4, 2) 4 0, 0,−24ζ(4).
D(5, 2) 5 2ζ(2), 0, −12ζ(4), −144ζ(6).
D(5, 3) 9 −ζ(2), −ζ(2), −6ζ(3), 04, −45

2
ζ(4), 3ζ(2)ζ(3) + 21ζ(5), 05, 12ζ(3)2 + 275

24
ζ(6).

D(5, 4) 2 2ζ(3).
D(6, 2) 6 4ζ(2), 10ζ(4), 10ζ(4), −124ζ(6), −960ζ(8).
D(6, 3) 14 ζ(2), −5ζ(3), −5ζ(3), −41

2
ζ(4), 0, −5ζ(2)ζ(3) + 19ζ(5), 25

2
ζ(3)2 + 953

16
ζ(6), 25

2
ζ(3)2−

937
16

ζ(6), 0,
D(6, 5) 3 4ζ(3), 20ζ(5).
D(7, 2) 7 6ζ(2), 36ζ(4), 0, 50ζ(6), −1072ζ(8), −6912ζ(10).
D(7, 6) 5 6ζ(3), 18ζ(5), −18ζ(3)2 − 60ζ(6), 36ζ(3)3 + 360ζ(3)ζ(6) + 332ζ(9).

Remark 4.4. D(N, N − 1) is isomorphic to B(N − 1, N − 1), so in the case D(6, 5) we again have
Apery’s recurrence for ζ(3) here.

5. Exceptional cases - E, F , G

We provide computations of Apery constants only for a few of 23 exceptional homogeneous
varieties, those with not too big spaces of cohomologies.

X µ Apery numbers
E(6, 6) 3 6ζ(4), 08.
E(6, 2) 6 03, 18ζ(4), 90ζ(6), 07, −3456ζ(10).
E(7, 7) 3 −24ζ(5), 168ζ(9).
E(8, 8) 11 120ζ(6), −1512ζ(10), . . . (of degrees 12, 16, 18, 22, 28).
F (4, 1) 2 21ζ(4).
F (4, 3) 8 −4ζ(2), 03, −2ζ(4), −24ζ(5), −246ζ(6), 32ζ(2)ζ(5) + 60ζ(7), 2160ζ(2)ζ(7) −

144ζ(4)ζ(5).
F (4, 4) 2 6ζ(4).

Remark 5.1. There are two roots in the root system of G2, taking factor by the parabolic subgroup
associated with the smaller one we get a projective space, so later by G2/P we denote the 5-
dimensional factor by another maximal parabolic subgroup. There is no literal Apery constants
for G2/P since this variety is minimal, so the only primitive cohomology class is 1, altough one
may seek for almost solutions of quantum differential equation (strictly speaking Apery himself
also considered such solutions). In [7] Golyshev considers this problem for Fano threefold V18 (i.e.
a section of G2/P by two hyperplanes) and using Beukers argument [3] and modularity of the
quantum D-module for V18 shows that Apery number is equal to L√−3(3)

6. Varieties with greater rank of Picard group, non-Calabi-Yau and Euler
constant

One may consider the same question for varieties X with higher Picard group. Canonicaly we
should put H = −KX , but if we like, we could choose any H ∈ Pic(X).

Even for such simple spaces as products of projective spaces one immidiately calculates some
non-trivial Apery constants.

X µ Apery numbers
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P2 × P2 3 01, 6ζ(2).
P2 × P3 3 01,

14
3
ζ(2).

In all these cases Apery numbers corresponding to all primitive divisors vanish. Van Straten’s
calculation [14] relates monodromies of QDE for Fano fourfold X not to Chern numbers of the
Fano, but to Chern numbers of it’s anticanonical Calabi-Yau hyperplane section Y . Probably C-
factors shouls correspond to c1-factors in the Chern number, and since for Calaby-Yau c1(Y ) = 0
we observe Euler constant is not involved. So one should consider something non-anticanonical.

Let’s test the case H = O(1, 1) on P2×P3. Being exact, we restrict D-module to subtorus corre-
sponding to H, and consider operator of quantum multiplication by H on it (subtorus associated
with H is invariant with respect to vector field associated with H).

(X, H) µ Apery numbers

(P2 × P3,O(1, 1)) 3 −C, C2+7ζ(2)
2

.

7. Irrationality, special varieties and further speculations

First of all let us note that both differential equations considered by Apery for the proofs of
irrationality of ζ(2) and ζ(3) are essentially appeared in our computations as quantum differ-
ential equations of homogeneous varieties Gr(2, 5) and OGr(5, 10) = D(5, 4) (and isomorphic
OGr(4, 9) = B(4, 4)). By essentially we mean the following proposition — Apery constants are
invariant with respect to taking hyperplane section if the corresponding primitive classes survive:

Proposition 7.1. Let X be a subcanonically embedded smooth Fano variety5 of index r > 1 i.e.
X is embedded to the projective space by a linear system |H|, and −KX = rH. Consider a
general hyperplane section Y — a subcanonically embedded smooth Fano variety of index r − 1.
There is a restriction map γ → γ ∩ H from cohomologies of X to cohomologies of Y and by
Hard Lefschetz theorem except possible of intermideate codimension all primitive classes of Y are
restricted primitive classes of X. Consider a homogeneous primitive class of nonintermediate
codimension γ ∈ H

q
(X). Then Apery numbers for γ calculated from QDE of X and Y coincide.

Proof. By the quantum Lefschetz theorem of Givental-Kim-Gathmann we have a relation between
the I-series (solution of 1.1 associated with 1 ∈ H

q
) of X and Y : e.g. if r > 2 and Pic(X) = ZH

and H2(X, Z) = Zβ then d′th coefficient of I − series of X should be multiplied by
∏dHβ

i=0 (H + i),
if r 6 2 one should also do a change of coordinate. One may show the similar relation between
solutions of 1.1 associated with γ and γ|Y : either directly repeating the arguments of original proof,
or by Frobenius method of solving differential equation. So the limit of the ratio is the same. �
One may rephrase the previous proposition in the following way

Proposition 7.2. Apery class is functorial with respect to hyperplane sections.

Proposition 7.2 is slightly stronger then 7.1: indeed, the intermediate primitive classes of X
vanish restricted on Y , but also it states that ”parasitic” intermediate primitive classes of Y has
Apery constant equal to 0. Following notations of [8] let’s call all smooth varieties related to each
other by hyperplane section or deformation a strain, and if Y is a hyperplane section of X let’s
call X an unsection of Y ; if Y has no unsections we call it a progenitor of the strain. The stability

5One may state this proposition in higher generality, but we are going to use it for homogeneous spaces, and as
stated it will be enough.
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of Apery class is quite of the same nature as the stability of spectra in the strain described in
[8]. Propositions 7.1 and 7.2 suggest to consider some kind of stable Apery class on the infinite
hyperplane unsection. Such a stable framework of Gromov–Witten invariants was constructed
by Przyalkowski for the case of quantum minimal Fano varieties in [13], using only Kontsevich-
Manin axioms. The next proposition shows that literaly this construction gives nothing from our
perspective

Proposition 7.3. If a Fano variety X is quantum minimal then all Apery constants vanish i.e.
Apery class A is equal to 1.

Proof. It is a trivial consequence of the definition of quantum minimality — since all primitive
classes except 1 are quantum orthogonal to C[KX ] the operator of quantum multiplication by
KX restricted to nonmaximal Lefschetz blocks coincides with the cup-product, in particular it is

nilpotent, so the associated solutions Aγ of QDE are polynomial in q i.e. their coefficients a
(k)
γ

vanish for k >> 0, hence the Apery number is 0. �

Conjecture 7.4. The converse to 7.3 statement is true as well.

So for our purposes the framework of [13] should be generalized taking into account the struc-
ture of Lefschetz decomposition. Another obstacle is geometrical nonliftability of varieties to
higher dimensions — one can show both Grassmanian Gr(2, 5) (and any other Grassmanian ex-
cept projective spaces and quadrics) and OGr(5, 10) are progenitors of their strains, i.e. cannot be
represented as a hyperplane section of any nonsingular variety, this follows e.g. from the fact that
these varieties are selfdual, but of course they are hyperplane sections of their cones. We insist

that the quantum recursions for the progenitors Gr(2, 5) and OGr(5, 10) are the most natural in
the strain, in particular in both cases we consider two exact solutions of the recursion, and in
Apery’s case one considers an almost solution with polynomial error term — because for the linear
sections of dimension 6 3 (6 5) the second Lefschetz block vanishes. One may ask a natural

question whether any of the experimentaly or theoreticaly calculated Apery numbers (and their
representations as the limits of the ratios of coefficients of two solutions of the recurrence) may be
proven to be irrational by Apery’s argument. At least we know it works in two cases of Gr(2, 5)
and OGr(5, 10). Remind that for irrationality of α = ζ(2) or α = ζ(3) one shows that (α− aγ

qn
) is

smaller then 1
qn

, so we are interested in the sign of lim log(|α − aγ

qn
|) − log(qn) (or equivalently in

the sign of

(7.5) lim log log(|α− aγ

qn

|)− log log qn.

There were many attempts to find any other recurencies with this sign being negative, and most
of them failed to the best of our knowledge. The quantum recursions we considered in this article
is not an exception (we calculated convergence speed 7.5 numerically for n > 20). For example
the convergence speed for ζ(2) approximation from Gr(2, N) decreases as N grows, and is suitable
only in the case of Gr(2, 5). So we come to the question: what is so special about Gr(2, 5) and
OGr(5, 10)? One immideately reminds the famous theorem of Ein (see e.g. [15])

Theorem 7.6. Let X ⊂ PN be a smooth nondegenerate irreducible n-dimensional variety, such
that X has the same dimension as it’s projectively dual X∗. Assume N > 3n

2
. Then X is either a

hypersurface, or one of

(1) a Segre variety P1 × Pr ⊂ P2r+1

9



(2) the Plucker embedding Gr(2, 5) ⊂ P9

(3) OGr(5, 10)

Three last cases are selfdual: X ' X∗.

Remark 7.7. For 7.6 we have the coincidence of the coherent and topological cohomologies

(7.8) N + 1 = dim H0(X,O(H)) = dim H
q
(X)

In all 3 cases there are exactly two Lefschetz blocks, the codimensions of the grading of second
Lefschetz block are corr. 1, 2 and 3.

Remark 7.9. Apery number for P1×Pr should approximate some multiple of C, but for r = 1, 2, 3
it is 0. As pointed out in section 6 we haven’t got any natural approximations for Euler constant
in anticanonical Landau–Ginzburg model. From the other point of view, the variety P1 × Pr in
the statement of the theorem 7.6 is not (sub)anticanonically embedded, but embedded by the
linear system O(1, 1). Calculations of 6 are what we expect to be the quantum recursion for X
embedded by O(1, 1), they indeed approximate C, but the speed of convergence is too slow. Either
our guess is not correct (or not working here) or Landau–Ginzburg corresponding to the linear
system |O(1, 1)| is something else.

So the theorem 7.6 suggests the irrationality of Apery approximations are ruled by either self-
duality or extremal defectiveness of the progenitor. Varieties 7.6 are related by the famous con-
struction: let X be one of them, choose any point p ∈ X (they are homogeneous so all points are
equivalent), then take an intersection of X with it’s tangent space Y = X ∩ TpX. Then Y is a
cone over the previous one:

TpGr(2, 5) ∩Gr(2, 5) = Cone(P1 × P2)(7.10)

TpOGr(5, 10) ∩OGr(5, 10) = Cone(Gr(2, 5))(7.11)

In that way OGr(5, 10) can be ”lifted” one step further to Cartan variety E(6, 6) = E(6, 1):

TpE(6, 6) ∩ E(6, 6) = Cone(OGr(5, 10)).

E(6, 6) is one of the four famous Severi varieties (or more general class of Scorza varieties) classified
by Fyodor Zak in [15]:

Theorem 7.12. Let X ⊂ PN= 3n+4
2 be n-dimensional Severi variety i.e. X can be isomorphically

projected to PN−1. Then X is projectively equivalent to one of

(1) the Veronese surface v2(P2) ⊂ P5

(2) the Segre fourfold P2 × P2 ⊂ P8

(3) the Grassmanian Gr(2, 6) ⊂ P14

(4) the Cartan variety E(6, 6) ⊂ P26

Remark 7.13. Apart from the first case that should be correctly interpreted (e.g. taking symmetric
square of D-module for P2), in the other 3 cases coincidence 7.8 holds (this is general fact for the
closures of highest weight orbits of algebraic groups). The Lefschetz decompositions now consist of
3 blocks — first associated with 1, next one, and one block of length 1 in intermediate codimension.
The last block has Apery number equal to 0.

Neither of Severi varieties provides us with a fast enough approximation, but the speeds of
convergence for them seem to be better then for arbitrary varieties. So it may be possible that
these speeds are related with the defect of the variety (it is also supported by the fact that for
Grassmanians defect decreases when N grows).
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From the other perspective, when there are more then two Lefschetz blocks in the decomposition
one may try to use the simultaneous Apery-type approximations of a tuple of zeta-polynomials as
in the works of Zudilin.

We would like to note that the recursion 1.1 contains more then one approximation of every
Apery number appearing. Clearly speaking, in the definition of Apery numbers we considered the
limit of the ratios of fundamental terms i.e. projections of two solutions A0 and Aγ to H0(X). It
is natural to ask if we get anything from considering the limits of ratios of the other coordinates.
Our experiments support the following

Conjecture 7.14. A
(k)
γ is approximately equal to Apery(γ) · A(k)

0 as k →∞.

One may divide A
(k)
γ by A

(k)
0 in the nilpotent ring of H

q
(X) and state the limit of such ratio

exists and is equal to Apery(γ) ∈ H0(X). For homogeneous γ2 the ratio
(A

(k)
γ ,γ2)

(A
(k)
γ ,1)

grows as kcodim γ2

and the cooordinates in the same Lefshetz block are linearly dependant.
Finally let us provide some speculations explaining why the described behaviour is natural and

also why zeta-values should appear. Assume for simplicity that the matrix of quantum multipli-
cation by H has degree 1 in q (it is often the case for homogeneous varieties). Let M0 be the
operator of cup-product by H and M1 be the degree 1 coefficient of quantum product by H. Then
the quantum recursion is one-step:

(7.15) A(n) =
1

n−M0

M1A
n−1 =

1

n
(1 +

M0

n
+

M2
0

n2
+ . . . ) ·M1A

n−1

Assume M0 and M1 commutes (actually, this is never true in our case). Then

A(l) =
1

l!

l∏
n=1

(1 +
M0

n
+

M2
0

n2
+ . . . ) ·M l

1A
(0)

Put

Nl =
l∏

n=1

(1 +
M0

n
+

M2
0

n2
+ . . . ) = exp(

l∑
n=1

∑
k>1

1

k

Mk
0

nk
).

Up to normalization lim Nl is Γ(1 + M0). Assume further that largest (by absolute value)
eigenvalue α of M1 has the unique eigenvector β of multiplicity 1. Then A(l) is approximately
equal to

C(A(0), β) · 1

l!
· αl ·Nlβ

Since M0 and M1 doesn’t commute there are additional terms from the commutators of Γ(1+M0)
and M1.
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