Gamma-ray Observation in Space

Synergy between X-ray and Gamma-ray Observation present and future

Tadayuki Takahashi Astro-E2/Swift/Glast

Institute of Space and Astronautical Science (ISAS)

Yasushi Fukazawa

Astro-E2/Glast

Hiroshima Univ.

Makoto Tashiro Saitama Univ. Astro-E2/Swift

Gamma-ray Mission in 21st Century

To Probe Obscured Black Hole

Gamma-ray Black Hole (Blazars)

Synchrotron, peak at IR-X ray energies
Inverse Compton,

peak at GeV-TeV energies from the same electron distribution

The relativistic jet points close to the observer. The non-thermal emission is Doppler boosted and greatly enhanced.

Blazar Variability & Internal Shocks

Particle Accelerator in SNRs (1)

X-ray observation \Rightarrow highest energy electrons

(from presentation by Uchiyama 2003)

Annihilation Fountain in the Center of Milky Way

Deep Sky: Black holes are ubiquitous in the Universe

Gamma-ray Burst

Most powerful and relativistic phenomena known (10⁵²-10⁵⁴ ergs)

Present and Future X-ray/Gamma-ray Missions

Electro-Magnetic Radiation and Electron Energy

Integral Mission (2002-)

Big Gamma-ray Mission After CGRO (15 keV 10 MeV) Imaging (Coded Mask) High Energy Resolution X-ray Detector (JEM-X)

High resolution Gamma-ray detector (SPI)

19 Cooled Ge detector (each 6x7 cm) FWHM : 2keV @ 1.3 MeV

from Integral Homepage

Solar Flare Spectrum by SPI

from Integral Homepage

IBIS (CdTe + CsI(TI)) 7 keV @ 100 keV

16384 CdTe detectors total area 2620 cm² with 4x4 mm² x2mm^t detector

High Energy and Spatial Resolution

HEAO 3

COMPTEL

1

E [MeV]

10-3

10*4

10-5

10⁻⁶ 0.01

3σ narrow line sensitivity [photons cm²·s⁻¹]

natural Ge

OSSE

INTEGRAL SPI

0,1

 $(Tobs = 10^{6}s)$

Integral Science

Galactic Plane Scan Cen region with ISGR (CdTe Imager)

Swift Mission (2003-)

- # Rapid response satellite
 - ! 20 70 sec to slew within FOV of BAT
 - autonomous operations
 - *factor 100 improved response time*
 - continue monitoring of fading afterglow

- Multi-wavelength observatory
 - Burst Alert Telescope (BAT): 10-150 keV
 - detect ~ 300 gamma ray bursts per year
 - onboard computation of positions
 - arc-minute positional accuracy
 - Dedicated telescopes for X-rays, UV, and optical afterglow follow up:
 - 0.3-10 keV X-ray Telescope (XRT)
 - 170-650 nm UV/Optical Telescope (UVOT)
 - 0.3-2.5 arc-second locations
 - existing hardware from JET-X and XMM
 - determine redshifts from X-ray absorption, lines, and Lyman- α cutoff

BAT Imager on Swift

- •32768 CdZnTe detectors
- (4x4 mm² x2mm^t detector)
- Japanese Contribution to

Calibration/Software (ISAS/Saitama U./ U.Tokyo)

Multiwavelength Cascade of Images

Swift Performance

- Location in host galaxies
- Probe the surrounding environment
- Use gamma-ray bursts as cosmological probes

AstroE2 Multi-band Mission

- Recovery Mission of Astro-E
- Launch in 2005

HXD

Si-PIN diode

GSO detection crystal

BGO active shield/

Well type collimator (FOV~4deg)

Design almost identical to Astro-E

Astro-E2 HXD & Integral

HXD-II has much narrower FOV and thus Background is lower and the sensitivity is higher.

Simultaneous observation with highly sensitive X-ray instruments gives us very unique opportunities to study gamma-ray sources.

High Resolution Detector (XRS) on AstroE2

kT (keV)

100 (Inoue, 2002)

Glast Mission

- International MissionJapanese Contribution (Hiroshima, ISAS, RIKEN, Titech)
- Wide FOV, Survey Operatiom
- 20MeV 300 GeV
- Large Area Silicon Strips.

Utilize Pair-production

Tracker Module Mechanical Design

New approach GLAST will bring forth

- EGRET's 3rd Catalog in 2 days -

Unidentified Source

172 of the 271 sources in the EGRET 3rd catalog are "unidentified"

Rosat or Einstein X-ray Source
 1.4 GHz VLA Radio Source

EGRET source position error circles are ~0.5°, resulting in counterpart confusion.

GLAST will provide much more accurate positions, with ~30 arcsec - ~5 arcmin localizations, depending on brightness.

Cygnus region (15x15 deg)

From presentaion by S.Ritz, 2001

Future Perspectives

Future Mission -- Focusing Hard X-ray Experiments --

Key technology: Super Mirror & γ -ray Imager

Focusing Telescope is not only for the equipment to take pictures but also for the key to achieve high sensitivity. Because.

a mirror concentrates the incoming flux onto a small spot of the detector, greatly reduce background.

ISAS, Japan

NeXT Mission

Beyond COMPTEL

Next generation Compton Telescope in Japan

• Compton telescope based on Micro Gas Pixel Chamber (Kyoto Univ.)

Polarization

• Polarization in X-ray/Gamma-ray

is the only remaining parameter to be measured.

- Expected from Jet Sources/Pulsars/Accretion Disk/GRB
- Development of New and Sensitive Instruments are crucial

Summary

- X-ray and Gamma-ray energy band in space are very important window to study high energy particles (cosmic rays) in the universe
- By combining information from X-ray and Gamma-ray observations, we can deepen our understandings of "Accelerator" in the universe