
The Cosmological Bootstrap
Daniel Baumann
University of Amsterdam 

Web Seminar, 
April 2020



Based on work with 

Nima Arkani-Hamed, Hayden Lee, Guilherme Pimentel, 
Carlos Duaso Pueyo and Austin Joyce



The physics of the early universe is encoded in spatial correlations 
between cosmological structures at late times:

A central challenge of modern cosmology is to construct a consistent 
history of the universe that explains these correlations.



The correlations can be traced back to primordial correlations at 
the beginning of the hot big bang.

To explain the observed fluctuations in the CMB, these fluctuations 
must be created before the hot big bang!

t = 0



t = 0

?

What is the space of consistent histories?

• What are the rules that consistent correlators have to satisfy?

• How are these rules encoded in the boundary observables?



Similar questions have been asked for scattering amplitudes:

?

In that case, the rules of quantum mechanics and relativity are very 
constraining.



?

Does a similar rigidity exist for cosmological correlators?

Goal: Develop an understanding of cosmological correlators that 
parallels our understanding of flat-space scattering amplitudes.



The connection to scattering amplitudes is also relevant because 
the early universe was like a giant cosmological collider:

Chen and Wang [2009]
DB and Green [2011]

Noumi, Yamaguchi and  Yokoyama [2013] 
Arkani-Hamed and Maldacena [2015]

Arkani-Hamed, DB, Lee and Pimentel [2018]
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particle 
decay
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During inflation, the rapid expansion can produce very massive 
particles (～1014 GeV) whose decays lead to nontrivial correlations.



10 billion yrs

<< 1 sec

At late times, these correlations will leave an imprint in the distribution 
of galaxies:

Goal: Develop a systematic way to predict these signals.



Any Questions?
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Physical Principles Observables
(Lorentz, locality, …)

Bootstrap Philosophy

Modern scattering 
amplitudes programme

See Yu-tin’s book.
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The S-Matrix Bootstrap

• No Lagrangian or Feynman diagrams are needed to derive this.

• Basic principles allow only a small menu of possibilities.

contact 
interactions

exchange 
interactions

M,S

The structure of scattering amplitudes at tree level is fixed by Lorentz 
invariance, locality and unitarity:



The Challenge
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Even tree-level processes are hard to compute in cosmology:



The Cosmological Bootstrap

In the cosmological bootstrap, the primordial correlators are determined 
from consistency conditions alone:

Arkani-Hamed, DB, Lee and Pimentel [2018]

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]


Arkani-Hamed and Maldacena [2015]

Arkani-Hamed, Benincasa, and Postnikov [2017]


Sleight and Taronna [2019]

Sleight [2019]



If inflation is correct, then all primordial correlations live on the boundary 
of an approximate de Sitter spacetime:

• Isometries of dS become conformal symmetries on the boundary. 

• This constrains the correlations of weakly interacting particles. 

Inflation       De Sitter
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De Sitter       Inflation

k4 ! 0

Inflationary three-point functions are obtained from de Sitter four-point 
functions by evaluating one of the external legs on the background:

We can therefore study de Sitter four-point functions as the fundamental 
building blocks of inflationary correlators.

�̄(t)



Symmetries

If the couplings between particles are weak, then the primordial 
correlations inherit the symmetries of the quasi-de Sitter spacetime:

• Rotations


• Translations

• Dilatation


• Special Conformal

} Momentum conservation in Fourier space

} Determine the allowed deformations (or 
shapes) of the correlators.
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AMPLITUDE

The kinematical data of correlators and amplitudes is similar: 

Raju [2012]

Maldacena and Pimentel [2011]



Ward Identities

This is the analog of Lorentz invariance of the amplitude:

Invariance under dilatations and SCTs imply the following Ward identities:
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These Ward identities dictate how the strength of the correlations 
changes as we change the external momenta:

Ward Identities



Singularities

Arkani-Hamed, DB, Lee and Pimentel [2018]
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Contact solutions only 
have total-energy poles.

(EL)
m

Exchange solutions have 
additional partial-energy poles.

lim
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The solutions to the Ward identities can be classified by their singularities:

EFT 
EXPANSION

SPIN 
EXCHANGE



Exchange Solutions

There are distinct solutions for distinct microscopic processes during 
inflation:

Arkani-Hamed, DB, Lee and Pimentel [2018]



Exchange Solutions

There are distinct solutions for distinct microscopic processes during 
inflation:

Arkani-Hamed, DB, Lee and Pimentel [2018]

= Dn

Remarkably, all solutions can be reduced to a unique building block.

m =
p
2H

M,S = 0WEIGHT-SHIFTING 
OPERATORS
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• The dilatation Ward identity for the seed is solved if
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• The conformal Ward identity then becomes

(�u ��v)F̂ = 0

where .

Seed Solution

s

• The dilatation Ward identity for the seed is solved if



(�u +M2)F̂ = F̂c CONTACT SOLUTION

MASS OF THE EXCHANGE PARTICLE

=
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For tree exchange, the conformal Ward identity reduces to:

Seed Solution



(�u +M2)F̂ = F̂c

For tree exchange, the conformal Ward identity reduces to:

Seed Solution

Need boundary conditions to solve this ODE:

Absence of singularity 

in the folded limit:I. Correct normalization 


in the collapsed limit:II.

= regular = 3pt x 3pt
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Arkani-Hamed, DB, Lee and Pimentel [2018]

The explicit solution for the seed function is



Noumi, Yamaguchi and  Yokoyama [2013]
Arkani-Hamed and Maldacena [2015]


Arkani-Hamed, DB, Lee and Pimentel [2018]

The Collapsed Limit

In the collapsed limit, the solution oscillates:

= sin[M log(s/k12)]lim
s!0
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Particle Production

These oscillations are a key signature of particle production during 
inflation:

Oscillations in the superhorizon evolution become oscillations in the 
boundary correlations at late times.



Cosmological Collider Physics
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This signal is the analog of resonances in collider physics:



Any Questions?



II. New 
Developments



So far, we have studied the correlations of scalar fields.

Now, we would like to extend the bootstrap to spinning 
correlators, especially to massless fields with spin.

Arkani-Hamed, DB, Lee and Pimentel [2018]

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]



Massless Particles in Flat Space

• Massless bosons mediate long-range forces:

gravity electromagnetism

• The interactions of massless particles are highly constrained:

spin 2 = GR spin 1 = YM 



Beyond Feynman Diagrams

• Physical answers are simple. Parke and Taylor [1985]

De Witt [1967]

• Bootstrap methods are a necessity, not a luxury:

- Massless 3pt amplitudes are fixed by Poincare invariance:

- Higher-point amplitudes are constrained by locality:
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• Computations using Feynman diagrams are complicated.



The Four-Particle Test

Benincasa and Cachazo [2007]

McGady and Rodina [2010]

�µ1...µS

hµ⌫

S = { 0 , 1
2 , 1 , 3

2 , 2 }• Only consistent for spins

YM
GR

SUSY

• Consistent factorisation is a nontrivial constraint:



Massless Particles in de Sitter Space

• Every inflationary model has two massless modes:

scalar tensor

�ij�

• Fluctuations of all massless fields are amplified during inflation.

• Not much is known about tensor correlators beyond 3pt functions.

partially massless

⌃i1...iS

• Even less is known about the consistency of partially massless fields:



Beyond Feynman Diagrams

• Direct computations of spinning correlators are very complicated.

• Bootstrap methods are a necessity, not a luxury.
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Two Approaches

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]

In our new paper, we derive a large class of spinning correlators in de 
Sitter space. We use two different approaches:

1) Spin-raising operators

2) Singularities

scalar seedspinning correlator

In the following, I will describe the second approach.
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Singularities of Cosmological Correlators

Singularities occur when energies add up to zero. Raju [2012]

Maldacena and Pimentel [2011]


Arkani-Hamed, Benincasa, and Postnikov [2017] 

The four-point function is controlled by three singularities:



A Simple Example

• The factorisation limits of the s-channel are
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Consider Compton scattering in de Sitter space.



A Simple Example

• The factorisation limits of the s-channel are

• The unique solution that is consistent with these limits is

hJ�J�is =
(~⇠1 · ~k2)(~⇠3 · ~k4)

ELERE

• The total energy singularity has the correct residue. ELER
E!0����! S

=
~⇠1 · ~k2
EL

~⇠3 · ~k4
ER(k34 � s)

=
~⇠3 · ~k4
ER

~⇠1 · ~k2
EL(k12 � s)

lim
EL!0

lim
ER!0

EL ⌘ k12 + s

ER ⌘ k34 + s

E ⌘ k12 + k34

sk1

k2
k3

k4

Consider Compton scattering in de Sitter space.



A More Complicated Example

• The solution in the s-channel is
fixed by factorisation

fixed by total 

energy singularity

fixed by conformal 

symmetry
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Consider Compton scattering of gravitons.
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A More Complicated Example

• The solution in the s-channel is

• The solution in the u-channel is

fixed by total 

energy singularity

fixed by conformal 

symmetry

fixed by factorisation

Consider Compton scattering of gravitons.



One Channel Is Not Enough

s-channel t-channel u-channel
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not Lorentz-invariant

• Can we have e3 = e4 = 0 ?

Consider the correlator of one photon and three scalars:

flat-space 

amplitude



One Channel Is Not Enough
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Lorentz-violation disappears when e2 + e4 = 0 charge  
conservation

s-channel t-channel u-channel
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Consider the correlator of one photon and three scalars:
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Discovering Yang-Mills

• The sum of all channels is only consistent if 
the couplings satisfy the Lie algebra:

[TA, TB ]ab = fABCTC
ab

+

contact

• Consistency also fixes the contact term required by gauge invariance.

+ +

s-channel t-channel u-channel

Consider two gluons and two scalars:



Equivalence Principle (without falling elevators)

• The individual channels are not consistent.

• The sum of all channels is consistent if and only if

hij � � �

2 4 3

s-channel t-channel u-channel

2 = 3 = 4

Consider one graviton and three scalars:
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Equivalence Principle (without falling elevators)

• The sum of all channels is only consistent if 
all gravitational couplings are universal:

+ +

+

contact

s-channel t-channel u-channel

a b

a = b = c

Consider two gravitons and two scalars:



Ruling Out Theories

• Couplings of massless gravitinos will not be supersymmetric.


• Couplings of higher-spin particles will not be local.


• Multiple gravitons must be decoupled.


• Interactions of partially massless particles will be highly constrained.


• …

We hope to report on such no-go results in the future.

The bootstrap approach will also allow us to rule out theories:



Any Questions?



III. Future 
Challenges



We have only scratched the surface of a fascinating subject:

Observational 
Cosmology Inflation

Scattering  
Amplitudes

Cosmological 
Collider Physics

CFT/Holography

Cosmological Bootstrap

Much more remains to be discovered.



Open Problems

• Beyond Feynman Diagrams

• What is the on-shell formulation of cosmological correlators?

• What are the fundamental building blocks?

• How are these building blocks connected?

• Is there a cosmological analog of Parke-Taylor?

• Where is the hidden simplicity?

• Ultraviolet Completion

• What are the rules?

• How is unitarity encoded in the boundary correlators?

• Are there interesting positivity constraints?

• How does this constrain the space of consistent correlators?

• Does this motivate new observational targets?



 

Thank you for your attention!





• on-shell recursion relations

• soft theorems

• hidden positivities

• color-kinematics duality

• spinor helicity formalism

Do these insights translate to cosmological correlators?

• generalised unitarity

• momentum twistors

• …

Dramatic progress in the study of scattering amplitudes:
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Insights from the modern scattering amplitudes programme must 
therefore be relevant for cosmology.

Raju [2012]

Maldacena and Pimentel [2011] 

Amplitudes live inside correlators.



What is the goal?

IR

UV

Define observational targets.

Relate low-energy predictions to high-energy physics:



under- 
standing

non-perturbative? tree-level

(some loops)

de Sitter space anti-de Sitter spaceflat space

What are the rules?

The closer we get to the real world, the less we understand:



Causality

Scattering amplitudes Cosmological correlators

tree-level
tree-levelone-loop

Consistent time evolution is encoded in the analytic structure (poles 
and branch cuts) of amplitudes and correlators:



Locality

Locality is encoded in factorization:

Scattering amplitudes Cosmological correlators

(EL)
m

lim
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Unitarity

Unitarity is encoded in positivity:

Scattering amplitudes Cosmological correlators

?



Landscape vs Swampland

The ultraviolet completion of scattering amplitudes is highly 
constrained by these basic physical principles:



Exchange of Spinning Particles



Strategy

We wish to find differential operators that relate scalar exchange to spin 
exchange:

spin-raising 
operator

It turns out that the spin raising is best implemented in embedding space 
and then Fourier transformed.



CFTs in Embedding Space

Consider the following embedding of d-dimensional Euclidean space into 
(d+2)-dimensional Minkowski space:

Dirac [1936]

Costa, Penedones, Poland and Rychkov [2011]



CFTs in Embedding Space

Lorentz transformations in embedding space become conformal 
transformations on the Euclidean section:

Dirac [1936]

Costa, Penedones, Poland and Rychkov [2011]



CFTs in Embedding Space

Dirac [1936]

Costa, Penedones, Poland and Rychkov [2011]

Conformal correlators in embedding space are simply the most general 
Lorentz-invariant expressions with the correct scaling behavior:

where .



Spin-Raising Operator

where

Correlators of spinning fields can be written in terms of scalar seeds.

For example:

.

,

In Fourier space, this becomes

Karateev, Kravchuk and Simmons-Duffin [2018]

Costa, Penedones, Poland and Rychkov [2011]

.



Using this spin-raising operator, we have

spin-raising 
operator

scalar-exchange 
solution

polarization 
tensor

spin-exchange 
solution

which can be written as

Arkani-Hamed, DB, Lee and Pimentel [2018]

,

e.g.

Bootstrapping Spin Exchange


