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• Quantum field theories with strong interactions are important. 

Significant theoretical role in string theory / quantum gravity. 

• They are also relevant to some experimentally accessible systems: 

e.g.       quark-gluon plasma                              ‘strange’ metals
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NON-QUASIPARTICLE STATES
• Cartoon of a normal metal: 

✴ electron-like excitations with charge ,  
mass , speed  , lifetime  

✴ properties of these quasiparticles govern 
the properties of the metal 

• Strange metals have properties that seem inconsistent with a quasiparticle-
based theory.  

• Strongly interacting QFT is a framework for describing non-quasiparticle 
states. 

But it is poorly understood.

e
m vF τ



• Holographic duality gives us a handle on some strongly interacting QFTs 

Black holes have proven to be useful toy models of strange metals 

• Main reason: black holes exhibit some universal properties 

                      help to identify general features of strongly interacting QFTs 

• I will describe a new universal property of black holes, and its implications 

✴ Certain features of black hole excitation spectrum depend only on near-
horizon physics 

✴ QFT transport properties are related to underlying chaotic dynamics

INSIGHT FROM BLACK HOLES



• Transport properties characterize the dynamics of a system’s conserved 
charges over long distances and timescales. 

i.e. the properties of            and         at small  

• Examples: electrical resistivity, thermal resistivity, shear viscosity, diffusivity 
of energy,…. 

• Transport properties are important experimental observables 

✴ They are relatively easy to measure 

✴ They exhibit universality across different systems 
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TRANSPORT PROPERTIES
• There are also two theoretical reasons that transport properties are privileged. 

(1) The dynamics of  and  are constrained by symmetries 

                         governed by a simple effective theory over long distances and 
                         timescales: hydrodynamics 

      For a given QFT, we just need to determine the parameters of the 
       effective theory. 

(2) Transport is directly related to the dynamics of the basic gravitational 
      variables: 

                 there is a degree of universality to transport in holographic theories

Tμν Jμ

Tμν ⟷ gμν



TRANSPORT PROPERTIES: AN EXAMPLE
• Example: system whose only conserved charge is the total energy. 

• Local thermodynamic equilibrium              state characterized by slowly-
varying energy density:  

• Equations of motion: 

• Hydrodynamics: energy diffuses over long distances.   

What sets the values of the transport parameters etc ?D, Γ,

ε ≡ T00(t, x)

∂tε + ∇ ⋅ j = 0 j = − D∇ε − Γ∇3ε + O(∇5)

∂tε = D∇2ε + Γ∇4ε + O(∇6)

∂ε ≪ 1

ω = − iDk2 − iΓk4 + O(k6)or



CHAOTIC PROPERTIES
• Chaotic dynamics are seemingly something very different from transport. 

• In theories with a classical gravity dual, these correlations have the form 

✴ The timescale is always  

✴ But the “butterfly velocity”  depends on the particular theory.

τL = (2πT )−1

vB

C(t, x) = − ⟨[V(t, x), W(0,0)]2⟩T

C(t, x) ∼ eτ−1
L (t − |x | /vB)

Shenker, Stanford (1306.0622)

Roberts, Stanford, Susskind (1409.8180)



• In QFTs with a gravity dual, the transport properties are constrained by   

• The collective modes that transport energy are characterized by their 
dispersion relations . 

There is always a mode with           where      . 

• Under appropriate conditions, the diffusivity of energy is set by 

( In a normal metal,  ) 

vB, τL

ω(k)

ω(k*) = iτL k2
* = − (vBτL)−2

D ∼ v2
Fτ

MAIN RESULTS

D ∼ v2
BτL



• I will discuss asymptotically AdSd+2 black branes supported by matter fields: 

                     

In ingoing co-ordinates 

                     

• For definiteness:      

• Matter fields induce an RG flow from the UV CFT :  

Numerical solution of equations of motion yield  ,  etc.

ds2 = − f(r)dt2 +
dr2

f(r)
+ h(r)dx2

d

ds2 = − f(r)dv2 + 2dvdr + h(r)dx2
d

S = ∫ dd+2x −g (R − Z(ϕ)F2 −
1
2

(∂ϕ)2 + V(ϕ))

Fvr(r) ≠ 0 & ϕ(r) ≠ 0

f(r) h(r)

THE GRAVITATIONAL THEORIES



• Focus on one aspect of these spacetimes: quasi-normal modes. 

i.e. solutions to linearized perturbation equations, obeying appropriate BCs 

✴ regularity (in ingoing coordinates) at the horizon  

✴ normalizability near the AdS boundary  

• e.g.  probe scalar field      

✴ 2 independent solutions:      and    

✴ If  is regular at the horizon                       quasi-normal mode. 

• Quasi-normal modes are characterized by their dispersion relations 

r = r0

r → ∞

∂a( −g∂aδφ) − m2 −gδφ = 0

δφnorm(r, ω, k) δφnon−norm(r, ω, k)

δφnorm

ω(k)

QUASI-NORMAL MODES OF BLACK HOLES



• Collective excitations of the dual QFT are encoded in the quasi-normal modes. 

• The spectrum depends in  detail on the particular theory, spacetime, field, etc 

Numerical computation is required even in very simple cases.

QUASI-NORMAL MODES OF BLACK HOLES

quasi-normal modes  
 of a fieldω(k)

poles  of retarded Green’s  
function of dual operator

ω(k)

e.g. massless scalar field in  
Schwarzschild-AdS5 

Plots from hep-th/0207133 
by A. Starinets

k

Horowitz, Hubeny (hep-th/9909056) 
Son, Starinets (hep-th/0205051)

Re(ω) Im(ω)
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HORIZON CONSTRAINTS ON THE SPECTRUM
• Certain features of the spectrum depend only on the near-horizon dynamics. 

• Example: probe scalar field 

✴ Ansatz: solution that is regular at the horizon        

✴ Solve iteratively for  : 

                        etc. 

✴ At  both solutions are regular at the horizon ! 

                  

δφ(r) =
∞

∑
n=0

φn(r − r0)n

φn>0

2h(r0)(2πT − iω)φ1 = (k2 + m2h(r0) + iω
dh′ (r0)

2 ) φ0

(ω1, k1)

ω1 = − i2πT, k2
1 = − (m2h(r0) + dπTh′ (r0))

Blake, RD, Vegh (1904.12883) 
see also Kovtun et al (1904.12862)



• Moving infinitesimally away from  yields one regular solution: 

But this regular solution depends on the arbitrary slope  . 

• Can obtain an arbitrary combination of  and  by tuning  : 

 

For an appropriate choice of slope ( ), there is a quasi-normal mode. 

               there must be a dispersion relation obeying 

(ω1, k1)

δk /δω

φnorm φnon−norm δk /δω

φingoing(ω1 + iδω, k1 + iδk) = (1 − vz
δk
δω ) φnorm + C (1 − vp

δk
δω ) φnon−norm

δω = vpδk

ω(k1) = ω1

HORIZON CONSTRAINTS ON THE SPECTRUM

ω = ω1 + iδω
k = k1 + iδk

φ1

φ0
=

1
4h(r0) (4ik1

δk
δω

− dh′ (r0))



HORIZON CONSTRAINTS ON THE SPECTRUM
• This feature of the spectrum is independent of the rest of the spacetime. 

Near-horizon dynamics yield exact constraints on the dispersion relations  

• A more complete analysis of this type yields infinitely many constraints 

                                           

for appropriate values  . 

• These points in complex Fourier space are called pole-skipping points. 

Intersection of a line of poles with a line of zeroes  
in the dual QFT 2-point function

ω(k)

ω = − i2πTn, k = kn n = 1,2,3,…

kn

G = C
δω − vzδk
δω − vpδk



• The argument can be generalized to other spacetimes  

e.g. BTZ black hole / CFT2 at non-zero T 

• And it can be generalized to non-scalar fields/operators, e.g. 

✴ U(1) Maxwell field: some  are real 

✴ Fermionic fields: frequencies shifted to 

kn

ω = − i2πT (n + 1/2)

POLE-SKIPPING EXAMPLES

pole-skipping point

dispersion relation of pole

dispersion relation of zero

Δ = 5/2

Ceplak, Ramdial, Vegh (1910.02975)



• Usually very complicated to determine the collective modes of energy density 

 couples to other metric perturbations and to matter field perturbations 

• But in this case, near-horizon Einstein equations yield a simple constraint 

                                               

Independent of the matter field profiles. 

• Universal constraint on the collective modes of energy density:  

                                                

δgvv

ω(k*) = + i2πT k2
* = − dπTh′ (r0)

ω(k*) = + iτ−1
L k2

* = − (vBτL)−2

CONSTRAINTS ON ENERGY DENSITY MODES

Blake, RD, Grozdanov, Liu (1809.01169)

First observed numerically in Schwarzschild-AdS5: Grozdanov, Schalm, Scopelliti (1710.00921)



• An interpretation: chaotic behavior has hydrodynamic origin 

• Conversely, the chaotic behavior constrains the hydrodynamic parameters of 
theories with holographic duals.

HYDRODYNAMIC INTERPRETATION

σ

V

V

W

W

σ hydrodynamic mode of 
energy conservation

:

Blake, Lee, Liu 
(1801.00010)

See also: Gu, Qi, Stanford (1609.07832), Haehl, Rozali (1808.02898),…



• There is typically a collective mode of energy density with dispersion relation 

                             

At long distances, this is the hydrodynamic diffusion of energy density. 

•                      constraint on hydrodynamic parameters. 

• Make an additional assumption: 

If diffusive approximation  is good up to  

ωhydro(k) = − iDk2 − iΓk4 + O(k6)

ωhydro(k*) = + iτ−1
L

ωhydro(k) ≈ − iDk2 ω = iτ−1
L , k = k*

IMPLICATIONS FOR HYDRODYNAMICS

D ≈ − k−2
* τ−1

L D ≈ v2
BτL



• Consistent with the diffusivity of energy density at low temperatures  

✴ For a large class of theories with AdS2xRd IR fixed points 

✴ Generic IR fixed point has symmetry   

✴ When , diffusive approximation breaks down at .

t → Λzt, x → Λx

z = 1 ω ≪ τ−1
L

LOW TEMPERATURE DIFFUSIVITIES

T → 0as Blake, RD, Sachdev 
(1705.07896)

D = v2
BτLT → 0as Blake, Donos 

(1611.09380)

D =
z

2(z − 1)
v2

BτL

RD, Gentle, Goutéraux 
(1808.05659)



• Near-horizon dynamics yield exact constraints on the dispersion relations of 
collective modes. 

• There is a universal constraint for collective modes of energy density 

• Under appropriate conditions, this constrains the diffusivity of energy density 

i.e. transport is related to underlying chaotic properties.

SUMMARY

D ∼ v2
BτL

ω(k*) = + iτ−1
L k2

* = − (vBτL)−2



• How robust is the universal constraint on the energy density collective modes? 

More direct evidence of the chaos/hydrodynamics link? 

• Regime of validity of (diffusive) hydrodynamics in holographic theories? 

• What generalizes to other (non-holographic) strongly interacting systems? 

• Precise restrictions on transport parameters from near-horizon constraints. 

• Pole-skipping points in more general spacetimes / field theories ?

OPEN QUESTIONS

Withers (1803.08058), Kovtun et al (1904.01018), …

Gu, Qi, Stanford (1609.07832), Patel, Sachdev (1611.00003), …

Grozdanov (2008.00888)

Grozdanov (1811.09641), Ahn et al (1907.08030, 2006.00974), Natsuume, Okamura 
(1909.09168), Abbasi & Tabatabaei (1910.13696), Liu, Raju (2005.08508), …

Ahn et al (2006.00974)
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