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MOTIVATION

« Quantum field theories with strong interactions are important.

Significant theoretical role in string theory / quantum gravity.

» They are also relevant to some experimentally accessible systems:

e.g. quark-gluon plasma ‘strange’ metals
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NON-QUASIPARTICLE STATES

« Cartoon of a normal metal: © o o
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* electron-like excitations with charge e, o ® °
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mass m, speed vy, lifetime 7 o ® o
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* properties of these quasiparticles govern o ° .‘ °

the properties of the metal

 Strange metals have properties that seem inconsistent with a quasiparticle-
based theory.

 Strongly interacting QFT is a framework for describing non-quasiparticle
states.

But it is poorly understood.



INSIGHT FROM BLACK HOLES

« Holographic duality gives us a handle on some strongly interacting QFTs

Black holes have proven to be useful toy models of strange metals

« Main reason: black holes exhibit some universal properties

> help to identify general features of strongly interacting QFTs

o [ will describe a new universal property of black holes, and its implications

* Certain features of black hole excitation spectrum depend only on near-
horizon physics

* QFT transport properties are related to underlying chaotic dynamics



TRANSPORT PROPERTIES

» Transport properties characterize the dynamics of a system’s conserved
charges over long distances and timescales.

i.e. the properties of " and J¥ atsmall (w,k)

« Examples: electrical resistivity, thermal resistivity, shear viscosity, diffusivity
of energy,....

 Transport properties are important experimental observables
* They are relatively easy to measure

* They exhibit universality across different systems



TRANSPORT PROPERTIES

 There are also two theoretical reasons that transport properties are privileged.

(1) The dynamics of T#* and J* are constrained by symmetries

, governed by a simple effective theory over long distances and
timescales: hydrodynamics

For a given QFT, we just need to determine the parameters of the
eftective theory.

(2) Transport is directly related to the dynamics of the basic gravitational

variables: uw
17 «—— g

— there is a degree of universality to transport in holographic theories



TRANSPORT PROPERTIES: AN EXAMPLE

« Example: system whose only conserved charge is the total energy.

e Local thermodynamic equilibrium » state characterized by slowly-
varying energy density: e = T9(, x) Je < 1
» Equations of motion:  ge+V-j =0 j=—=DVe—-TV3e+ O(V)

»  0e=DV?e+TVie+ O(V°)

or w = — iDk? — iTk* + Ok

« Hydrodynamics: energy diffuses over long distances.

What sets the values of the transport parameters D, I, etc ?



CHAOTIC PROPERTIES

« Chaotic dynamics are seemingly something very different from transport.

C(l‘,z) — <[V(taz)9 W(O’Q)]2>T

* In theories with a classical gravity dual, these correlations have the form
C(l" x) ~ eTL_l(t_ |£C|/VB)

* The timescale is always 7 T = 2rn T)_l Shenker, Stanford (1306.0622)

* But the “butterfly velocity” v depends on the particular theory.

Roberts, Stanford, Susskind (1409.8180)



MAIN RESULTS

 In QFTs with a gravity dual, the transport properties are constrained by vg, 7;

 The collective modes that transport energy are characterized by their
dispersion relations w(k).

There is always a mode with  w(k:) = ir;  where ki = — (VBTL)_2 :

« Under appropriate conditions, the diffusivity of energy is set by

2

( In a normal metal, D ~ V}%T )



THE GRAVITATIONAL THEORIES

o I will discuss asymptotically AdSq+2 black branes supported by matter fields:

ds’ = — f(rdt* + d_r2 + h(r)dx?
J(r) —d

In ingoing co-ordinates

ds’? = — f(r)dv? + 2dvdr + h(r)dgcczi

o For definiteness: S = Jdd+2x\/jg <R — Z(p)F? — %(0@2 + V(¢)>

 Matter fields induce an RG flow from the UVCFT: F, (r) #0 & ¢(r) #0

Numerical solution of equations of motion yield f(r), h(r) etc.



QUASI-NORMAL MODES OF BLACK HOLES

« Focus on one aspect of these spacetimes: quasi-normal modes.

i.e. solutions to linearized perturbation equations, obeying appropriate BCs
* regularity (in ingoing coordinates) at the horizon r = r;

* normalizability near the AdS boundary r — oo

. e.g. probe scalar field 0, (,/—gd%p) — m*,/—gdp = 0

* 2 independent solutions: o¢,, .. (r,®w,k) and ¢, . ..(F, ®,k)

x If o, 1s regular at the horizon » quasi-normal mode.

 Quasi-normal modes are characterized by their dispersion relations w(k)



QUASI-NORMAL MODES OF BLACK HOLES

» Collective excitations of the dual QFT are encoded in the quasi-normal modes.

quasi-normal modes poles w(k) of retarded Green’s
w(k) of a field function of dual operator

Horowitz, Hubeny (hep-th/9909056)
Son, Starinets (hep-th/0205051)

« The spectrum depends in detail on the particular theory, spacetime, field, etc

Numerical computation is required even in very simple cases.
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HORIZON CONSTRAINTS ON THE SPECTRUM

» Certain features of the spectrum depend only on the near-horizon dynamics.

Blake, RD, Vegh (1904.12883)

see also Kovtun et al (1904.12862)
« Example: probe scalar field

0
* Ansatz: solution that is regular at the horizon op(r) = 2 @, (r—ry)"
n=0

* Solve iteratively for ¢, :

20(ry)2aT — iw)p, = <k2 + m?h(ry) + iw dh/;ro) )

@ etc.

* At (w, k;) both solutions are regular at the horizon !

w, = — 2T, k12 = — (mzh(ro) + dﬂTh’(ro))



HORIZON CONSTRAINTS ON THE SPECTRUM

« Moving infinitesimally away from (w,, k) yields one regular solution:

k =k, + idk o 4Ah(ry)

— 1) 1 ok
0)) 0)1 + 10 ﬂ <4lk15— o dh/(,/,()))
0))

But this regular solution depends on the arbitrary slope ok/ow .
» Can obtain an arbitrary combination of ¢, ... and @, ..., by tuning ok/ow :

. , ok ok
¢ing0ing(w1 + 0w, kl + lék) =\1- Vz% Prorm T Cl1- vp% Pron—norm

For an appropriate choice of slope (6w = v,0k), there is a quasi-normal mode.

» there must be a dispersion relation obeying w(k;) = w;,



HORIZON CONSTRAINTS ON THE SPECTRUM

 This feature of the spectrum is independent of the rest of the spacetime.

Near-horizon dynamics yield exact constraints on the dispersion relations w(k)

« A more complete analysis of this type yields infinitely many constraints
w=—12n1n, k=k, n=1,273,...

for appropriate values k,, .

e These points in complex Fourier space are called pole-skipping points.

Intersection of a line of poles with a line of zeroes ow — v,0k

in the dual QFT 2-point function dw — v,0k



POLE-SKIPPING EXAMPLES

e The argument can be generalized to other spacetimes

e.g. BTZ black hole / CFT; at non-zero T \ 2nr
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o pole-skipping point

dispersion relation of pole

——  dispersion relation of zero

e And it can be generalized to non-scalar fields/operators, e.g.
* U(1) Maxwell field: some k, are real

* Fermionic fields: frequencies shifted to w = — i2aT (n + 1/2)
Ceplak, Ramdial, Vegh (1910.02975)



CONSTRAINTS ON ENERGY DENSITY MODES

« Usually very complicated to determine the collective modes of energy density

0g,,, couples to other metric perturbations and to matter field perturbations

 But in this case, near-horizon Einstein equations yield a simple constraint
w(k:) = + i2aT k2 = — drnTh'(r,)

Independent of the matter field profiles.
Blake, RD, Grozdanov, Liu (1809.01169)

« Universal constraint on the collective modes of energy density:

w(ks) = + it} ki=— (vgrp)~°

First observed numerically in Schwarzschild-AdSs: Grozdanov, Schalm, Scopelliti (1710.00921)



HYDRODYNAMIC INTERPRETATION

« An interpretation: chaotic behavior has hydrodynamic origin  Blake, Lee, Liu
(1801.00010)

w

0 O : hydrodynamic mode of
energy conservation
v

w

See also: Gu, Qi, Stanford (1609.07832), Haehl, Rozali (1808.02898),...

« Conversely, the chaotic behavior constrains the hydrodynamic parameters of
theories with holographic duals.



IMPLICATIONS FOR HYDRODYNAMICS

 There is typically a collective mode of energy density with dispersion relation
Opyarok) = — IDK* — iTk* + O(k®)

At long distances, this is the hydrodynamic diffusion of energy density.

© Opyarolke) = + ity 1 » constraint on hydrodynamic parameters.

e Make an additional assumption:
If diffusive approximation @y, (k) ~ — iDk?* is good up to @ = it; ', k = ki

N - =2 —1 N ~ 132
D~ —k°t} D =~ vpr,




LOW TEMPERATURE DIFFUSIVITIES

 Consistent with the diffusivity of energy density at low temperatures

* For a large class of theories with AdS;xRd IR fixed points

.2 Blake, Donos
as T—-0 D = VpTr, (1611.09380)

* Generic IR fixed point has symmetry ¢ — A%, x — Ax

— £ VZT Blake, RD, Sachdev
o B°L 1705.07896)
2(z—1) (1705.

as 1 —0

* When z = 1, diffusive approximation breaks down at w < 7, L

RD, Gentle, Goutéraux
(1808.05659)



SUMMARY

« Near-horizon dynamics yield exact constraints on the dispersion relations of
collective modes.

* There is a universal constraint for collective modes of energy density

w(ks) = + ity ki = — (vgr) ™

« Under appropriate conditions, this constrains the diffusivity of energy density
2

i.e. transport is related to underlying chaotic properties.



OPEN QUESTIONS

« How robust is the universal constraint on the energy density collective modes?

More direct evidence of the chaos/hydrodynamics link?
Grozdanov (1811.09641), Ahn et al (1907.08030, 2006.00974), Natsuume, Okamura
(1909.09168), Abbasi & Tabatabaei (1910.13696), Liu, Raju (2005.08508), ...

« Regime of validity of (diffusive) hydrodynamics in holographic theories?
Withers (1803.08058), Kovtun et al (1904.01018), ...

« What generalizes to other (non-holographic) strongly interacting systems?
Gu, Qi, Stanford (1609.07832), Patel, Sachdev (1611.00003), ...

 Precise restrictions on transport parameters from near-horizon constraints.
Grozdanov (2008.00888)

« Pole-skipping points in more general spacetimes / field theories ?
Ahn et al (2006.00974)
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