RELATIONS BETWEEN TRANSPORT & CHAOS IN HOLOGRAPHIC THEORIES

Richard Davison

Heriot-Watt University

East Asian Strings Webinar, August 2020

based on 1809.01169 (with Mike Blake, Saso Grozdanov, Hong Liu) 1904.12883 (with Mike Blake, David Vegh)

MOTIVATION

• Quantum field theories with strong interactions are important.

Significant theoretical role in string theory / quantum gravity.

• They are also relevant to some experimentally accessible systems:

e.g. quark-gluon plasma

'strange' metals

NON-QUASIPARTICLE STATES

- Cartoon of a normal metal:
 - * electron-like excitations with charge e, mass m, speed v_F , lifetime τ
 - * properties of these quasiparticles govern the properties of the metal

• Strange metals have properties that seem inconsistent with a quasiparticle-based theory.

• Strongly interacting QFT is a framework for describing non-quasiparticle states.

But it is poorly understood.

INSIGHT FROM BLACK HOLES

• Holographic duality gives us a handle on some strongly interacting QFTs Black holes have proven to be useful toy models of strange metals

- Main reason: black holes exhibit some universal properties
 - help to identify general features of strongly interacting QFTs

- I will describe a new universal property of black holes, and its implications
 - * Certain features of black hole excitation spectrum depend only on near-horizon physics
 - * QFT transport properties are related to underlying chaotic dynamics

TRANSPORT PROPERTIES

• Transport properties characterize the dynamics of a system's conserved charges over long distances and timescales.

i.e. the properties of $T^{\mu\nu}$ and J^{μ} at small (ω, k)

• Examples: electrical resistivity, thermal resistivity, shear viscosity, diffusivity of energy,....

- Transport properties are important experimental observables
 - * They are relatively easy to measure
 - * They exhibit universality across different systems

TRANSPORT PROPERTIES

• There are also two theoretical reasons that transport properties are privileged.

- (1) The dynamics of $T^{\mu\nu}$ and J^{μ} are constrained by symmetries
 - governed by a simple effective theory over long distances and timescales: **hydrodynamics**

For a given QFT, we just need to determine the parameters of the effective theory.

(2) Transport is directly related to the dynamics of the basic gravitational variables:

$$T^{\mu\nu} \longleftrightarrow g_{\mu\nu}$$

---- there is a degree of universality to transport in holographic theories

TRANSPORT PROPERTIES: AN EXAMPLE

- Example: system whose only conserved charge is the total energy.
- Local thermodynamic equilibrium \longrightarrow state characterized by slowly-varying energy density: $\varepsilon \equiv T^{00}(t,\underline{x})$ $\partial \varepsilon \ll 1$
- Equations of motion: $\partial_t \varepsilon + \nabla \cdot j = 0 \qquad j = -D \nabla \varepsilon \Gamma \nabla^3 \varepsilon + O(\nabla^5)$ $\longrightarrow \qquad \partial_t \varepsilon = D \nabla^2 \varepsilon + \Gamma \nabla^4 \varepsilon + O(\nabla^6)$ or $\omega = -iDk^2 i\Gamma k^4 + O(k^6)$

- Hydrodynamics: energy diffuses over long distances.
 - What sets the values of the transport parameters D, Γ , etc?

CHAOTIC PROPERTIES

• Chaotic dynamics are seemingly something very different from transport.

$$C(t,\underline{x}) = -\left\langle [V(t,\underline{x}), W(0,\underline{0})]^2 \right\rangle_T$$

• In theories with a classical gravity dual, these correlations have the form

$$C(t,\underline{x}) \sim e^{\tau_L^{-1}(t-|\underline{x}|/v_B)}$$

- * The timescale is always $\tau_L = (2\pi T)^{-1}$ Shenker, Stanford (1306.0622)
- * But the "butterfly velocity" v_B depends on the particular theory.

Roberts, Stanford, Susskind (1409.8180)

MAIN RESULTS

• In QFTs with a gravity dual, the transport properties are constrained by v_B , τ_L

• The collective modes that transport energy are characterized by their dispersion relations $\omega(k)$.

There is always a mode with $\omega(k_*) = i\tau_L$ where $k_*^2 = -(v_B\tau_L)^{-2}$.

• Under appropriate conditions, the diffusivity of energy is set by

$$D \sim v_B^2 \tau_L$$

(In a normal metal, $D \sim v_F^2 \tau$)

THE GRAVITATIONAL THEORIES

• I will discuss asymptotically AdS_{d+2} black branes supported by matter fields:

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + h(r)d\underline{x}_{d}^{2}$$

In ingoing co-ordinates

$$ds^2 = -f(r)dv^2 + 2dvdr + h(r)d\underline{x}_d^2$$

• For definiteness: $S = \int d^{d+2}x \sqrt{-g} \left(R - Z(\phi)F^2 - \frac{1}{2}(\partial\phi)^2 + V(\phi) \right)$

• Matter fields induce an RG flow from the UV CFT : $F_{vr}(r) \neq 0$ & $\phi(r) \neq 0$ Numerical solution of equations of motion yield f(r), h(r) etc.

QUASI-NORMAL MODES OF BLACK HOLES

- Focus on one aspect of these spacetimes: quasi-normal modes.
 - i.e. solutions to linearized perturbation equations, obeying appropriate BCs
 - * regularity (in ingoing coordinates) at the horizon $r=r_0$
 - * normalizability near the AdS boundary $r \to \infty$

- e.g. probe scalar field $\partial_a(\sqrt{-g}\partial^a\delta\varphi) m^2\sqrt{-g}\delta\varphi = 0$
 - * 2 independent solutions: $\delta \varphi_{norm}(r, \omega, k)$ and $\delta \varphi_{non-norm}(r, \omega, k)$
 - * If $\delta \varphi_{norm}$ is regular at the horizon quasi-normal mode.

• Quasi-normal modes are characterized by their dispersion relations $\omega(k)$

QUASI-NORMAL MODES OF BLACK HOLES

• Collective excitations of the dual QFT are encoded in the quasi-normal modes.

quasi-normal modes $\omega(k)$ of a field

poles $\omega(k)$ of retarded Green's function of dual operator

Horowitz, Hubeny (hep-th/9909056) Son, Starinets (hep-th/0205051)

• The spectrum depends in detail on the particular theory, spacetime, field, etc Numerical computation is required even in very simple cases.

e.g. massless scalar field in Schwarzschild-AdS₅

Plots from hep-th/0207133 by A. Starinets

HORIZON CONSTRAINTS ON THE SPECTRUM

• Certain features of the spectrum depend only on the near-horizon dynamics.

Blake, RD, Vegh (1904.12883) see also Kovtun et al (1904.12862)

- Example: probe scalar field
 - * Ansatz: solution that is regular at the horizon

$$\delta\varphi(r) = \sum_{n=0}^{\infty} \varphi_n (r - r_0)^n$$

* Solve iteratively for $\varphi_{n>0}$:

$$2h(r_0)(2\pi T - i\omega)\varphi_1 = \left(k^2 + m^2h(r_0) + i\omega\frac{dh'(r_0)}{2}\right)\varphi_0$$
 etc.

* At (ω_1, k_1) both solutions are regular at the horizon!

$$\omega_1 = -i2\pi T,$$
 $k_1^2 = -(m^2h(r_0) + d\pi Th'(r_0))$

HORIZON CONSTRAINTS ON THE SPECTRUM

• Moving infinitesimally away from (ω_1, k_1) yields one regular solution:

$$\frac{\omega = \omega_1 + i\delta\omega}{k = k_1 + i\delta k} \longrightarrow \frac{\varphi_1}{\varphi_0} = \frac{1}{4h(r_0)} \left(4ik_1 \frac{\delta k}{\delta \omega} - dh'(r_0) \right)$$

But this regular solution depends on the arbitrary slope $\delta k/\delta \omega$.

• Can obtain an arbitrary combination of φ_{norm} and $\varphi_{non-norm}$ by tuning $\delta k/\delta \omega$:

$$\varphi_{ingoing}(\omega_1 + i\delta\omega, k_1 + i\delta k) = \left(1 - v_z \frac{\delta k}{\delta\omega}\right) \varphi_{norm} + C\left(1 - v_p \frac{\delta k}{\delta\omega}\right) \varphi_{non-norm}$$

For an appropriate choice of slope ($\delta \omega = v_p \delta k$), there is a quasi-normal mode.

——— there must be a dispersion relation obeying $\omega(k_1) = \omega_1$

HORIZON CONSTRAINTS ON THE SPECTRUM

• This feature of the spectrum is independent of the rest of the spacetime.

Near-horizon dynamics yield exact constraints on the dispersion relations $\omega(k)$

• A more complete analysis of this type yields infinitely many constraints

$$\omega = -i2\pi T n,$$
 $k = k_n$ $n = 1,2,3,...$

$$k = k_n$$

$$n = 1, 2, 3, \dots$$

for appropriate values k_n .

• These points in complex Fourier space are called **pole-skipping points**.

Intersection of a line of poles with a line of zeroes in the dual QFT 2-point function

$$G = C \frac{\delta \omega - v_z \delta k}{\delta \omega - v_p \delta k}$$

POLE-SKIPPING EXAMPLES

• The argument can be generalized to other spacetimes

e.g. BTZ black hole / CFT₂ at non-zero T $\Delta = 5/2$

dispersion relation of pole

dispersion relation of zero

- And it can be generalized to non-scalar fields/operators, e.g.
 - * U(1) Maxwell field: some k_n are real
 - * Fermionic fields: frequencies shifted to $\omega = -i2\pi T(n + 1/2)$

CONSTRAINTS ON ENERGY DENSITY MODES

• Usually very complicated to determine the collective modes of energy density δg_{vv} couples to other metric perturbations and to matter field perturbations

• But in this case, near-horizon Einstein equations yield a simple constraint

$$\omega(k_*) = +i2\pi T$$
 $k_*^2 = -d\pi T h'(r_0)$

Independent of the matter field profiles.

Blake, RD, Grozdanov, Liu (1809.01169)

• Universal constraint on the collective modes of energy density:

$$\omega(k_*) = +i\tau_L^{-1} \qquad k_*^2 = -(v_B \tau_L)^{-2}$$

First observed numerically in Schwarzschild-AdS₅: Grozdanov, Schalm, Scopelliti (1710.00921)

HYDRODYNAMIC INTERPRETATION

• An interpretation: chaotic behavior has hydrodynamic origin

Blake, Lee, Liu
(1801.00010)

 σ : hydrodynamic mode of energy conservation

See also: Gu, Qi, Stanford (1609.07832), Haehl, Rozali (1808.02898),...

• Conversely, the chaotic behavior constrains the hydrodynamic parameters of theories with holographic duals.

IMPLICATIONS FOR HYDRODYNAMICS

• There is typically a collective mode of energy density with dispersion relation

$$\omega_{hydro}(k) = -iDk^2 - i\Gamma k^4 + O(k^6)$$

At long distances, this is the hydrodynamic diffusion of energy density.

• $\omega_{hydro}(k_*) = + i\tau_L^{-1}$ — constraint on hydrodynamic parameters.

• Make an additional assumption:

If diffusive approximation $\omega_{hydro}(k) \approx -iDk^2$ is good up to $\omega = i\tau_L^{-1}, k = k_*$

$$\longrightarrow D \approx -k_*^{-2}\tau_L^{-1} \longrightarrow D \approx v_B^2 \tau_L$$

LOW TEMPERATURE DIFFUSIVITIES

- Consistent with the diffusivity of energy density at low temperatures
 - * For a large class of theories with AdS₂xR^d IR fixed points

as
$$T \to 0$$

$$D = v_B^2 \tau_L$$

Blake, Donos (1611.09380)

* Generic IR fixed point has symmetry $t \to \Lambda^z t$, $\underline{x} \to \Lambda \underline{x}$

as
$$T \to 0$$

$$D = \frac{z}{2(z-1)} v_B^2 \tau_L$$

Blake, RD, Sachdev (1705.07896)

* When z = 1, diffusive approximation breaks down at $\omega \ll \tau_L^{-1}$.

RD, Gentle, Goutéraux (1808.05659)

SUMMARY

• Near-horizon dynamics yield exact constraints on the dispersion relations of collective modes.

• There is a universal constraint for collective modes of energy density

$$\omega(k_*) = +i\tau_L^{-1} \qquad k_*^2 = -(v_B \tau_L)^{-2}$$

• Under appropriate conditions, this constrains the diffusivity of energy density

$$D \sim v_B^2 \tau_L$$

i.e. transport is related to underlying chaotic properties.

OPEN QUESTIONS

- How robust is the universal constraint on the energy density collective modes?

 More direct evidence of the chaos/hydrodynamics link?

 Grozdanov (1811.09641), Ahn et al (1907.08030, 2006.00974), Natsuume, Okamura (1909.09168), Abbasi & Tabatabaei (1910.13696), Liu, Raju (2005.08508), ...
- Regime of validity of (diffusive) hydrodynamics in holographic theories?

 Withers (1803.08058), Kovtun et al (1904.01018), ...
- What generalizes to other (non-holographic) strongly interacting systems?

 Gu, Qi, Stanford (1609.07832), Patel, Sachdev (1611.00003), ...
- Precise restrictions on transport parameters from near-horizon constraints.

 Grozdanov (2008.00888)
- Pole-skipping points in more general spacetimes / field theories ?

 Ahn et al (2006.00974)

THANK YOU!