Universes as Bigdata:

Superstrings, Calabi-Yau Manifolds and Machine-Learning

YANG-HUI HE

Dept of Mathematics, City, University of London Merton College, University of Oxford School of Physics, NanKai University

East Asian Strings 2020, (Virtual) Osaka-Seoul-Taipei

- First String Revolution [Green-Schwarz] anomaly cancellation;
 Heterotic string [Gross-Harvey-Martinec-Rohm]: E₈ × E₈ or SO(32), 1984 5
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985
 - $SU(3) \times SU(2) \times U(1) \subset SU(5) \subset SO(10) \subset E_6 \subset E_8$
 - Standard Solution (MANY more since): $\mathbb{R}^{3,1} imes X$, X Ricci-flat, Kähler
- mathematicians were independently thinking of the same problem:
 - Riemann Uniformization Theorem in $\dim_{\mathbb{C}} = 1$: Trichotomy R < 0, = 0, > 0
 - Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer ...

$$\chi(\Sigma) = 2 - 2g(\Sigma) = [c_1(\Sigma)] \cdot [\Sigma] = \frac{1}{2\pi} \int_{\Sigma} R = \sum_{i=0}^{2} (-1)^i h^i(\Sigma)$$

Calabi-Yau

- First String Revolution [Green-Schwarz] anomaly cancellation; Heterotic string [Gross-Harvey-Martinec-Rohm]: E₈ × E₈ or SO(32), 1984 - 5
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985
 - $SU(3) \times SU(2) \times U(1) \subset SU(5) \subset SO(10) \subset E_6 \subset E_8$
 - Standard Solution (MANY more since): $\mathbb{R}^{3,1} \times X$, X Ricci-flat, Kähler
- mathematicians were independently thinking of the same problem:
 - Riemann Uniformization Theorem in $\dim_{\mathbb{C}} = 1$: Trichotomy R < 0, = 0, > 0
 - Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer ...

$$\chi(\Sigma) = 2 - 2g(\Sigma) = [c_1(\Sigma)] \cdot [\Sigma] = \frac{1}{2\pi} \int_{\Sigma} R = \sum_{i=0}^{2} (-1)^i h^i(\Sigma)$$

Calabi-Yau

An Early Physical Challenge to Algebraic Geometry

- CY3 X, tangent bundle $SU(3) \Rightarrow$
 - **1** E_6 GUT: commutant $E_8 \rightarrow SU(3) \times E_6$, then
 - Wilson-line/discrete symmetry to break E₆-GUT to some SUSY version of Standard Model (generalize later)
 - Particle Spectrum:Generation $n_{27} = h^1(X, TX) = h^{2,1}_{\overline{\partial}}(X)$ Anti-Generation $n_{\overline{27}} = h^1(X, TX^*) = h^{1,1}_{\overline{\partial}}(X)$
- Net-generation: $\chi = 2(h^{1,1} h^{2,1}) =$ Euler Number
- 1980s Question: Are there Calabi-Yau threefolds with Euler number $\pm 6?$
- None of obvious ones \bigcirc e.g., Quintic Q in \mathbb{P}^4 is CY3 $Q_{\chi}^{h^{1,1},h^{2,1}} = Q_{-200}^{1,101}$ so too may generations (even with quotient $-200 \notin 3\mathbb{Z}$)

イロト イロト イヨト イヨ

An Early Physical Challenge to Algebraic Geometry

- CY3 X, tangent bundle $SU(3) \Rightarrow$
 - E_6 GUT: commutant $E_8 \rightarrow SU(3) \times E_6$, then
 - Wilson-line/discrete symmetry to break E₆-GUT to some SUSY version of Standard Model (generalize later)
- Net-generation: $\chi = 2(h^{1,1} h^{2,1}) =$ Euler Number
- 1980s Question: Are there Calabi-Yau threefolds with Euler number $\pm 6?$
- None of obvious ones \bigcirc e.g., Quintic Q in \mathbb{P}^4 is CY3 $Q_{\chi}^{h^{1,1},h^{2,1}} = Q_{-200}^{1,101}$ so too may generations (even with quotient $-200 \notin 3\mathbb{Z}$)

イロン イロン イヨン イヨ

An Early Physical Challenge to Algebraic Geometry

- CY3 X, tangent bundle $SU(3) \Rightarrow$
 - **1** E_6 GUT: commutant $E_8 \rightarrow SU(3) \times E_6$, then
 - Wilson-line/discrete symmetry to break E₆-GUT to some SUSY version of Standard Model (generalize later)
- Net-generation: $\chi = 2(h^{1,1} h^{2,1}) =$ Euler Number
- 1980s Question: Are there Calabi-Yau threefolds with Euler number $\pm 6?$
- None of obvious ones ⁽²⁾

e.g., Quintic Q in \mathbb{P}^4 is CY3 $Q_{\chi}^{h^{1,1},h^{2,1}} = Q_{-200}^{1,101}$ so too may generations (even with quotient $-200 \notin 3\mathbb{Z}$)

イロト イロト イヨト イヨ

The First Data-sets in Mathematical Physics/Geometry

- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
 - CICYs (complete intersection CYs) multi-deg polys in products of \mathbb{CP}^{n_i} (CICYs
 - Problem: *classify all configuration matrices*; employed the best computers at the time (CERN supercomputer); g.v. magnetic tape and dot-matrix printout in Philip's office
 - 7890 matrices, 266 Hodge pairs $(h^{1,1},h^{2,1})$, 70 Euler $\chi\in [-200,0]$
- [Candelas-Lynker-Schimmrigk, 1990]
 - Hypersurfaces in Weighted P4
 - 7555 inequivalent 5-vectors w_i , 2780 Hodge pairs, $\chi \in [-960, 960]$
- [Kreuzer-Skarke, mid-1990s 2000] Reflexive Polytopes
 - Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds
 - 6-month running time on dual Pentium SGI machine
 - at least 473,800,776, with 30,108 distinct Hodge pairs, $\chi \in [-960,960]$

Technically, Moses

was the first person with a tablet downloading data from the cloud The age of data science in mathematical physics/string theory not as recent as you might think

of course, experimental physics had been decades ahead in data-science/machine-learning

After 40 years of research by mathematicians and physicists

YANG-HUI HE (London/Oxford/Nankai)

.

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to *Machine-Learning*, 1812.02893, [Springer, to appear] $\sim 10^{10}$ data-points (and growing, still mined by many international collabs: Some Recent Advances Georgia O'Keefe on Kreuzer-Skarke Vienna (KS, Knapp,...), Penn (Ovrut, Cvetic, Donagi, Pantev ...), Oxford/London (Candelas, Constantin, Lukas, Mishra, YHH, ...), MIT (Taylor, Johnson, Wang,), Northeastern/Wits (Halverson, Long, Nelson, Jejjala, YHH), Virginia Tech (Anderson, Gray, SJ Lee,), Utrecht (Grimm), CERN (Weigand, ...), Cornell (MacAllister, Stillman), Munich (Luest, Vaudravange), Uppsala (Larfors, Seong)

(日)

Triadophilia

Exact (MS)SM Particle Content from String Compactification

- [Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM
- [Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo & sift
- Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10¹⁰ MSSM Stable Sum of Line Bundles over CICYs (Oxford-Penn-Virginia 2012-)

[New Scientist, Jan, 5, 2008 feature] P. Candelas, X. de la Ossa, YHH, and B. Szendroi

"Triadophilia: A Special Corner of the

イロト イヨト イヨト イ

Landscape" ATMP, 2008

The Landscape Explosion & Vacuum Degeneracy Problem

meanwhile ... LANDSCAPE grew rapidly with

- D-branes Polchinski 1995
- M-Theory/ G_2 Witten, 1995
- F-Theory/4-folds Katz-Morrison-Vafa, 1996
- AdS/CFT Maldacena 1998 Alg Geo of AdS/CFT
- Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, Denef-Douglas 2005-6: 10^{≫500} possibilities ...

String theory trades one hard-problem [quantization of gravity] by another [looking for the right compactification] (in many ways a richer and more interesting problem, especially for the string/maths community)

- The Good Last 10-15 years: large collaborations of physicists, computational mathematicians (cf. SageMATH, GAP, Bertini, MAGMA, Macaulay2, Singular) have bitten the bullet computed many geometrical/physical quantities and compiled them into various databases Landscape Data (10^{9~10} entries typically)
 - The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential) ...e.g., how to construct stable bundles over the $\gg 473$ million KS CY3? Sifting through for SM computationally impossible ...

The ??? Borrow new techniques from "Big Data" revolution

A Wild Question

• Typical Problem in String Theory/Algebraic Geometry:

- Q: Can (classes of problems in computational) Algebraic Geometry be "learned" by Al ? , i.e., can we "machine-learn the landscape?"
- [YHH 1706.02714] Deep-Learning the Landscape, *PLB 774, 2017* (*Science*, Aug, vol 365 issue 6452, 2019): Experimentally, it seems so for many situations in geometry and beyond.
- 2017
 YHH (1706.02714), Seong-Krefl (1706.03346), Ruehle (1706.07024), Carifio-Halverson-Krioukov-Nelson (1707.00655)

- Hand-writing Recognition, e.g., my 0 to 9 is different from yours: 1234567890
- How to set up a bijection that takes these to {1,2,...,9,0}? Find a clever Morse function? Compute persistent homology? Find topological invariants?
 <u>ALL are inefficient and too sensitive to variation.</u>
- What does your iPhone/tablet do? What does Google do? Machine-Learn
 - Take large sample, take a few hundred thousand (e.g. NIST database)

$$\begin{array}{c} 6 \rightarrow 6, \ \ 8 \rightarrow 8, \ \ 2 \rightarrow 2, \ \ 4 \rightarrow 4, \ \ 8 \rightarrow 8, \ \ 7 \rightarrow 7, \ \ 8 \rightarrow 8, \\ \hline 0 \rightarrow 0, \ \ 4 \rightarrow 4, \ \ 2 \rightarrow 2, \ \ 5 \rightarrow 5, \ \ 6 \rightarrow 6, \ \ 3 \rightarrow 3, \ \ 2 \rightarrow 2, \\ \hline q \rightarrow 9, \ \ 0 \rightarrow 0, \ \ 9 \rightarrow 3, \ \ 8 \rightarrow 8, \ \ \ 8 \rightarrow 8, \ \ \ \ 1 \rightarrow 1, \ \ 0 \rightarrow 0, \end{array}$$

A D A A B A A B A A

 $28 \times 28 \times (RGB)$

Supervised ML in 1 min

NN Doesn't Care/Know about Alg. Geometry (1706.02714)

Hodge Number of a Complete Intersection CY is the association rule, e.g.

$$X = \begin{pmatrix} \begin{smallmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}, \qquad h^{1,1}(X) = 8 \quad \rightsquigarrow$$

CICY is 12×15 integer matrix with entries $\in [0, 5]$ is simply represented as a 12×15 pixel image of 6 colours (Proper Way); ML in matter of seconds/minutes

- Cross-Validation: $\begin{cases} & \text{ Take samples of } X \to h^{1,1} \\ & \text{ train a NN, or SVM} \\ & \text{ Validation on } unseen \ X \to h^{1,1} \end{cases}$

イロン イ団 とくほと くほとう

Deep-Learning Algebraic Geometry

• YHH (1706.02714) Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113), Krippendorf-Syvaeri

[2003.13679] Erbin-Finotello (2007.13379; Google Inception NN) YHH-Lukas [2009.02544]

Learning Hodge Number $h^{1,1} \in [0,19]$ so can set up 20channel NN classifer, regressor, as well as SVM,

bypass exact sequences

• YHH-SJ Lee (1904.08530): Distinguishing Elliptic Fibrations in CY3

ML Mathematical Structures

More Success Stories in Algebraic Geometry/Strings

- Ruehle '17: genetic algorithm for bundle cohomology
- Halverson, Nelson, Long et al '17- programme of ML of KS data
- Brodie-Constantin-Lukas '19: EXACT formulae for line-bundle coho / complex surfaces Interpolation vs Extrapolation → Conjecture Formulation
- Ashmore-YHH-Ovrut '19: ML Calabi-Yau metric: improves Donaldson alg. for numerical CY metric by 10-100 times
- Deen-YHH-Lee-Lukas '20: Distinguishing Heterotic SMs from the sum-line-bundle database and extrapolating beyond
- q.v. K. Hashimoto '18: AdS/CFT = Boltzmann Machine; Halverson-Anindita 2008.08601 NN=QFT; Vanchurin 2008.01540 NN=Spacetime; 2× de Mello-Koch, Cheng 1906.05212 RL = RG

Representation/Group Theory

Why stop at string/geometry?

[YHH-MH. Kim 1905.02263] Machine-Learning Algebraic Structures (GAP finite groups/ring DB)

• When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? (rmk: there is a known quadrangle-thm to test this) NN/SVM find to 94.9% ($\phi = 0.90$) at 25-75 cross-validation.

Combinatorics, Graph/Quivers, Symmetries

- [YHH-ST. Yau 2006.16619] (Wolfram Finite simple graphs DB)
 - ML standard graph properties: acyclic? (0.95); planar? (0.8); genus

>,=,<0? (0.8); ? \exists Hamilton/Euler cycles (~ 0.8)

- spectral bounds $(R^2 \sim 0.9) \dots$
- Recognition of Ricci-Flatness (0.9) (todo: find new Ricci-flat graphs);
- [Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different quiver mutation (Seiberg-dual) classes (0.9 1.0)
- [Chen-YHH-Lal-Zas 2006.16114]: even/odd/reflection sym (>0.99); distinguishing CFT 3pt functions (>0.99); Fourier coefficients / conformal block presence (>0.97) ... (q.v. [Krippendorf-Syvaeri 2003.13679])
- NB. Only "solving" the likes of traveling salesman (similarly Groebner bases in geom) stochastically

- [YHH 1706.02714, 1812.02893:] Predicting primes tried supervised ML on $2 \rightarrow 3, 2, 3 \rightarrow 5, 2, 3, 5 \rightarrow 7$; fixed window of $(yes/no)_{1,2,...,k}$ to $(yes/no)_{k+1}$, no breaking banks yet (expect same for Riemann zeroes)
- [Hirst-YHH-Peterken 2004.05218]: adjacency of dessin d'enfants (Grothendieck's Esquisse for Abs. Galois) → transcendental degree (<0.3)
- [Alessandretti-Baronchelli-YHH 1911.02008] (LMFdb/Cremona Database) ML/TDA@Birch-Swinnerton-Dyer New Scientist feature Dec 9 (BSD:

L-function $L(s, \mathcal{E})$ of elliptic curve \mathcal{E} has $L(s \to 1, \mathcal{E})$ given in terms of precise quantities: rank r,

torsion T, period Ω , Tate-Shaferevich group III, conductor N, regulator R, Tamagawa number c);

III and Ω ok with regression and boosted decision trees: RMS < 0.1;

Weierstrass \rightarrow rank: random

(a) < (a)

[YHH-Jejjala-Nelson] "hep-th" 1807.00735

Word2Vec: [Mikolov et al., '13] NN which maps words in sentences to a vector space by context (much better than word-frequency, quickly adopted by Google); maximize (partition function) over all words with sliding window (W_{1,2} weights of 2 layers, C_α window size, D # windows)

$$Z(W_1, W_2) := \frac{1}{|D|} \sum_{\alpha=1}^{|D|} \log \prod_{c=1}^{C_{\alpha}} \frac{\exp([\vec{x}_c]^T \cdot W_1 \cdot W_2)}{\sum_{j=1}^{V} \exp([\vec{x}_c]^T \cdot W_1 \cdot W_2)}$$

We downloaded all ~ 10⁶ titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat from ArXiv since the beginning (1989) till end of 2017 (word cloud) (rmk: Ginzparg has been doing a version of linguistic ML on ArXiv) (rmk: abs and full texts in future)

ML Mathematical Structures

Subfields on ArXiv has own linguistic particulars

• Linear Syntactical Identities

bosonic + *string-theory* = *open-string*

holography + quantum + string + ads = extremal-black-hole

string-theory + calabi-yau = m-theory + g2

space + black-hole = geometry + gravity

- binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc) vs phenomenological (hep-ph, hep-lat) : 87.1% accuracy (5-fold classification 65.1% accuracy). (ArXiv classifications)
- Cf. **Tshitoyan et al.**, "Unsupervised word embeddings capture latent knowledge from materials science literature", **Nature** July, 2019: 3.3. million materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new

thermoelectric materials years in advance, and suggests as-yet unknown materials

ML Mathematical Structures

Summary and Outlook

• Use AI (Neural Networks, SVMs, Regressor ...) as

- 1. Classifier deep-learn and categorize landscape data
- 2. Predictor estimate results beyond computational power
- MATHS how is Al doing maths w/o knowing any maths? (Alg Geo/C, combinatorics, RT = integer matrices, NT ??)
 - 1. Predictor form new conjectures/formulae
 - 2. Classifier stochastically do NP-hard problems
 - Hierarchy of Difficulty ML struggles with:

numerical < algebraic geometry over $\mathbb{C} <$ combinatorics/algebra < number theory

THANK YOU

 Boris Zilber [Merton Professor of Logic, Oxford]: "you've managed syntax without semantics..."

	Alpha Go	\rightarrow	Alpha Zero						
٩	ML	\rightarrow	Voevodsky's Dream;						
			Automated Thm Pf						

- cf. Renner et al., PRL/Nature News, 2019: ML (*SciNet, autoencoder*) finds heliocentrism from Mars positions alone.
- cf. Lample-Charton, 2019: ML Symolic manipulations in mathematics

Image: A math the second se

Sophia (Hanson Robotics, HK) 1st non-human citizen (2017, Saudi Arabia) 1st non-human with UN title (2017) 1st String Data Conference (2017)

Digressions

YANG-HUI HE (London/Oxford/Nankai)

ML Mathematical Structures

EAST, Jul. 2020 22 / 34

3

・ロト ・回ト ・ヨト

•	$\chi(\Sigma)=2$	$\chi(\Sigma)=0$	$\chi(\Sigma) < 0$				
	Spherical	Ricci-Flat	Hyperbolic				
	+ curvature	0 curvature	— curvature				
	Fano	Calabi-Yau	General Type				

Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer ... → generalize

$$\chi(\Sigma) = 2 - 2g(\Sigma) = [c_1(\Sigma)] \cdot [\Sigma] = \frac{1}{2\pi} \int_{\Sigma} R = \sum_{i=0}^{2} (-1)^i h^i(\Sigma)$$

- CONJECTURE [E. Calabi, 1954, 1957] / Thm [ST. Yau, 1977-8] M compact Kähler manifold (g, ω) and $([R] = [c_1(M)])_{H^{1,1}(M)}$. Then $\exists ! (\tilde{g}, \tilde{\omega})$ such that $([\omega] = [\tilde{\omega}])_{H^2(M;\mathbb{R})}$ and $Ricci(\tilde{\omega}) = R$.
- Strominger & Yau were neighbours at IAS in 1985: CHSW named Ricci-Flat Kähler as Calabi-Yau Back

16 Reflexive Polygons Back to Reflexives

Kreuzer-Skarke: 4319 reflexive polyhedra, 473,800,776 reflexive 4-polytopes, Skarke: next number is at least 185,269,499,015.

Heterotic Comp: Recent Development

- $\bullet~E_6~{\rm GUTs}$ a toy, SU(5) and $SO(10)~{\rm GUTs}$ and SM: general embedding
 - Instead of TX, use (poly-)stable holomorphic vector bundle V
 - Gauge group(V) = G = SU(n), n = 3, 4, 5, gives $H = Commutant(G, E_8)$:

$E_8 \rightarrow G \times H$			Breaking Pattern
$SU(3) \times E_6$	248	\rightarrow	$(1,78) \oplus (3,27) \oplus (\overline{3},\overline{27}) \oplus (8,1)$
$SU(4) \times SO(10)$	248	\rightarrow	$(1,45) \oplus (4,16) \oplus (\overline{4},\overline{16}) \oplus (6,10) \oplus (15,1)$
$SU(5) \times SU(5)$	248	\rightarrow	$(1,24) \oplus (5,\overline{10}) \oplus (\overline{5},10) \oplus (10,5) \oplus (\overline{10},\overline{5}) \oplus (24,1)$

- MSSM: $H \xrightarrow{\text{Wilson Line}} SU(3) \times SU(2) \times U(1)$
- Issues in low-energy physics \sim Precise questions in Alg Geo of (X, V)
 - Particle Content \sim (tensor powers) V Bundle Cohomology on X
 - LE SUSY \sim Hermitian Yang-Mills connection \sim Bundle Stability
 - Yukawa \sim Trilinear (Yoneda) composition
 - \bullet Doublet-Triplet splitting \sim representation of fundamental group of X

Back to Landscape

Image: A math the second se

- Kreuzer-Skarke: http://hep.itp.tuwien.ac.at/~kreuzer/CY/
 - new PALP: Braun-Walliser: ArXiv 1106.4529
 - Triang: Altmann-YHH-Jejjala-Nelson: http://www.rossealtman.com/
- CICYs: resurrected Anderson-Gray-YHH-Lukas, http://www-thphys. physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html
- q.v. other databases of interesting to the math/physics community: Graded Rings/Varieties: Brown, Kasprzyk, et al. http://www.grdb.co.uk/ Finite Groups/Rings: GAP https://www.gap-system.org/ Modular Forms: Sutherland, Cremona et al. https://www.lmfdb.org/ Knots & Invariants: KnotAtlas http://katlas.org/ Return

. . .

Major International Annual Conference Series

1986- First "Strings" Conference

2002- First "StringPheno" Conference

2006 - 2010 String Vacuum Project (NSF)

2011- First "String-Math" Conference

2014- First String/Theoretical Physics Session in SIAM Conference

2017- First "String-Data" Conference

• The Quintic $Q = [4|5]^{1,101}_{-200}$ (or simply [5]);

• CICYs Central to string pheno in the 1st decade [Distler, Greene, Ross, et al.] *E*₆ GUTS unfavoured; Many exotics: e.g. 6 entire anti-generations

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Back to CICYs

AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20-year prog. joint with A. Hanany, S. Franco, B. Feng, et al.

D-Brane Gauge Theory (SCFT encoded as quiver) ↔ Vacuum Space as affine Variety

•
$$(\mathcal{N} = 4 \text{ SYM}) \left(\bigcup_{z \to Y_Y}^{x} , W = \text{Tr}([x, y], z) \right) \longleftrightarrow \mathbb{C}^3 = \text{Cone}(S^5) \text{ [Maldacena]}$$

THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni ... (M) R. Böckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda ...] (coherent component of) representation variety of a quiver is toric CY3 iff quiver + superpotential graph dual to a bipartite graph on T² Back to Landscape combinatorial data/lattice polytopes ↔ gauge thy data as quivers/graphs ≥

ML Mathematical Structures

A Single Neuron: The Perceptron

- began in 1957 (!!) in early Al experiments (using CdS photo-cells)
- DEF: Imitates a neuron: activates upon certain inputs, so define
 - Activation Function $f(z_i)$ for input tensor z_i for some multi-index i;
 - consider: $f(w_i z_i + b)$ with w_i weights and b bias/off-set;
 - typically, f(z) is sigmoid, Tanh, etc.
- Given training data: $D = \{(x_i^{(j)}, d^{(j)}\}$ with input x_i and known output $d^{(j)}$, minimize

$$SD = \sum_{j} \left(f(\sum_{i} w_{i} x_{i}^{(j)} + b) - d^{(j)} \right)^{2}$$

to find optimal w_i and $b \rightsquigarrow$ "learning", then check against Validation Data

• Essentially (non-linear) regression

The Neural Network: network of neurons \rightsquigarrow the "brain"

- DEF: a connected graph, each node is a perceptron (Implemented on Mathematica 11.1 + / TensorFlow-Keras on Python)
 - adjustable weights/bias;
 - e distinguished nodes: 1 set for input and 1 for output;
 - iterated training rounds.

Simple case: forward directed only, called multilayer perceptron

Image: A math a math

- others: e.g., decision trees, support-vector machines (SVM), etc
- Essentially how brain learns complex tasks; apply to our Landscape Data

Back to Landscape

Computing Hodge Numbers $\mathcal{O}(e^{e^d})$

• Recall Hodge decomposition $H^{p,q}(X) \simeq H^q(X, \wedge^p T^*X) \rightsquigarrow$

 $H^{1,1}(X) = H^1(X, T_X^*), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^*) \simeq H^1(X, T_X)$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

Induces long exact sequence in cohomology:

• Need to compute Rk(d), cohomology and $H^i(X, T_A|_X)$ (Cf. Hübsch)

Back to ML

ArXiv Word-Clouds

hep-th

A second second

hep-ph

In the second se

hep-lat

ML Mathematical Structures

math-ph

Back to Word2Vec

・ロト ・四ト ・ヨト ・ヨト

EAST. Jul. 2020

33 / 34

gr-qc

YANG-HUI HE (London/Oxford/Nankai)

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

Word2Vec + Actual	SVM	1	2	3	4	5			(1	:	hep-th
1		40.2	6.5	8.7	24.0	20.	6		2	:	hep-ph
2		7.8	65.8	12.9	9.1	4.4	1		{ 3	:	hep-lat
3		7.5	11.3	72.4	1.5	7.4	1		4	:	gr-qc
4		12.4	4.4	1.0	72.1	10.	2		(5	:	math-ph
5		10.9	2.2	4.0	7.8	75.	1				
NN Actual	1	2	3	4	5	6	7	8	9	10	_
viXra-hep	11.	5 47.4	6.8	13.	11.	4.5	0.2	0.3	2.2	3.1	
viXra-qgst	13.3	3 14.5	1.5	54.	8.4	1.8	0.1	1.1	2.8	3.	
6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main											