Adventures in Non-supersymmetric String Theory

Justin Kaidi

East Asian Strings Seminar Series December 4, 2020

[2010.10521] JK [1908.04805] JK, Parra-Martinez, Tachikawa [1911.11780] JK, Parra-Martinez, Tachikawa

Spectrum of String Theories

• In the 80s, it was discovered that SUSY string theories are different limits of a single underlying theory:

Spectrum of String Theories

- In the 80s, it was discovered that SUSY string theories are different limits of a single underlying theory.
- *•* But there also exist *non-SUSY* string theories
	- $-$ Type 0A/B, unoriented Type 0 strings, and 7 heterotic strings

Spectrum of String Theories

- In the 80s, it was discovered that SUSY string theories are different limits of a single underlying theory.
- *•* But there also exist *non-SUSY* string theories
	- $-$ Type 0A/B, unoriented Type 0 strings, and 7 heterotic strings
- *•* There are also string theories in dimensions lower than 10d. In particular, much study on 2d strings [Takayanagi, Toumbas '03; Douglas, Klebanov, Kutasov, Maldacena, Martinec, Seiberg '03]
	- $-$ 2d Type $0A/B$, unoriented 2d Type 0 strings, and 3 heterotic strings

Guiding Principle

• String theory is a unique theory of Quantum Gravity

Tachyons

• non-SUSY string theories generically have closed string tachyons

 $-$ Exceptions: Pin⁺ Type 0, $O(16) \times O(16)$ heterotic, Type I

- *•* But the presence of a tachyon doesn't mean the theory is inconsistent. Rather, it means we're expanding about the wrong vacuum.
- *•* As long as there exists one stable vacuum, the theories are consistent
- *•* The stable vacua may be lower-dimensional – In many cases, they will be known two-dimensional string theories
- *•* Goal: Classify the non-SUSY 10d strings and find stable vacua for them Part 1: Classify unoriented Type 0 strings Part 2: Find stable vacua for non-SUSY heterotic strings

Part I

Part I: Classifying unoriented Type 0 strings

GSO Projection

- Work in NS-R formalism in lightcone gauge; $(X_{L,R}^i,\psi_{L,R}^i)$ with $i=1,\ldots,8$
- *•* The spectrum of the physical string is obtained by doing a GSO projection [Gliozzi, Scherk, Olive '77]
	- Allowed GSO projections must project onto subsectors satisfying e.g. closure of OPE, mutual locality, and modular invariance of torus amplitudes.
- *•* GSO projection can also be thought of as a sum over spin structures [Seiberg, Witten '86]
	- Different GSO projections correspond to possible phases assigned to spin structures in a way compatible with cutting/gluing of worldsheet.
	- $-$ For example for Type IIA/B, can have

$$
Z[T^2;\alpha]=\left(\sum_{gh=hg} \alpha_L(g,h) \,\,\begin{matrix}+\\\textstyle\quad+\\\textstyle\end{matrix}\right)\times \left(\sum_{gh=hg} \alpha_R(g,h) \,\,\begin{matrix}\overbrace{-\\\textstyle\vdots\\\textstyle\vdots\\\textstyle\vdots\\\textstyle\end{matrix}\right)
$$

with α (NS, NS) = α (NS, R) = α (R, NS) = 1 and α (R, R) = \pm 1.

SPT Phases

• For our purposes, an SPT phase is a gapped theory with unique ground state on a manifold without boundary,

 $Z[X] \in U(1)$ $\partial X = \emptyset$

• The partition function will only depend on the bordism class of *X*, [Kapustin '14; Kapustin, Thorngren, Turzillo, Wang '15]

 $Z: \Omega_d^s(BG) \to U(1)$

 $s =$ structure of tangent bundle, $G =$ structure of principal bundle.

• Hence *d*-dimensional SPT phases are classified by

 $\mho^d_s(BG) := \text{Hom}\left(\Omega^s_d(BG), U(1)\right)$

• In the presence of boundary, we can have gapless edge modes.

Kitaev Chain and Arf Invariant

• We'll mainly be concerned with fermionic SPTs. The simplest case is the Kitaev chain/Majorana wire [Kitaev '01]

- Has been realized experimentally [Mourik et al '12]
- The partition function of this phase on a manifold with spin structure σ is

 $Z[\Sigma, \sigma] = e^{\pi i \text{Arf}(\Sigma, \sigma)}$

• One can calculate

$$
\exp\left\{i\pi \operatorname{Arf}\left(\begin{array}{c} + & - \\ + & - & - \\ + & - & - \end{array}\right)\right\} = 1 \qquad \exp\left\{i\pi \operatorname{Arf}\left(\begin{array}{c} + & - \\ + & - & - \end{array}\right)\right\} = 1
$$
\n
$$
\exp\left\{i\pi \operatorname{Arf}\left(\begin{array}{c} + & - \\ + & - & - \end{array}\right)\right\} = -1
$$

Type 0 Strings

• Indeed, consider possible SPT phases we can add to the worldsheet,

$$
\mho^2_{\mathrm{Spin}}(pt) = \mathbb{Z}_2 = \left\langle (-1)^{\mathrm{Arf}(\Sigma,\,\sigma)} \right\rangle
$$

• Two different worldsheet theories with following torus partition functions

$$
Z_{0B} = \sum_{gh=hg} \underbrace{\qquad \qquad}_{++} \qquad \times \underbrace{\qquad \qquad}_{++} \qquad \qquad Z_{0A} = \sum_{gh=hg} e^{i\pi \operatorname{Arf}(\sigma_{gh})} \underbrace{\qquad \qquad}_{++} \qquad \times \underbrace{\qquad \qquad}_{++} \qquad \qquad}
$$

- So two different points of view
	- (1) No SPT phase, but use different projectors, i.e. $P_{\rm 0B}$ vs. $P_{\rm 0A}$.
	- (2) Sum over spin structure with non-trivial SPT phase.

Unoriented Type 0 Strings

- *•* Let's now allow worldsheets to be unoriented.
	- $-$ Two options: $\text{Pin}^-: w_2 + w_1^2 = 0$ $\text{Pin}^+: w_2 = 0$
- *•* Possible SPT phases:

$$
\mathcal{V}_{\text{Pin}+}^{2}(pt) = \mathbb{Z}_{8} = \left\langle e^{\pi i \text{ABK}(\sigma)/4} \right\rangle
$$

$$
\mathcal{V}_{\text{Pin}+}^{2}(pt) = \mathbb{Z}_{2} = \left\langle (-)^{\text{Arf}(\hat{\sigma})} \right\rangle
$$

with $\hat{\sigma}$ the spin structure on the oriented double cover.

- Prediction: an $8 + 2(?) = 10$ -fold classification of unoriented Type 0 strings, matching with the Altland-Zirnbauer classification of topological superconductors.
- Some scattered results in the literature *[Bergman, Gaberdiel '99; Blumenhagen, Font,* Lüst '99], but nothing complete.

D-branes and K-theory

• This leads to a rich spectrum of stable D-branes:

• Additional information:

- None of the unoriented Type 0 strings has spacetime SUSY
- All RR tadpoles can be cancelled. NSNS tadpoles can be cancelled by adding branes, or via Fischler-Susskind mechanism
- The Pin^- strings have closed string tachyons, but Pin^+ strings are tachyon-free

Part II

Part II: Stable vacua for heterotic strings

Tachyonic Heterotic Strings

- *•* Tachyonic heterotic strings are constructed as follows:
- Start with $(X_{L,R}^i, \psi_L^i)$ with $i=1,\ldots,8$ and λ_R^a with $a=1,\ldots,32$
- *•* Simplest partition function is

$$
Z = \frac{1}{2|\eta|^{16}} \sum_{gh=hg} \left(\frac{1}{2\eta} \right)^8 \times \left(\frac{1}{2} \right)^{32}
$$

= $32(q\bar{q})^{-\frac{1}{2}} + 4032 + \dots$

• This theory has 32 tachyons, 4032 massless bosons – graviton (35), B-field (28), dilaton (1), and 496 gauge bosons of *SO*(32)

[Kawai, Lewellen, Tye '86; Dixon, Harvey '86]

Tachyonic Heterotic Strings

• The worldsheet theory studied before has a $(\mathbb{Z}_2)^5$ symmetry,

$$
g_1 = \sigma_3 \otimes 1_2 \otimes 1_2 \otimes 1_2 \otimes 1_2 , \qquad \quad g_2 = 1_2 \otimes \sigma_3 \otimes 1_2 \otimes 1_2 \otimes 1_2 ,
$$

 $g_3 = 1_2 \otimes 1_2 \otimes \sigma_3 \otimes 1_2 \otimes 1_2 , \qquad g_4 = 1_2 \otimes 1_2 \otimes 1_2 \otimes \sigma_3 \otimes 1_2 ,$

 $g_5 = 1_2 \otimes 1_2 \otimes 1_2 \otimes 1_2 \otimes \sigma_3$.

- Each \mathbb{Z}_2 acts as -1 on 16 of the λ^a and as $+1$ on others
- We can now gauge $(\mathbb{Z}_2)^n$ for $0 \leq n \leq 5$. $-$ This breaks $SO(32) \nrightarrow SO(2^{5-n}) \times SO(32-2^{5-n})$

Tachyon Condensation

- *•* All of the heterotic strings above have tachyons. We now try to condense them [Hellerman, Swanson '06; '07]
- Say $\tilde{\lambda}^a$ are subset of λ^a invariant under $SO(2^{5-n})$. Condensation produces superpotential

$$
W = \sum_{a=1}^{2^{5-n}} \tilde{\lambda}^a \mathcal{T}^a(X)
$$

• Linearized equation of motion for $\mathcal{T}^{a}(X)$,

$$
\partial^{\mu}\partial_{\mu}\mathcal{T}^{a}-2\partial^{\mu}\phi\partial_{\mu}\mathcal{T}^{a}+\frac{2}{\alpha'}\mathcal{T}^{a}=0
$$

• One solution

$$
\phi = -\frac{2^{\frac{3-n}{2}}}{\sqrt{\alpha'}}X^{-} , \qquad \mathcal{T}^{a} = m\sqrt{\frac{2}{\alpha'}}e^{\beta X^{+}}X^{a+1}
$$

Condensation to *d >* 2

• Previous solution gives the following scalar potential

$$
V = Ae^{2\beta X^{+}} \sum_{a=1}^{2^{5-n}} (X^{a+1})^{2} - Be^{\beta X^{+}} \sum_{a=1}^{2^{5-n}} \tilde{\lambda}^{a} \psi^{a+1} + \dots
$$

• As $X^+ \to \infty$, fluctuations along $X^2, \ldots, X^{2^{5-n}+1}$ are suppressed, and we get a theory in $d = 10 - 2^{5-n}$ localized at $X^2 = \cdots = X^{2^{5-n}+1} = 0$.

• Low-energy gravity+gauge theories can be checked to be anomaly-free!

Condensation to $d = 2$

- For $n < 2$, then $d = 10 2^{5-n} < 0$ so this doesn't work.
- In these cases we simply condense to $d=2$, where dilaton background lifts remaining tachyons:

- *•* The three theories obtained in this way are precisely the three 2d heterotic strings known in the literature! [Davis, Larsen, Seiberg '05]
- *•* We have thus connected the known 2d theories with non-SUSY 10d theories via dynamical transitions.

Conclusion

- I) The worldsheets of different string theories can differ by subtle topological terms. These terms explain the different GSO projections, D-brane spectra, and orientifoldings allowed in the theories.
- 2) Tachyonic strings admit lower-dimensional stable vacua. Many of these are known 2d strings.
- *•* Possible future extensions:
	- 1) SPT phases for heterotic worldsheets, e.g. $|U^2_{\text{Spin}}(B\mathbb{Z}_2^5)| = 65,536!$
	- 2) Worldsheet domain walls?
	- 3) Orbifolds: beyond discrete torsion
- *•* There is still much to explore in perturbative string theory!

Justin Kaidi Exploring non-SUSY Strings

The End (for now)

Thank you!