WEDGE HOLOGRAPHY AS GENERALIZATION OF ADS/CFT

YITP, Kyoto University

Yuya Kusuki

Based on [arXiv:2007.06800] collaboration with

Ibrahim Akal, Tadashi Takayanagi, Zixia Wei

Summary 1

[Akal, YK, Takayanagi, Wei]

Generalization

$$AdS_{d+1} = CFT_d$$

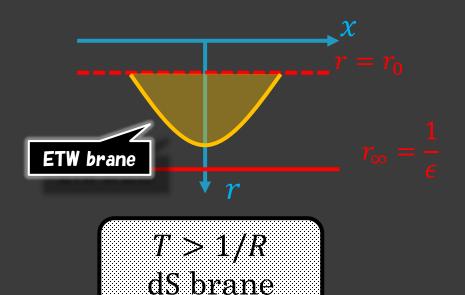
Our Wedge Holography

$$AdS_{d+1} = CFT_{d-1}$$

Motivation

- New laboratory
- \bullet New construction of CFT₁
- Construction is more definite than doubly holography
- Joining gravity from AdS_{d+1} and CFT_{d-1} \Rightarrow radiation setup

Summary 2



[Akal, YK, Takayanagi, Wei]

No asymptotic boundary ⇒ No CFT dual?

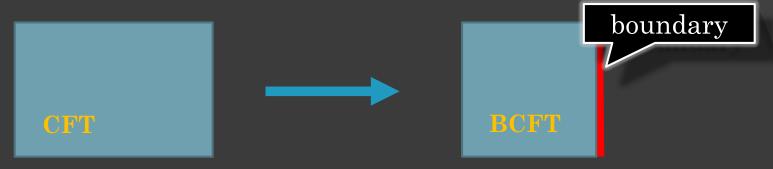
Motivation

- New laboratory
- dS braneworld
- Universe creation setup

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

Boundary CFT



Boundary breaks conformal symmetry...

Conformal Symmetry of BCFT is part of conformal symmetry preserving the bdy. position.

Boundary CFT

Definite definition of BCFT₂ is given by [Cardy].

Difference I: Symmetry

Symmetry of **CFT** is

 $Vir \times \overline{Vir}$

condition to preserve bdy.

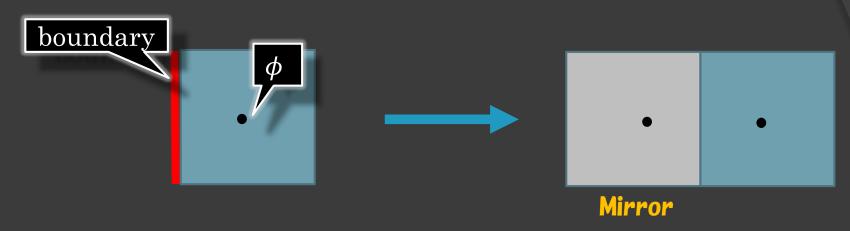
On the other hand, bdy. condition of **BCFT**,

$$T_{xy}=0 \Leftrightarrow L_n-\bar{L}_{-n}=0$$

shows the dependency of Vir and \overline{Vir} . Instead, symmetry of **BCFT** is given by

Vir

Boundary CFT

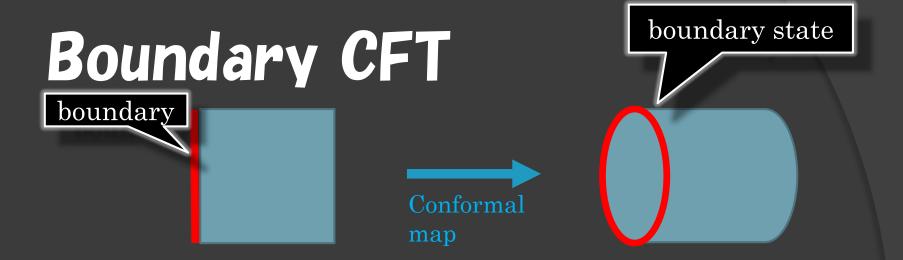


Mirror method:

$$\langle \phi(z) \rangle_{bdy} = \langle \phi(z)\phi(z^*) \rangle \propto \frac{1}{|z-z^*|^{2h_{\phi}}}$$

with z = x + iy.

The second eq. comes from standard conformal Ward id.



Difference III: Basic contents

CFT is specified by central charge OPE coefficient

BCFT has extra contents, boundary state

OPE coefficient among bulk states and boundary states

With all of them, we can explicitly calculate any correlators

Boundary entropy [Affleck, Ludwig]

DoF of boundary is measured by boundary entropy.

$$\langle 0 |$$
 $\langle B \rangle$ Conformal map Disk partition function

$$S_{bdy} = \log g_B, \quad g_B = \langle 0|B \rangle \simeq Z_{disk}$$

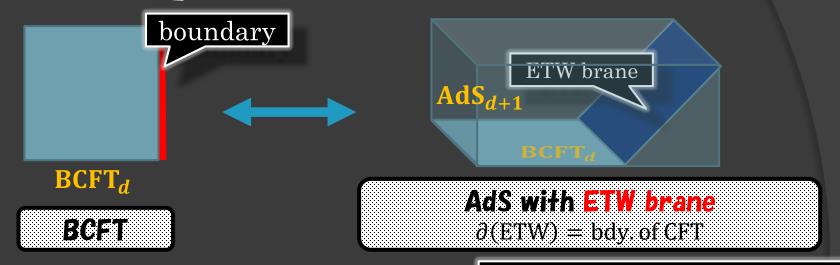
Interesting point:

• g-theorem [Friedan, Konechny]

 S_{bdv} decreases under the RG flow like central charge

⇒consistent with DoF measure interpretation

Gravity dual of BCFT [Fujita, Tonni, Takayanagi]



Induced metric: $h_{\mu\nu} = g_{\mu\nu} - n_{\mu}n_{\nu}$, Extrinsic curvature: $K_{\mu\nu} = h_{\mu}^{\ \rho} h_{\nu}^{\ \lambda} \nabla_{\rho} n_{\lambda}$

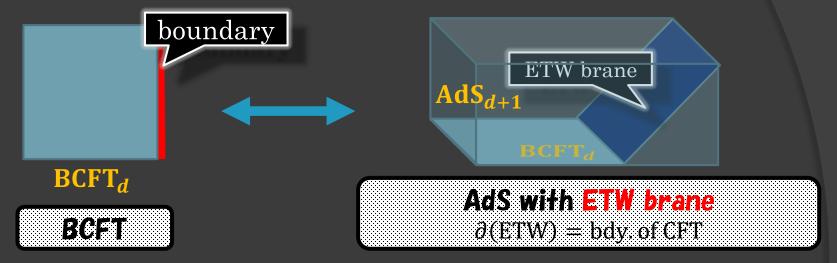
Gravity action:

$$I = -\frac{1}{16\pi G_N} \int_N \sqrt{g} (R - 2\Lambda) - \frac{1}{8\pi G_N} \int_Q \sqrt{h} (K - T)$$

Neumann b.c. is imposed on the brane (Einstein eq. of brane).

$$K_{ab} - Kh_{ab} = -Th_{ab}$$

Gravity dual of BCFT [Fujita, Tonni, Takayanagi]



Interesting point of AdS/BCFT:

Boundary provides dynamical spacetime on ETW (see also [Randull-Sandrum])

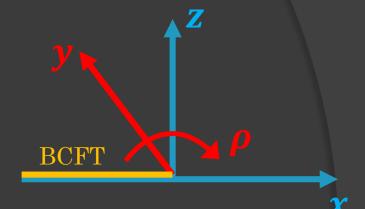
This is the reason why resent progresses about Page curve utilize AdS/BCFT

Gravity dual of BCFT

Simple example:

Poincare patch:

$$ds^{2} = R^{2} \left(\frac{dz^{2} - dt^{2} + dx^{2} + d\vec{w}^{2}}{z^{2}} \right)$$



Let us consider a BCFT on a UHP (x < 0).

It is useful to use the coordinate $(x = \frac{y}{\cosh \frac{\rho}{R}}, z = \frac{y}{\cosh \frac{\rho}{R}})$,

$$ds^{2} = d\rho^{2} + R^{2} \cosh^{2} \frac{\rho}{R} \left(\frac{dy^{2} - dt^{2} + d\overrightarrow{w}^{2}}{y^{2}} \right)$$

The bdy. position $\rho = \rho(y)$ is fixed by the Neumann b.c.

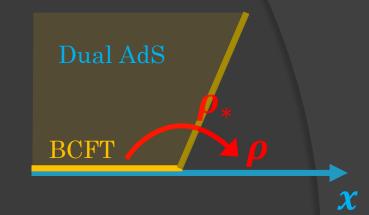
$$K_{ab} - Kh_{ab} = -Th_{ab}$$

Gravity dual of BCFT

$$K_{ab} - Kh_{ab} = -Th_{ab}$$

A solution to the Neumann b.c. is

$$ho =
ho_*$$
 s.t. $T = \frac{d-1}{R} \tanh \frac{
ho_*}{R}$



By an appropriate map from this UHP, the gravity dual of a disk partition function (= boundary entropy) is obtained.

$$S_{bdy} = -I_{disk} = \frac{\rho_*}{4G_N}$$

 S_{bdy} becomes large as the size of the space is increased (i.e. ρ_* is increased)

⇒boundary becomes **classical** (explained later)

[Ryu, Takayanagi]

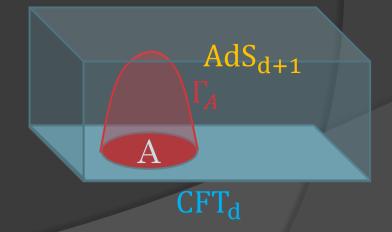
EE can probe how much information about A can be extracted from subregion A in CFT.

$$S_A = \operatorname{tr} \rho_A \log \rho_A$$
, $\rho_A = \operatorname{tr}_{\bar{A}} \rho$

Gravity dual of EE is

$$S_A = \min_{\Gamma_A} \left(\frac{\operatorname{Area}(\Gamma_A)}{4G_N} \right)$$

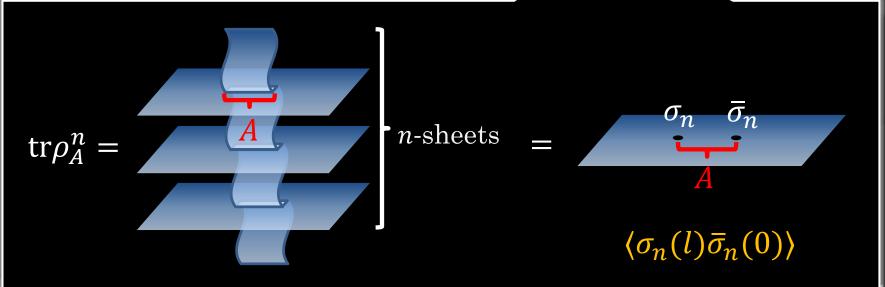
$$\partial \Gamma_A = \partial A$$



 \Rightarrow Gravity calculation is easy

CFT calculation is also not so hard (replica trick).

$$S_A = \operatorname{tr} \rho_A \log \rho_A = \lim_{n \to 1} \frac{1}{1 - n} \log \operatorname{tr} \rho_A^n$$
, $\rho_A = \operatorname{tr}_{\bar{A}} \rho$



-3/43

CFT calculation is also not so hard (replica trick).

$$S_A = \operatorname{tr} \rho_A \log \rho_A = \lim_{n \to 1} \frac{1}{1-n} \log \operatorname{tr} \rho_A^n, \quad \rho_A = \operatorname{tr}_{\bar{A}} \rho$$

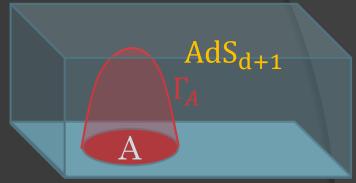
$$\operatorname{tr}\rho_A^n = \langle \sigma_n(l)\bar{\sigma}_n(0) \rangle = \frac{1}{l^{2h_{\sigma_n}}}$$

where $h_{\sigma_n} = \frac{c}{24} \left(n - \frac{1}{n} \right)$. The second eq. is just Ward id. As a result,

$$S_A = \frac{c}{3} \log \frac{l}{\epsilon}$$

-6/43

$$S_A = \min_{\substack{\Gamma_A \\ \partial \Gamma_A = \partial A}} \left(\frac{\operatorname{Area}(\Gamma_A)}{4G_N} \right)$$



Usefulness

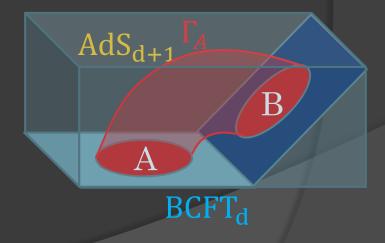
CFT_d

- Both gravity and CFT calculation are *easy* ⇒ For this reason, we will use this to justify our new holography.
- Useful to probe global feature
 - Which is part of gravity dual to subregion A in CFT? Sub-region/sub-region duality (see [Suzuki, YK, Takayanagi, Umemoto])
 - c-theorem [Myers-Sinha]
 - ⇒ How is this generalized to AdS/BCFT?

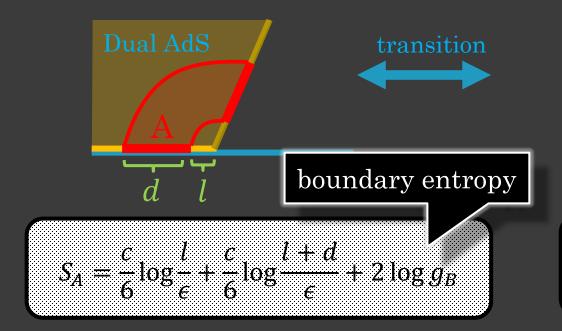
Difference

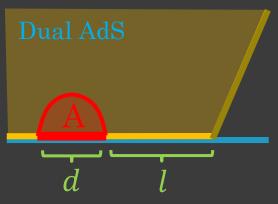
- RT surface can end on ETW brane (which satisfies homologous cond. from string perspective.)
- DoF of boundary (boundary entropy) also contributes to S_A .

$$S_A = \min_{\substack{\Gamma_A \\ \partial \Gamma_A = \partial A \cup \partial B}} \left(\min_{B} \frac{\text{Area}(\Gamma_A)}{4G_N} \right)$$



Simple example:





$$S_A = \frac{c}{3} \log \frac{d}{\epsilon}$$

This entanglement entropy can be completely reproduced by **CFT** calculation (replica trick and **mirror method**)

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

Developments from AdS/BCFT

[Akal, YK, Takayanagi, Wei]

Original Holography

d+1 dimensional AdS = d dimensional CFT

Generalization

Our Wedge Holography

d+1 dimensional AdS = d-1 dimensional CFT

Developments from AdS/BCFT

[Akal, YK, Takayanagi, Wei]

Original Holography

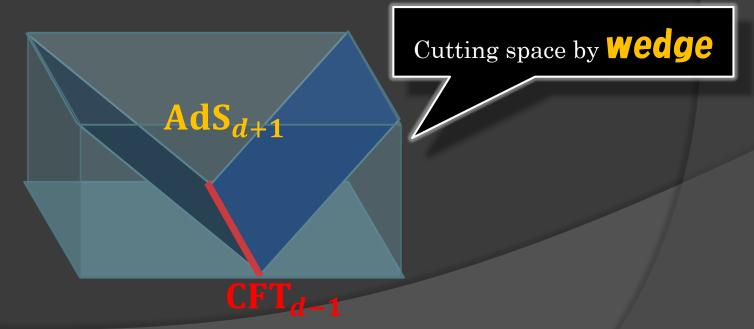
d+1 dimensional AdS = d dimensional CFT

Developments from AdS/BCFT

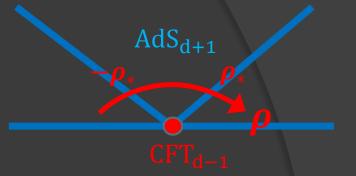
[Akal, YK, Takayanagi, Wei]

Our Wedge Holography

d+1 dimensional AdS = d-1 dimensional CFT



Wedge Holography



Definition of wedge:

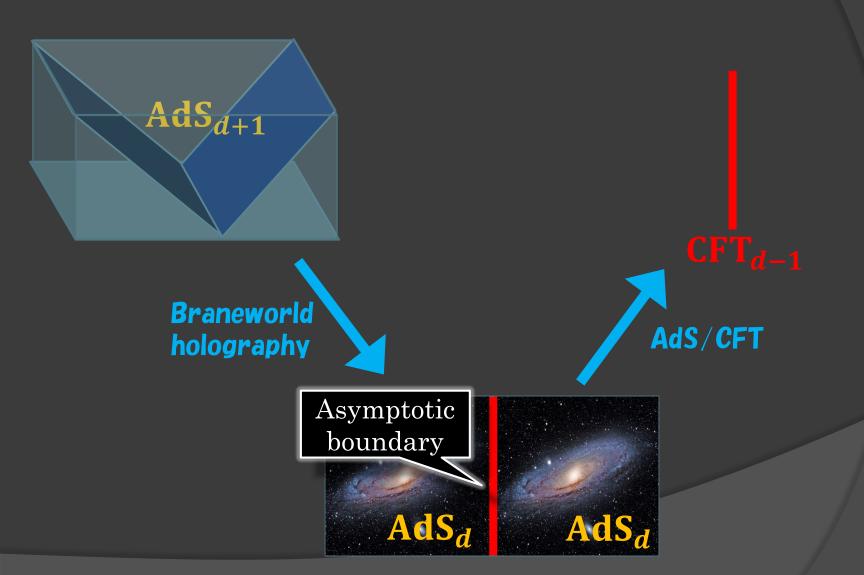
$$\begin{split} ds_{AdS_{d+1}}^2 &= d\rho^2 + R^2 \cosh^2 \frac{\rho}{R} \left(\frac{dy^2 - dt^2 + d\overline{w}^2}{y^2} \right) \\ &= d\rho^2 + \cosh^2 \frac{\rho}{R} ds_{AdS_d}^2 \end{split}$$

Restricted to **wedge** subspace $-\rho_* \le \rho \le \rho_*$

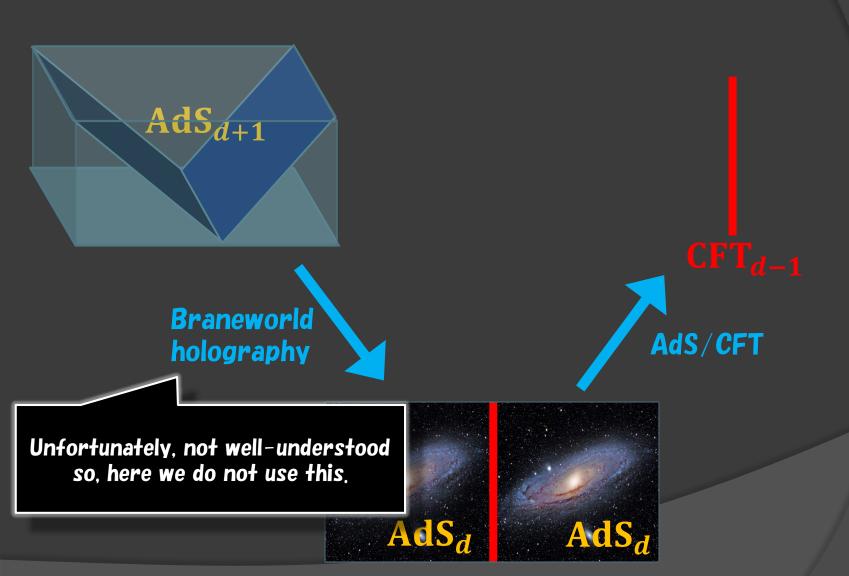
 \Rightarrow asymptotic boundary is d-1 dimensional theory

Our proposal: This is $\overline{CFT_{d-1}}$

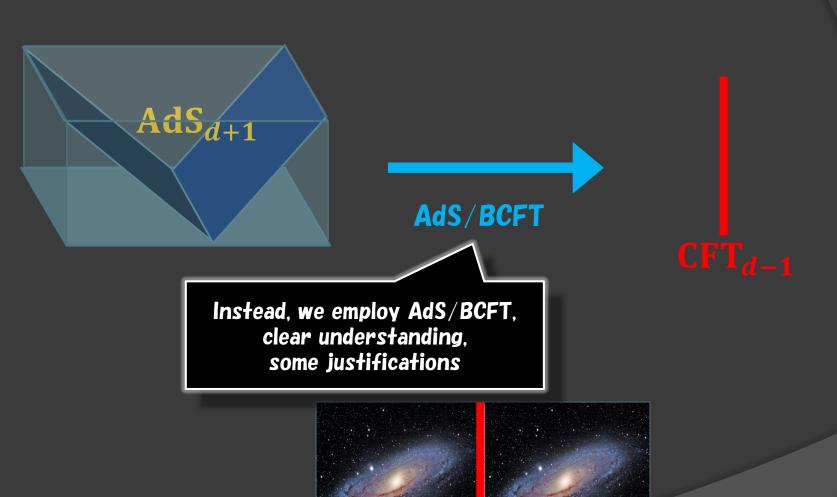
Naive derivation?



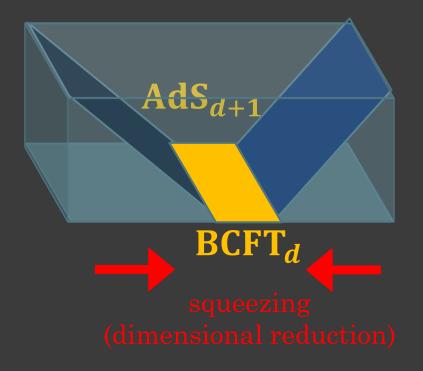
Naive derivation?



Naive derivation?



Derivation from AdS/BCFT



Definition: Limit of BCFT (very clear!)

Derivation from AdS/BCFT

Definition: Limit of BCFT (very clear!)

 \Rightarrow But is this really CFT?

Justifications:

- Brane world holography + AdS/CFT (at least large ρ_*)
- Boundary of BCFT $_d$ can be thought of as CFT $_{d-1}$, because OPE of boundary state also satisfies axiom of CFT. In this sense, our CFT $_{d-1}$ can be interpreted as two boundaries interacting with each other through bulk.
- From now on, we see matching of gravity calculation and CFT calculation for some physical quantities.

One check of holography principle can be done by seeing **free energy**.

The on-shell action of AdS_{d+1} (without boundaries) has the following form (see [Henningson, Skendteries]),

$$I = \# \frac{1}{\epsilon^d} + \# \frac{1}{\epsilon^{d-2}} + \dots + \# \frac{1}{\epsilon^2} - \# \log \epsilon + O(1) \qquad \text{(if } d = odd)$$

$$I = \# \frac{1}{\epsilon^d} + \# \frac{1}{\epsilon^{d-2}} + \dots + \# \frac{1}{\epsilon} + O(1) \qquad \text{(if } d = even)$$

In fact, CFT_d has the same form.

$$I_{AdS_{d+1}} = I_{CFT_d}$$

This is one consistency check of the AdS_{d+1} /CFT_d correspondence.

Let us consider $\overline{AdS_{d+1}/CFT_{d-1}}$.

Of course, without the wedge, we can conclude

$$I_{AdS_{d+1}} \neq I_{CFT_{d-1}}$$

Therefore, the contribution from the **wedge** should have some non-trivial effects. We will see this.

For simplicity, let us focus on AdS₄/CFT₂.

We know

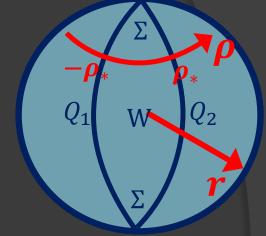
$$I_{CFT_2} = \#\frac{1}{\epsilon^2} + \frac{c}{6}\chi(\Sigma)\log\epsilon + O(1)$$

Let's calculate the gravity action of wedged AdS4 directly!

Metric of Euclidian AdS_{d+1} :

$$ds^{2} = d\rho^{2} + R^{2} \cosh^{2} \frac{\rho}{R} (d\eta^{2} + \sinh^{2} \eta \, d\Omega_{d-1}^{2})$$

= $dr^{2} + R^{2} \sinh^{2} \frac{r}{R} (d\theta^{2} + \cos^{2} \theta \, d\Omega_{d-1}^{2})$



On-shell action gravity action on this wedge geometry,

$$I = -\frac{1}{16\pi G_N} \int_{W} \sqrt{g} (R - 2\Lambda) - \frac{1}{8\pi G_N} \int_{Q_1 \cup Q_2} \sqrt{h} (K - T) - \frac{1}{8\pi G_N} \int_{\Sigma} \sqrt{h} K$$

For the wedged AdS₄, we have

$$I_{WAdS_4} = -\frac{R^2}{2G_N \epsilon^2} \sinh \frac{\rho_*}{R} + \frac{R^2}{G_N} \sinh \frac{\rho_*}{R} \log \epsilon + O(1)$$

$$I_{WAdS_4} = -\frac{R^2}{2G_N \epsilon^2} \sinh \frac{\rho_*}{R} + \frac{R^2}{G_N} \sinh \frac{\rho_*}{R} \log \epsilon + O(1)$$

The form for CFT₂ is

$$I_{CFT_2} = \# \frac{1}{\epsilon^2} + \frac{c}{6} \chi(\Sigma) \log \epsilon + O(1)$$

The ϵ dependence perfectly matches !!

The central charge (i.e. degrees of freedom) of the wedged AdS_4 is ($\chi(S^2) = 2$)

$$c = \frac{3R^2}{G_N} \sinh \frac{\rho_*}{R}$$

Next, we will check this result in an independent way.

Entanglement entropy

Entanglement entropy can be evaluated from both **CFT** and **gravity** side. Therefore, it is very useful to check our new holographic principle.

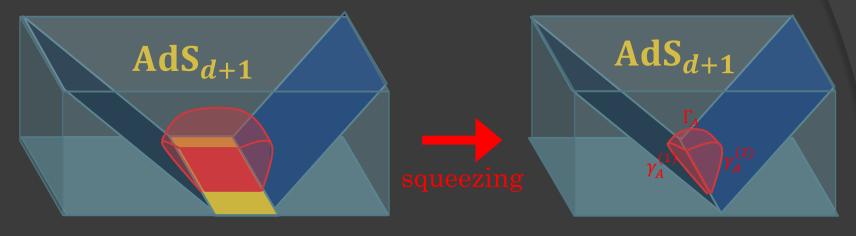
For simplicity, let us focus on AdS_4/CFT_2 and consider a single interval Λ with size l.

In this case, the entanglement entropy in CFT₂ is known as

$$S_A = \frac{c}{3} \log \frac{l}{\epsilon}$$

Let us compare this with gravity calculation.

Holographic EE



well-known HEE formula

our HEE formula

The holographic entanglement entropy for our holography is naturally defined by recalling its definition,

$$S_{A} = \min_{\substack{\gamma_{A}^{(1)}, \gamma_{A}^{(2)} \\ \partial \gamma_{A}^{(1,2)} = \partial A}} \left(\min_{\substack{\Gamma_{A} \\ \partial \Gamma_{A} = \gamma_{A}^{(1)} \cup \gamma_{A}^{(2)}}} \left(\frac{\operatorname{Area}(\Gamma_{A})}{4G_{N}} \right) \right)$$

Holographic EE

This formula in 4d case leads to

$$S_A = \frac{R^2}{G_N} \sinh \frac{\rho_*}{R} \log \frac{l}{\epsilon}$$

This form matches with the CFT₂ result.

We can extract the **central charge** from this result as

$$c = \frac{3R^2}{G_N} \sinh \frac{\rho_*}{R}$$

This is completely same as the previous result!

Note: we can see this matching for more general cases (higher dimension and intervals).

Holographic EE

Double interval case:

We should find **transition**, like the standard HEE.

Implication:

CFT dual to Wedge geometry is similar to holographic CFT (i.e. sparse CFT)

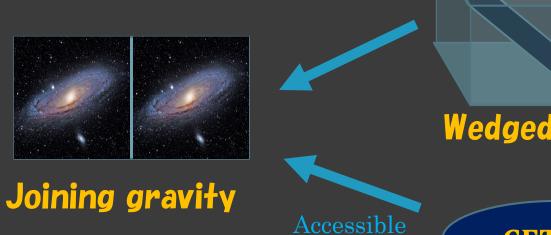
Finding explicit constraints on the CFT data is interesting future work!

- \odot CFT_{d-1} dual to AdS_{d+1}
 - $\bullet c = \frac{3R^2}{G_N} \sinh \frac{\rho_*}{R}$
 - Sparseness (not the same as HKL sparseness)
 - Large DoF of AdS_{d+1} leads to infinite tower of primary operators, which are interpreted as KK modes in brane world.

⇒NOT holographic CFT

• Zero size limit seems to be singular, but from gravity perspective, quantity in CFT_{d-1} are well-defined as wee saw.

Braneworld holography



Braneworld holography

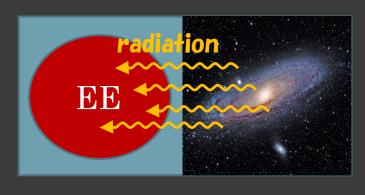
Joining gravity

From compactification,
$$\frac{1}{G_N^{(d)}} = \frac{R}{G_N^{(d+1)}} \sinh \frac{\rho_*}{R}$$

$$c_{AdS_3} \times 2 = \frac{3R}{2G_N^{(3)}} \times 2 = \frac{3R^2}{G_N^{(4)}} \sinh \frac{\rho_*}{R}$$

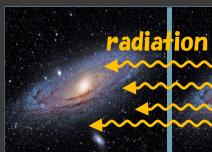
is consistent with the central charge derived from EE.

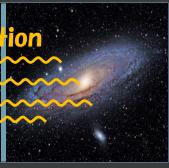
double holography [Almheri, Mahajan, Maldacena, Zhao]



Accessible

AdS_{d+1}
B
BCFT_d



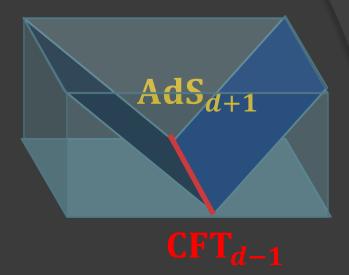


More realistic setup [Geng, Karch, Paradavila, Raju, Randall, Riojas, Shashi]

Summary 1

Wedge Holography

$$AdS_{d+1} = CFT_{d-1}$$



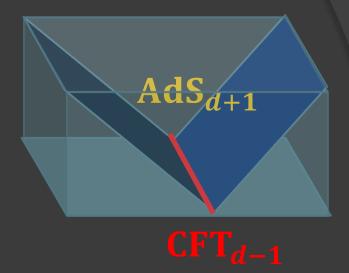
Justifications

- Brane world picture: Brane world holography + AdS/CFT (at large ρ_*)
- BCFT picture:
 CFTs on two boundaries with bulk interaction
- Matching of physical quantities
 explicit calculation of DoF and EE from both sides

Summary 1

Wedge Holography

$$AdS_{d+1} = CFT_{d-1}$$



Future direction

- Employing this new laboratory
- Identifying universal properies of CFT_{d-1}
- Joining gravity from AdS_{d+1} and CFT_{d-1} \Rightarrow more general double holography setup
- More justification (e.g. realization via string theory)

Appendix (Another wedge holography)

Let us consider more general case.

BTZ is simplest one other than Poincare AdS.

Metric of BTZ:

$$ds^{2} = -(r^{2} - r_{0}^{2})dt^{2} + R^{2} \frac{dr^{2}}{r^{2} - r_{0}^{2}} + r^{2}dx^{2}$$

Coordinate transformation

$$t' \pm x' = \pm e^{\frac{r_0}{R}(x \pm t)} \sqrt{1 - \frac{r_0^2}{r^2}}, \ z = \frac{r_0}{r} e^{\frac{r_0}{R}x}$$

Poincare:

$$ds^{2} = R^{2} \left(\frac{dz^{2} - dt'^{2} + dx'^{2}}{z^{2}} \right)$$

General solution to Neumann bdy. in Poincare metric

$$(z - \alpha)^2 + (x' - p)^2 - (t' - q)^2 = \beta^2$$

Its tension is $T = \frac{\alpha}{\beta R}$

Coordinate transformation

RT < 1: AdS₂ brane

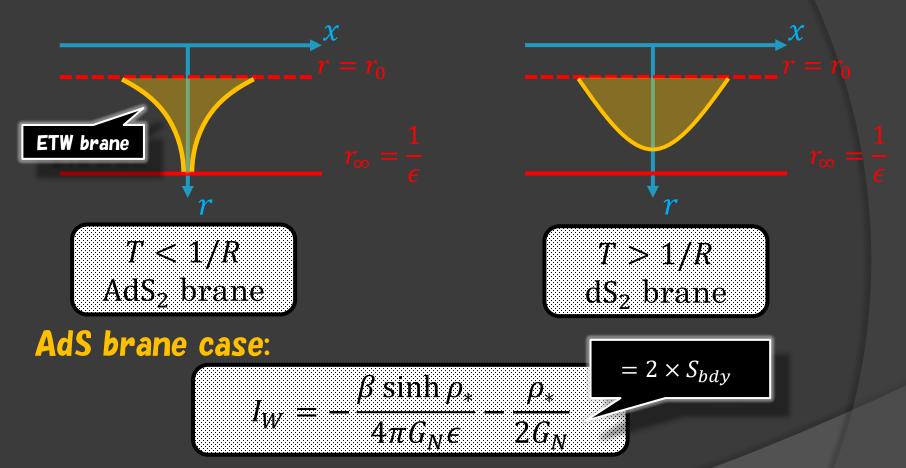
$$r(x) = \frac{r_0 TR}{\sqrt{1 - T^2 R^2} \sinh \frac{r_0 x}{R}}$$

RT = 1: R_2 brane

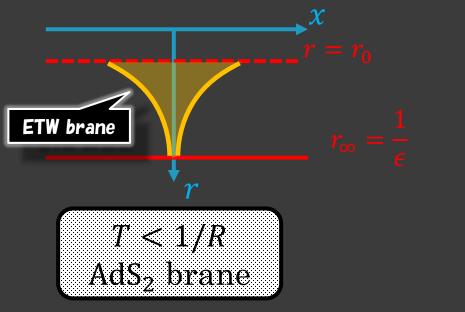
$$r(x) = 2r_0 e^{\frac{r_0 x}{R}}$$

RT > 1: dS_2 brane

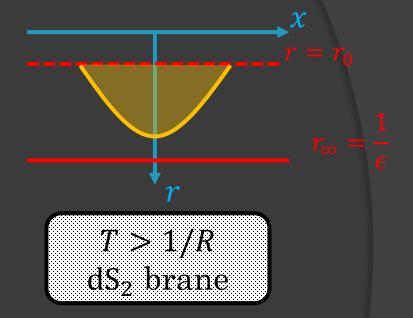
$$r(x) = \frac{r_0 TR}{\sqrt{T^2 R^2 - 1} \cosh \frac{r_0 x}{R}}$$



Gravity action is consistent with anomaly of CFT₁. DoF of CFT₁ is equal to DoF of two AdS branes.



dS brane case?

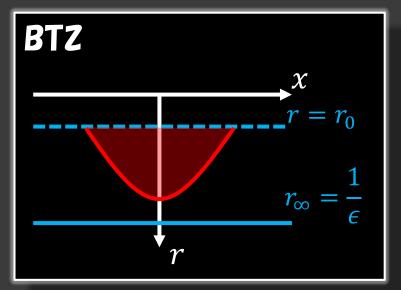


No asymptotic boundary \Rightarrow No CFT dual ?

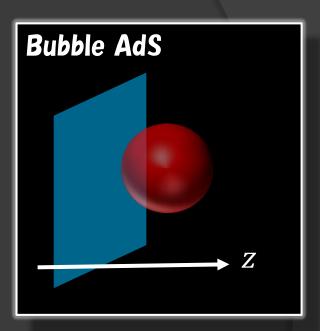
Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

Imaginary BCFT



back to (Euclidean) Poincare

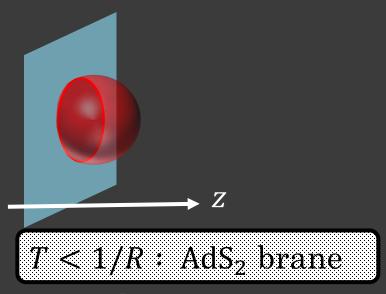


Profile of **bubble** brane is

$$(z - \alpha)^2 + x^2 + t^2 = \beta^2$$
 with $|\alpha| > |\beta|$

Bubble AdS had not been considered in AdS/BCFT context. Here, we give the CFT dual of this bubble AdS.

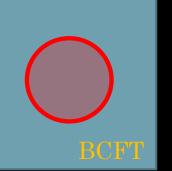
Imaginary BCFT



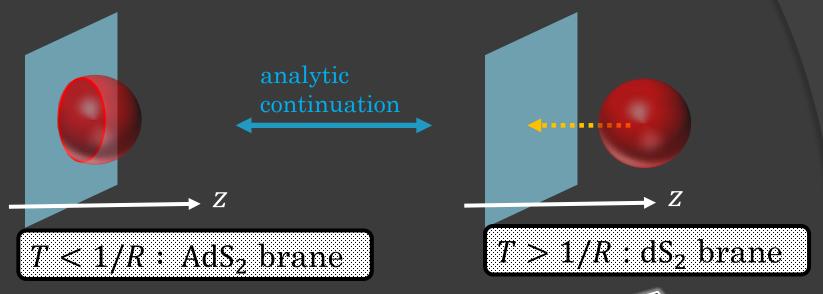
This geometry has BCFT dual (**known!**). Its bdy. is circle with radius

$$r^2 = \beta^2 - \alpha^2$$

Note that $T < 1/R \iff \beta^2 > \alpha^2$



Imaginary BCFT



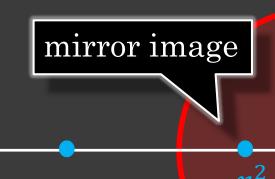
T > 1/R implies

$$r^2 = \beta^2 - \alpha^2 < 0$$

Imaginary radius is problematic, but in gravity picture, this analytic continuation is not so problematic. We formally define **imaginary BCFT**.

EE in BCFT

Let us recall that mirror method can completely fix 1pt.correlator.

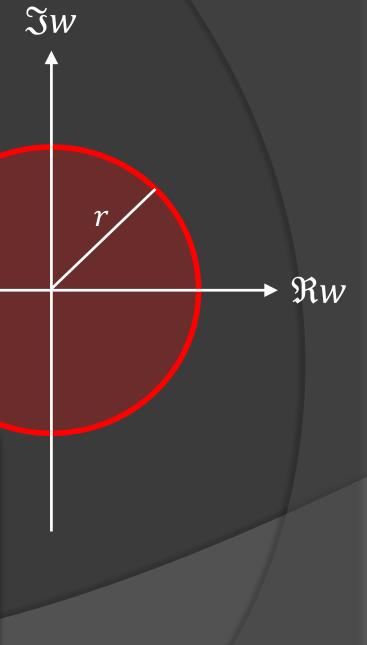


 χ

1-pt. correlator in BCFT is

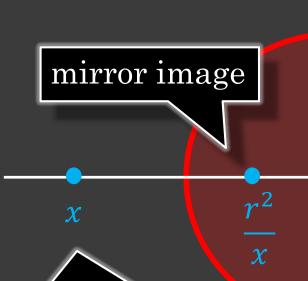
$$\langle \phi(x) \rangle_{disk} \simeq \left\langle \phi(x) \phi\left(\frac{r^2}{x}\right) \right\rangle$$

up to conformal prefactor.



EE in BCFT

Let us recall that mirror method can completely fix 1pt.correlator.



3w

1-pt. correlator in BCFT is

$$\langle \phi(x) \rangle_{disk} = g_B \left(\frac{r}{|w|^2 - r^2} \right)^{2h_{\phi}}$$

 $\rightarrow \Re w$

EE in BCFT

For example, EE in the right setup can be evaluated by

$$\langle \sigma_n(\tau + ia) \rangle_{disk} = g_B \left(\frac{r}{\tau^2 + a^2 - r^2} \right)^{2h_{\sigma_n}}$$

where σ_n is twist op. with $h_{\sigma_n} = \frac{c}{24} \left(n - \frac{1}{n} \right)$ After analytic continuation $\tau \to it$,

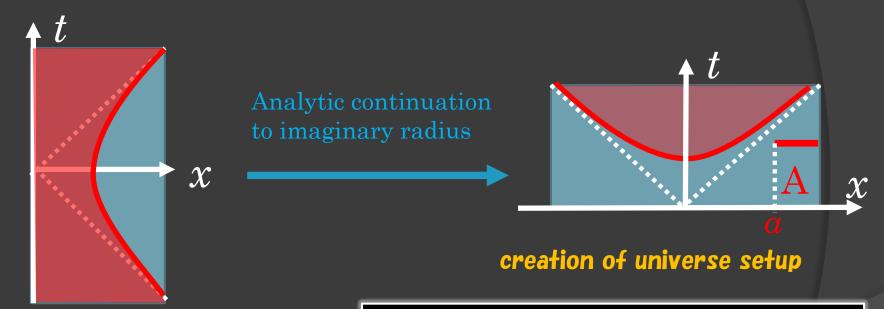
$$S_A(t) = \lim_{n \to 1} \frac{1}{1 - n} \log(\sigma_n(\tau + ia))_{disk}$$
$$= \frac{c}{6} \log \frac{a^2 - t^2 - r^2}{\epsilon r} + S_{bdy}$$

Lorentzian ver. of Euclidean disk

where $S_{bdy} = \log g_B$ is boundary entropy

EE in Im-BCFT

Let us consider imaginary BCFT in physical setup



Naïve analytic continuation is **imaginary**. To be more careful.

$$S_{A}(t) = \frac{c}{6} \log \frac{a^2 - t^2 + r^2}{\frac{i}{\epsilon}r} + S_{bdy}$$

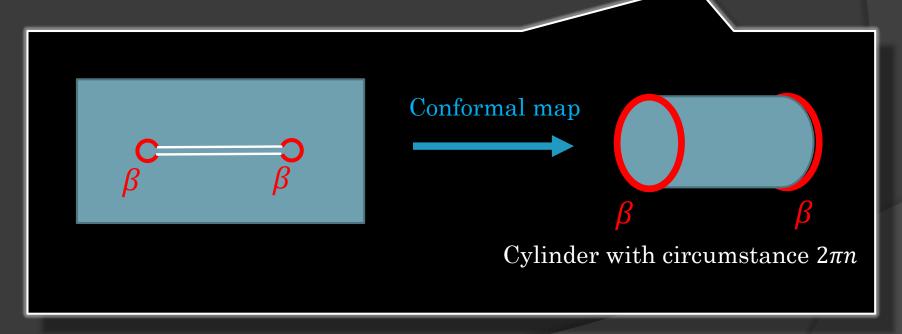
 σ_n = hole with radius ϵ

 $\log \frac{R}{\epsilon}$

EE in Im-BCFT

$$g_B = \langle \sigma_n | B \rangle = \frac{Z_n^{\beta, B}}{\left(Z_1^{\beta, B}\right)^n}$$

where β is boundary state related to σ_n (which can be absorbed in regularization ϵ)



σ_n = hole with radius ϵ

EE in lm-BCFT

$$g_B = \langle \sigma_n | B \rangle = \frac{Z_n^{\beta, B}}{\left(Z_1^{\beta, B}\right)^n}$$

 $\log \frac{R}{\epsilon}$

where β is boundary state related to σ_n (which can be absorbed in regularization ϵ)

$$Z_n^{\beta,B} = \langle \beta | e^{-\frac{1}{2\pi n} \log \frac{R}{\epsilon} H} | B \rangle \underset{\epsilon \to 0}{\longrightarrow} e^{-\frac{1}{2\pi n} \log \frac{R}{\epsilon} E_0} \langle \beta | 0 \rangle \langle 0 | B \rangle$$

R is formal radius $R = 1 (\rightarrow i \text{ later})$. As a result,

$$\langle \sigma_n | B \rangle = \left(\frac{R}{\epsilon}\right)^{-2h_{\sigma_n}} (\langle \beta | 0 \rangle \langle 0 | B \rangle)^{1-n}$$

Analytic continuation $(R \rightarrow iR)$ leads to important point

$$\langle \sigma_n | Im - B \rangle = i^{-2h_{\sigma_n}} \langle \sigma_n | B \rangle$$
 cancel imaginary part

$$S_{A}(t) = \frac{c}{6} \log \frac{a^2 - t^2 + r^2}{\epsilon r} + \frac{S_{bdy}}{\epsilon}$$

EE in lm-BCFT

CFT calculation is non-trivial but gravity calculation is trivial (just a geodesic in a cut AdS).

Consistency check from gravity calculation is possible.

$$S_{A} = \lim_{n \to 1} \frac{1}{1 - n} \log \langle \sigma_{n}(a, t) \overline{\sigma_{n}}(b, t) \rangle_{Im-disk}$$

$$= \begin{cases} \frac{c}{6} \log \frac{a^{2} + r^{2} - t^{2}}{r\epsilon} + \frac{c}{6} \log \frac{b^{2} + r^{2} - t^{2}}{r\epsilon} + 2g_{B} & : \text{disconnected} \\ \frac{c}{3} \log \frac{b - a}{\epsilon} & : \text{connected} \end{cases}$$

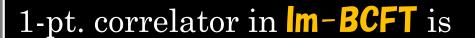
CFT calculation based on our prescription completely matches with the gravity calculation!

BCFT Correlator

3w

reflect

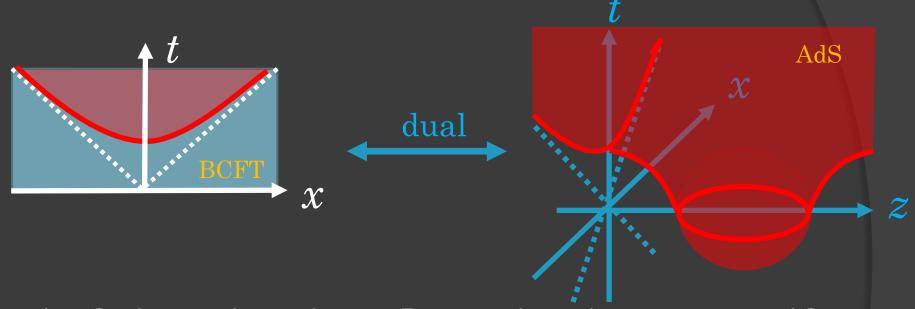
Instead of technical consideration, we can give a **simple calculation rule** of a correlator in Im-BCFT.



$$\langle \phi(x) \rangle_{disk} = \left(\frac{r}{|w|^2 + r^2}\right)^{2h_{\phi}}$$

 $\Re w$

Lorentzian Im-BCFT



Analytic continuation to Lorentzian signature provides time-like boundary in CFT.

This setup is interesting for two reasons:

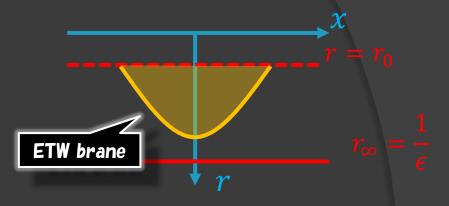
- universe creation setup
- dS braneworld (as mentioned before) by CFT description as boundary state

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

Summary 2

dS brane/Imaginary BCFT duality

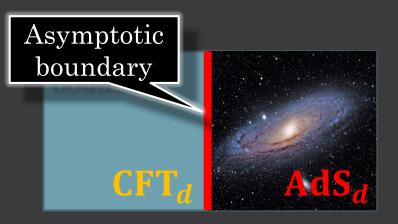


T > 1/R dS brane

Future direction

- Employing this new laboratory
- More understanding of dS braneworld holography
- Universe creation setup
- More justification

Appendix (extra comments)



Setup:

 AdS_d & CFT_d are glued along the (asymptotic) boundary

This AdS_d is dynamical.

Light can go through asymptotic boundary.

We can discuss the Page curve in this setup.

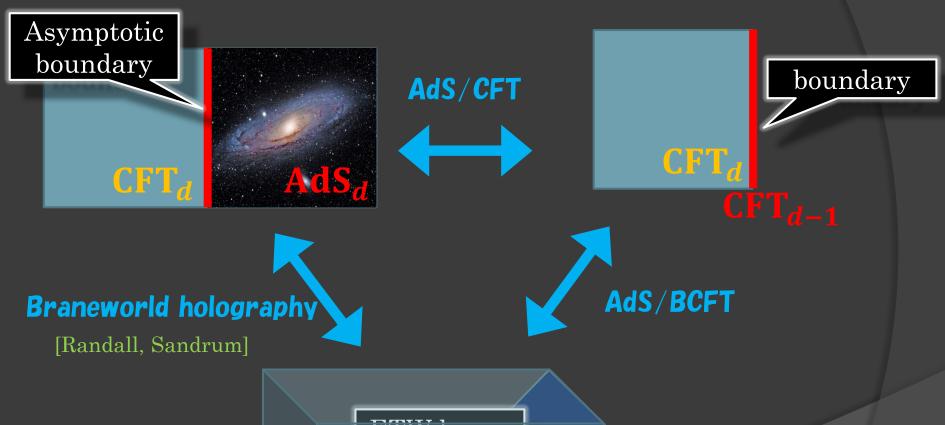
Setup:

AdS_d & CFT_d are glued along the (asymptotic) boundary

AdS/CFT correspondence:

$$AdS_d = CFT_{d-1}$$

This CFT_{d-1} can be thought of as boundary object of CFT_d



AdS_{d+1}

These three pictures are same

