Digging traversable wormholes

Roberto Emparan
ICREA & UBarcelona

East Asian Strings Webinar 9 April 2021

Based on

2012.07821 [hep-th] w/ Brianna Grado-White Don Marolf Marija Tomašević

and work in progress w/ Marija Tomašević

Wormholes in this talk

Lorentzian

Traversable

In a single universe

What can spacetime do?

What topologies?

What connectivity in space and in time?

Classical or quantum matter?

What does it mean?

Geometric duals of quantum teleportation

Patterns of holographic entanglement

Are they possible?

Negative null energy required

Repulsive effect on light rays Negative null energy

$$T_{\mu\nu}\ell^{\mu}\ell^{\nu} < 0$$

Topological censorship

Assume Null Energy Condition (NEC)

$$T_{\mu\nu}\ell^{\mu}\ell^{\nu} \geq 0$$

Then, causal curves are deformable

to boundary of spacetime

⇒ ∄wormholes

Weaker assumption

Averaged (integrated) Null Energy Condition (ANEC)

$$\int_{\gamma} d\lambda \, T_{\mu\nu} \ell^{\mu} \ell^{\nu} \ge 0 \qquad \qquad \text{for } \alpha$$

 γ : complete null curve

is enough for theorem

Even weaker assumption

Achronal Averaged Null Energy Condition (AANEC)

$$\int_{\mathcal{V}} d\lambda \, T_{\mu\nu} \ell^{\mu} \ell^{\nu} \geq 0 \text{ along achronal null lines}$$

achronal light ray = "fastest path"

Classical Matter

Null Energy is positive (NEC)

Cannot defocus

Traversable wormholes impossible

Quantum Matter

Null Energy can be negative NEC

Achronal ANEC holds

Quantum Physics

Null Energy can be negative NEC

⇒ traversable wormholes become possible

Achronal ANEC holds

⇒ only long wormholes

Achronal ANEC holds

Quantum Physics

Achronal ANEC implies:

- Short wormholes impossible
- Inter-universe wormholes impossible
- Long wormholes possible

Short wormhole

Achronal ANEC 🦃

integrated energy < 0
fastest path
achronal

inter-universe wormhole: ultra-short

Near-extremal Reissner-Nordstrom

long throat

large redshift: small energies

Maldacena+Milekhin+Popov 2018

Near-extremal RN near horizon $AdS_2 \times S^2$

non-traversable wormhole

ER bridge

Rindler-AdS₂

$$ds^2 = -(r^2 - 1)dt^2 + \frac{dr^2}{r^2 - 1}$$

traversable wormhole

Global AdS₂

$$ds^2 = -(r^2 + 1)dt^2 + \frac{dr^2}{r^2 + 1}$$

non-traversable wormhole

ER bridge

Rindler-AdS₂

$$ds^2 = -(r^2 - 1)dt^2 + \frac{dr^2}{r^2 - 1}$$

positive energy above extremality

Global AdS₂

$$ds^2 = -(r^2 + 1)dt^2 + \frac{dr^2}{r^2 + 1}$$

negative energy

M>Q Reissner-Nordstrom

if lower energy is required, then, how about M<Q?

Need Quantum

Negative Casimir energy

Where/how?

$$S^1 \times S^2 - \{\infty\}$$

Casimir in S² won't do

Casimir in S^1 does it

Negative Casimir energy from massless (conformal) effective 1+1 fields along S^1

Electrons in magnetic RN

Landau ground state level

Maldacena+Milekhin+Popov 2018

"Dark CFT" from 5D bulk

Maldacena+Milekhin 2020

Energetics

Energetics

Energy "above" extremality

$$E_{binding} = -\frac{N_f Q}{16\ell}$$

$$E_{binding} = -\frac{N_f Q}{16\ell}$$

Remarks

- Small binding energy: fragile wormhole
- May allow for $d \leq \ell$
- Can only make single-universe wormholes
- Attraction between mouths?
 - merger time $d^{3/2}$ long enough to cross
 - may balance w/ fluxtube, strings, rotation...

Variations on the theme of wormholes

More versatile constructions:

• Casimir energy from cosmic string zero-modes on S^1 Fu+Grado-White+Marolf 2018

• Several U(1)s

Entanglement and Teleportation

Gao+Jafferis+Wall 2016 Maldacena+Qi 2018

The two "black hole mouths" are entangled

Microscopic degrees of freedom in Bell-like state

Sending a particle through a wormhole is dual to using entanglement as resource for quantum teleportation

Multiple wormholes?

Fragile!

Make *small corrections*

Three-mouth wormholes

Acquire a ready-made wormhole

Insert a small black hole in it

Connect to small black hole outside

Inserting the small mouth

Technically straightforward:

Perturbations w/ matched asymptotics

How large the third black hole?

Choking the throat?

Semiclassical black holes have $m \gg m_{Planck}$

Throat redshift helps, but how large can m be?

Backreaction calculation shows that throat remains open if

small bh mass
$$m < \frac{1}{8\sqrt{\pi}} N_f \; m_{Planck}$$

Then
$$E_{bh} < |E_{binding}|$$

 \Rightarrow if $N_f \gg 1$ then a semiclassical three-mouth wormhole is possible

(also need small enough bh radius to fit inside throat – can do it)

Lowering the mass

Choking the throat, now?

Near the big mouth

 $m\gg |E_{binding}|$ (no redshift help)

Lowering the mass

Lower it à la Geroch

Slowly, hanging from a string

Calculation shows it is safe for

$$m \lesssim \frac{1}{8\sqrt{\pi}} N_f m_{Planck}$$

So

It is possible to construct three-mouth wormholes with two big mouths/one small mouth

Smallsmouth strikes again

Can insert many small mouths

as long as $\sum_{i} E_{bh,i} < |E_{binding}|$

Signalling between mouths

Leaky pipeline

Particle or wave from A to B may be (partially) absorbed by c

Absorption \propto area of $c \propto$ dof's of $c \propto$

Angular dependence \leftrightarrow SU(2) R-charge of qubits

Signalling between mouths

Time delay

Message from A to B delayed (Shapiro) by mass c

Increased complexity of decoding the message

Multi-partite entanglement

Marolf+Maxfield+Peach+Ross 2015

Mostly bipartite entanglement

Tripartite entanglement

Multi-partite entanglement

Conclusions

• Intra-universe traversable wormholes are physically allowed

Maldacena+Milekhin+Popov Fu+Grado-White+Marolf

- Multi-mouth traversable wormholes also allowed – two big mouths + small mouths
- Multi-wormholes reveal new multi-partite holographic entanglement structures