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@ Introduction ®@
Quantum Entanglement (QE) A B

Two parts (subsystems) A and B in a total system are
guantum mechanically correlated.

e.g. Bellstate: |Wg,) - UT ®‘¢ +‘¢> ®‘T> ]

Pure States: Non-zero QE Q“P>AB 7 ‘\111>A ®“P2>B

Direct Product

(1) (1)
Mixed States: Non-zero QF < Pas 7 Z P pa’ ® pg’

Separable



The best (or only) measure of quantum entanglement

for pure states is known to be entanglement entropy (EE).

Divide a qguantum system into two subsystems A and B:

Htot = HA®HB

Define the reduced density matrix by p, = TrB“P><‘P| :

The entanglement entropy SA is defined by

S, =

—Tr, p, logp, .

(von-Neumann entropy)

Quantum Many-body Systems

Quantum Field Theories (QFTs)

B @-aA = 0B




Holographic Entanglement Entropy for Static Spacetimes

[Ryu-TT 06; derived by Lewkowycz-Maldacena 13]

For static asymptotically
AdS spacetimes:

. _Area(F )_
S, = Min A
R I C IV

', is the minimal area surface
(codim.=2) on the time slice
such that

0A=0y, and A~y, .

homologous

CFT,,| (Weomitthetimedirection.)

AdS

d+2 Z

I

z>¢  (UV cut off)

dz® —dt* + Zid:ldxi2
22

ds® = R*.




Covariant Holographic Entanglement Entropy
[Hubeny-Rangamani-TT 07, derived by Dong-Lewkowycz-Rangamani-TT 16]

A generic Lorentzian asymptotic AdS spacetime is dual to
a time dependent state |W(t)) in the dual CFT.

The entanglement entropy gets time-dependent:

pa(t) = Trg[|[P(OXP®)|] = S, (t).

=l

This is computed by the holographic formula: E
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S,(t) = Minp Ext Ala) 3

- c

A ['p I'a 4GN c§

)
£
|_

-
O

N
i)

-

Q

-

@)
—

0A=0y, and A~y, .




Question: How about the area of minimal surface
in Euclidean time dependent asymptotically AdS spaces ?

r=oo L{®1=(0100x)0(xs)0(xs)

Final
State
)
o [T
-
E < (o]
2 3 %)
) (aa)]
- Initial
State
T =00

) = 0(x1)0(x3)]0)




We argue that the area of minimal surface calculates

the following EE-like quantity:
S( v (p) = —Tr [T;pl(plogrzplﬂ.

Ty

We call this quantity pseudo (entanglement) entropy.

Here, the reduced transition matrix TXJl(p is defined as

T;lplco = Trg [TIIJIq)],

from the transition matrix:

Yo _ [¥)ol
(pl)

Note that in general this transition matrix is not Hermitian.
[cf. “conditional entropy of post-selected states” Salek-Schbert-Wiesner 2013]




In this talk, we would like to study properties of
pseudo entropy in quantum many-body systems,
CFTs and AdS/CFT.

Note: In quantum information theory, the transition
matrices arise when we consider post-selection.

ot
/ \

Initial State This quantity can be

Final state complex valued in
after general and is called
post-selection weak value.

[Aharanov-Albert-Vaidman 1988,...]
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(2 Basics of Pseudo (Renyi) Entropy

(2-1) Definition of Pseudo (Renyi) Entropy

Consider two quantum states |) and |¢) , and define

the transition matrix: Tt/)|go_ AN

We decompose the Hilbert spaceas H  =H, ®H,

()

and introduce the reduced transition matrix:
Yl _ Yl
T, =Trg|T

The pseudo n-th Renyi entropy is defined by

g(n) (TZ’W’) —

1

1_

~logTr [(r;{’"”)n} .




The n=1 limit defined the (von-Neumann) pseudo entropy:

c (T;/”‘P):S(n:l) (TZ""))

Note 1: Since TX""D IS not a quantum state i.e. Hermitian

and positive semi-definite, the pseudo (Renyi) entropy is

complex valued in general.

Note 2: When A=total system (B=empty), we obtain
n n
(Twcp) _ V10 my T [(Twcp) ]=1.

Thus, ¢(m) (Tl/’"”) —




(2-2) Basic Properties of Pseudo Entropy

[1] If either |Y) or |@) has no entanglement (i.e. direct
product state) , then

N (Tllilfp) _ > Connectionto
A4 guantum entanglement !

[3] S(n) (TXJVP) — S(n) (ngl(p). %”SA=SB”

[4] If |Y)=|p), then S (TX)W) = Renyi entropy.



3 Pseudo Entropy in Qubit Systems

(3-1) Classification in 2 Qubit Systems

The two pure states in 2 qubit systems are parameterized
by 7 parameters:

Y) x |00) + a|11)

@) < |00) + be~9|11)+ce”¥|01)+de~M|10)

1/J|<p 1+abe“9 (100 + ace¥|1)(0] + de|0)(1]



TYle

or come into complex conjugate pairs : (6,5)

THe . (7,6) Z(H)sGeneral 2 Qubit

which give 74 ¥ whose eigenvalues are real p

system

(Random states)
TY% which give nonnegative B — CZ\ EXOtiC TranSitiOr

SU(TY1Y for n > 0: (6,5)

Hermitian 7;;“90 : (4,3)

T¥¥ which give positive semi-definite
T% which give positive semi-definite

Hermitian 7/'1¥ and 7,7%, | i
Case 11 : {3, 3) Hermitian 77 and 7217,
Case T:(2.1)

‘\

—

‘\l\natrices
T¥1¢ which give positive semi-definite i
give p D - Holographic

Transition
Matrix ?

Nice Transition
Matrices

with operational
interpretation



An Example of Exotic Transition Matrix

1) = = (100) + €'?]11))
9y = =(100) + [11))

1/J|<P (|O><O|+€l9|1><1|) %.Comp.lexconjugate

1+e‘9 pair of Eigenvalues
no
c(n) (TXJVP) _ ﬁlog cos :
2" 1cos™ 5

—>0Only special values of O can give
positive values pseudo entropy.



(3-2) Pseudo Entropy as Entanglement Distillation

Let us focus on the class E i.e. lepl(p And Tg"‘p are

Hermitian and semi-positive definite.

Remarkably, in this case we can show a quantum
information theoretical interpretation of pseudo entropy:

= # of Distillable Bell Pairs
as an intermediate states

of post-selection [{) — |p).

More precisely, we take asymptotic limit M—>oo,



Operational Interpretation of EE from LOCC
A B

A A
Setup 5 e e 0o o0 = Htot:HA®HB
A B
. N A
LO (=Local Operations) eeoeoee ooe

Projection measurements and unitary trfs. which act
either A or B only.

CC (=Classical Communications between A and B)

=These operations are combined and called LOCC.

A basic example of LOCC: quantum teleportation



(|W)ap(¥)®M
A g _ QM

Entangled in a very
complicated way

(IP)as(¥D® = (|Bell)(Bell|)®N

Well-known fact in Ql:

< Distillation

LocC

—  Precerre

N Bell pairs

S(pa) = A}II_Y)YgO

M

pa = Trg[|P)ap(P|]




Distillation from Post-selection "

: Yo\ /
In class D, we can write S (TA

) = cosB,|00) + sinb; |11) \ 12
,0.5\"3.5; AT O _lijlo
|) = cosB,|00) + sinb,|11) ° | 912 3
wlo  €0sB1c0s6,|0)0] + sinf;sind, |11
TA =
cos(60, — 06,)

S (T}lpl‘p) =

cosf,cosf, cosf;cosf, sinf;sinb, sinf4sinf,

_ | — - 1
cos(61—6,) Ogcos(91—92) sin(6,—0,) Ogsin(Ql—Hz)



(1$)®™ = (cos6; 00) + sind; [11)EM
= Y h=o(cos8)M 7% (sinb;)* Yo |P(k), a)|P(k), a)

00 --- 0)

k=0: |P(0),1)=|
) =110---0), |[P(1),2) = |01---0), ---

k=1: |IP(1),1

Projection to maximally entangled states

with Log[MCk] entropy: mCik=M!/(M-k)!k!
mCik

M= P(),a)P(k).al

(c1e)M7* (515,)%

(cicp + 515)M

probability: py = (@[l |Y) /(@) = * MCk

m)  of Distillable Bell pairs: N = Y2 p; Log[MCk]
~M-S(t§'?)



(3-3) Monotonicity in 2 Qubit systems

We can prove the following monotonicity under unitary
transformation:

Claim Consider two states related by local unitary trf.

1Y) = (Uy Q V)|p).

If TX}W has non-negative eigenvalues (i.e. class B=C), then

SO (t19) = s (Try [[Y)Ww]) = S™ (Try[lo)el]).

Note: However, this claim is limited to 2 qubit systems.



Decreasing Pseudo Entropy Examples

EX1 ) = L (10000) +[0110)) ¢ & & o
Entanglement
Q) = f(|0000)+|1001>)010001 Swapping

~——~~

» S(n)(t/)lco) 0 A B

ST (Trg[|Y)w]]) = ST (Trg[|pXel]) = log2.
Ex2 Thermofield States in CFTs

i) = mi

s(B52) < 515680 + s

S (41"2) < S ISCTrallb) s ID+S(Trp[[2) W2 D]

E"|n>|n> (i =12)




@ Holographic Pseudo Entropy
(4-1) Holographic Pseudo Entropy and General Properties
Holographic Pseudo Entropy (HPE) Formula

—
.,
AGy

S (T;l,blgo) = Minr

Basic Properties of HPE
(i) If py is pure, S (T}lplfp) =0.
(ii) If Y or ¢ is not entangled,
S (T;lpkp) =0.
—>This follows from AdS/BCFT [TT 2011]
(iii) S (r}{’"’)) =5 (r}f"”) . “SA=SB”
(iv) S (szlcp) + S (T;!)kp) > S (Tﬂ(p). “Subadditivity”

Boundary (CFTd)




e However, it is not clear whether the strong subadditivity
holds for the holographic pseudo entropy even for a single classical
geometry. (cf. Proof of SSA in Lorentzian AdS [Wall 2012] )

e Since holographic computations in general leads to

Tr[ (z¥'9)?] # Tr[ z}'¢ - (')

t/)lcp

we find that in holography belongs to class C.

e So far we focus on a single classical geometry. In general,
we can consider a quantum superposition of several classical

gravity states W) = Z air i) | where we find the linearity

.,,|1I-rj.]I (11'3| G |I ) Area( ;;ﬂ‘lh‘k)

= ﬂ* Q;
( ( 3|1"I’F:} Ekﬂ;‘:k&ikg kYik 1G

=We can find examples in this class where SSA is violated.



(4-2) Simple Example: Janus AdS3/CFT2

Consider a gravity dual of 2d CFT perturbed
by the exactly marginal operator O(x) such that

T<0: ¢_ fdsz(x) 7> 0: qb+fd2x0(x).

= ) = Q)
AdS3 gravity coupled to a massless scalar T
= 1673@ /d%x@(ﬂ — 8,00%) + 2), - OO(P
N + y
-
Janus Solution [Bak-Gutperle-Hirano 2007] g ¢>
dz? + dy* g P
ds® = dp® + :
s =dp” + f(p) 7 [ W)

¢ = ¢0+—10g

1+ /1 —2v2 —+/2tanhp
1 —
Hp —5(1+\/1—2fy cosh?p) p=—X

1+ /1 — 272 —i—\ff}’tanhp] ¢




Holographic Pseudo Entropy

We take A=[0,l]. The minimal surface is given by
T=0, x%*+y%=I°
Thus the holographic pseud entropy reads

S (T;/thpz) _

c [1+41-—2y° l
= v 4 -log —.
3 A 2 9)

1+ 41— 2y?
<gxx=62_)6=\/ 2 y.6>
Wheny is small, we obtain

2
v\ € (4 Y L ¢
S(TA )~3 (1 4) log— +12y

e

Agreeing with the CFT perturbation (universal in any 2d CFTs):

nde /dy (O(z)0w))s., n/dm /dfg 2)O(y))s:




®) Pseudo Entropy for Locally Excited States
(5-1) Pseudo Renyi Entropy in Free CFT

Consider the following 2 locally excited states:

|Y) = N; - 0(x4,71)]0), l@) = N, - 0(x3,72)|0)

We would like to calculate their pseudo Renyi entropy.

. n-sheets
We take the replica of - ~
complexplane w = x +ir.  |9°%|[s A
=>Zn 01(.)(1,'(1 °

n
We compute the difference: Trlt,]= —

A = 5™ (19)-5 ™) (Trg | 0)(0]).

5 (%) = = togre | («*)| b ‘C}
2n




For simplicity, we will focus on 2" Renyi pseudo entropy
in the 2d massless free scalar CFT.

[EE in the same setup: Nozaki-Numasawa-TT, He-Numasawa-Watanabe-TT 2014]

<O(W1)0Jr(Wz)O(WS)OT(W‘L))zZ
(0(w)O0T (W) 221

AS[EZ) = —log

We choose 0 (x,7) = e!®*D/2 4 ¢=1¢(Xx1)/2 (<Bell pair).

After we perform the conformal map

W—4a
(2) W2— b Cross ratio:
I — < (21—25)(23—24)
we obtain A5, log (1+|77|+|1—77|) =0 - (Zi—zz)(zz—zj)'



Pseudo Entropy is reduced when 0A gets closer to the excitation.
= This is due to the decreasing property under entanglement swap.

02 02
10-'t| A AT
T 11 20 . f I 20
010, 01 O)Xm

—

10




(5-2) Holographic CFT Calculations

We can calculate the pseudo entropy for the same
setup in holographic CFTs:

~ Positive contribution is new !

0,054 ; : t=0.1 e _0103__ \ S T —
. o r=0.1
" We have AS<0 when 0A get closer to Os.
(in the same way as in free scalar.)
02 o 020
10-'t| A A T
t 1110 t] BT
018y, 018 Xmyg
< >




® Mixed State Generalization

Can we define pseudo entropy when the total system AB is mixed ?

Assume T1p|<p is given.

One possibility is to extend the reflected entropy. [Dutta-Faulkner 2019,
N g Kusuki-Tamaoka 2019]
Xap = z Xiji)
L]

= |X)apis = ZXijU)ABA'E TRy

- pralorel
Define pseudo reflected entropy by Sz(z¥1%) =§ <T1‘BB iy 7] )
TAB T

This coincides with the twice of entanglement wedge cross section:

SR(Tlljl(p) - 2 A(EAB)

4Gy
[cf. EW=EOP: Umemoto-TT 2017 ’%
EW=0dd entropy: Tamaoka 2018

EWocNegativity: Kudler-Flam-Ryu 2019] A B




@ Conclusions

Main claim of this talk

Pseudo Entropy = Area of Minimal surface in Euclidean
asymptotically AdS with time-dependence

 Pseudo Entropy is in general complex valued.
= Why is holographic pseudo entropy non-negative ?
[ Euclidean path-integrals are positive valued !]

e Pseudo Entropy for non-exotic states” measures the amount
of quantum entanglement in the intermediate states.
[How about general states ? What is the meaning of complex values?]

e Pseudo entropy tends to decrease in CFT computations due to
entanglement swapping. However, we find also a positive
contribution only for holographic CFTs, as opposed to free scalar CFT.



Thank you very much |
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