#### East Asian String Webinar Series @May 1st, 2020

## **Holographic Pseudo Entropy**



Tadashi Takayanagi



Yukawa Institute for Theoretical Physics (YITP), Kyoto U.

Based on a paper in preparation arXiv:2005.\*\*\*\*

with

Yoshifumi Nakata (YITP→U. of Tokyo)

Yusuke Taki (YITP)

Kotaro Tamaoka (YITP)

Zixia Wei (YITP)

# **1** Introduction

## **Quantum Entanglement (QE)**



Two parts (subsystems) A and B in a total system are quantum mechanically correlated.

e.g. Bell state: 
$$|\Psi_{Bell}\rangle = \frac{1}{\sqrt{2}} \left[ |\uparrow\rangle_A \otimes |\downarrow\rangle_B + |\downarrow\rangle_A \otimes |\uparrow\rangle_B \right]$$

Pure States: Non-zero QE  $\Leftrightarrow$   $|\Psi\rangle_{AB} \neq |\Psi_1\rangle_A \otimes |\Psi_2\rangle_B$ .

Direct Product

Mixed States: Non-zero QE  $\Leftrightarrow \rho_{AB} \neq \sum_i p_i \; \rho_A^{(i)} \otimes \rho_B^{(i)}$ . Separable

The best (or only) measure of quantum entanglement for pure states is known to be **entanglement entropy (EE)**.

Divide a quantum system into two subsystems A and B:

$$H_{tot} = H_A \otimes H_B$$
.

Define the reduced density matrix by  $\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi|$ .

The entanglement entropy  $S_{A}$  is defined by

$$S_A = -\mathrm{Tr}_A \ \rho_A \ \mathrm{log} \rho_A \ .$$

(von-Neumann entropy)

**Quantum Many-body Systems** 

**Quantum Field Theories (QFTs)** 





#### Holographic Entanglement Entropy for Static Spacetimes

[Ryu-TT 06; derived by Lewkowycz-Maldacena 13]

For static asymptotically AdS spacetimes:

$$S_{A} = \underset{\substack{\partial \Gamma_{A} = \partial A \\ \Gamma_{A} \approx A}}{\operatorname{Min}} \left[ \frac{\operatorname{Area}(\Gamma_{A})}{4G_{N}} \right]$$

 $\Gamma_{\rm A}$  is the minimal area surface (codim.=2) on the time slice such that

$$\partial A = \partial \gamma_A$$
 and  $A \sim \gamma_A$ . homologous



$$ds^{2} = R^{2} \cdot \frac{dz^{2} - dt^{2} + \sum_{i=1}^{d} dx_{i}^{2}}{z^{2}}$$

#### **Covariant Holographic Entanglement Entropy**

[Hubeny-Rangamani-TT 07, derived by Dong-Lewkowycz-Rangamani-TT 16]

A generic Lorentzian asymptotic AdS spacetime is dual to a time dependent state  $|\Psi(t)\rangle$  in the dual CFT.

The entanglement entropy gets time-dependent:

$$\rho_A(t) = \operatorname{Tr}_B[|\Psi(t)\rangle\langle\Psi(t)|] \longrightarrow S_A(t).$$

This is computed by the holographic formula:

$$S_A(t) = \operatorname{Min}_{\Gamma_A} \operatorname{Ext}_{\Gamma_A} \left[ \frac{A(\Gamma_A)}{4G_N} \right]$$

$$\partial A = \partial \gamma_A$$
 and  $A \sim \gamma_A$ .



# **Question**: How about the area of minimal surface in *Euclidean time dependent* asymptotically AdS spaces?



We argue that the area of minimal surface calculates the following EE-like quantity:

$$S\left(\tau_A^{\psi|\varphi}\right) = -\operatorname{Tr}\left[\tau_A^{\psi|\varphi}\log\tau_A^{\psi|\varphi}\right].$$

We call this quantity *pseudo* (entanglement) entropy.

Here , the reduced transition matrix  $\tau_A^{\psi|\varphi}$  is defined as  $\tau_A^{\psi|\varphi}=\mathrm{Tr}_B\left[\tau^{\psi|\varphi}\right],$ 

from the transition matrix:

$$\tau^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}.$$

Note that in general this transition matrix is not Hermitian.

[cf. "conditional entropy of post-selected states" Salek-Schbert-Wiesner 2013]

In this talk, we would like to study properties of pseudo entropy in quantum many-body systems, CFTs and AdS/CFT.

<u>Note</u>: In quantum information theory, the transition matrices arise when we consider *post-selection*.



Final state after post-selection

This quantity can be complex valued in general and is called weak value.

[Aharanov-Albert-Vaidman 1988,...]

# **Contents**

- 1 Introduction
- 2 Basics of Pseudo (Renyi) Entropy
- ③ Pseudo Entropy in Qubit Systems
- 4 Holographic Pseudo Entropy
- 5 Pseudo Entropy for Locally Excited States
- 6 Mixed State Generalization
- 7 Conclusions

## 2 Basics of Pseudo (Renyi) Entropy

### (2-1) Definition of Pseudo (Renyi) Entropy

Consider two quantum states  $|\psi\rangle$  and  $|\varphi\rangle$ , and define the transition matrix:  $\tau^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$ .

We decompose the Hilbert space as  $H_{tot} = H_A \otimes H_B$  and introduce the reduced transition matrix:

$$\tau_A^{\psi|\varphi} = \operatorname{Tr}_B \left[ \tau^{\psi|\varphi} \right]$$

The pseudo n-th Renyi entropy is defined by

$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \frac{1}{1-n} \log \operatorname{Tr}\left[\left(\tau_A^{\psi|\varphi}\right)^n\right].$$

The n=1 limit defined the (von-Neumann) pseudo entropy:

$$S\left(\tau_A^{\psi|\varphi}\right) = S^{(n=1)}\left(\tau_A^{\psi|\varphi}\right)$$

Note 1: Since  $\tau_A^{\psi|\varphi}$  is not a quantum state i.e. Hermitian and positive semi-definite, the pseudo (Renyi) entropy is complex valued in general.

Note 2: When A=total system (B=empty), we obtain

$$\left(\tau^{\psi|\varphi}\right)^n = \tau^{\psi|\varphi} \implies \operatorname{Tr}\left[\left(\tau^{\psi|\varphi}\right)^n\right] = 1.$$
 Thus,  $S^{(n)}\left(\tau^{\psi|\varphi}\right) = 0.$ 

#### (2-2) Basic Properties of Pseudo Entropy

[1] If either  $|\psi\rangle$  or  $|\varphi\rangle$  has no entanglement (i.e. direct product state) , then

$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = 0.$$
  $\Rightarrow$  Connection to quantum entanglement!

[2] 
$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \left[S^{(n)}\left(\tau_A^{\varphi|\psi}\right)\right]^{\dagger}$$
.

[3] 
$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = S^{(n)}\left(\tau_B^{\psi|\varphi}\right). \rightarrow \text{"SA=SB"}$$

[4] If 
$$|\psi\rangle = |\varphi\rangle$$
, then  $S^{(n)}\left(\tau_A^{\psi|\varphi}\right)$  = Renyi entropy.

## **3** Pseudo Entropy in Qubit Systems

#### (3-1) Classification in 2 Qubit Systems

The two pure states in 2 qubit systems are parameterized by 7 parameters:

$$|\psi\rangle \propto |00\rangle + a|11\rangle$$
  
 $|\varphi\rangle \propto |00\rangle + be^{-i\theta}|11\rangle + ce^{-i\xi}|01\rangle + de^{-i\eta}|10\rangle$ 

$$\tau_A^{\psi|\varphi} = \frac{1}{1+ahe^{i\theta}} (|0\rangle\langle 0| + ace^{i\xi}|1\rangle\langle 0| + de^{i\eta}|0\rangle\langle 1|$$



General 2 Qubit

system

(Random states)

**Exotic Transition Matrices** 

Holographic Transition Matrix ?

Nice Transition
Matrices
with operational
interpretation

#### **An Example of Exotic Transition Matrix**

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + e^{i\theta}|11\rangle)$$
$$|\varphi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\tau_A^{\psi|\varphi} = \frac{1}{1 + e^{i\theta}} (|0\rangle\langle 0| + e^{i\theta}|1\rangle\langle 1|). \quad \xrightarrow{\Rightarrow \text{Complex conjugate}} \text{pair of Eigenvalues}$$

$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \frac{1}{1-n}\log\left[\frac{\cos\frac{n\theta}{2}}{2^{n-1}\cos^n\frac{\theta}{2}}\right]$$

 $\rightarrow$ Only special values of  $\theta$  can give positive values pseudo entropy.

#### (3-2) Pseudo Entropy as Entanglement Distillation

Let us focus on the class E i.e.  $\tau_A^{\psi|\varphi}$  And  $\tau_B^{\psi|\varphi}$  are Hermitian and semi-positive definite.

Remarkably, in this case we can show a quantum information theoretical interpretation of pseudo entropy:

$$\begin{array}{ll} {\bf Claim} & {\bf Pseudo\ Entropy}\ S\left(\tau_A^{\psi|\varphi}\right) \\ &= \mbox{\it = } \mbox{\it of\ Distillable\ Bell\ Pairs} \\ & {\bf as\ an\ intermediate\ states} \\ & {\bf of\ post-selection}\ |\psi\rangle \rightarrow |\varphi\rangle. \end{array}$$

More precisely, we take asymptotic limit  $M \rightarrow \infty$ .

## **Operational Interpretation of EE from LOCC**

Projection measurements and unitary trfs. which act either A or B only.

**CC** (=Classical Communications between A and B)

**⇒**These operations are combined and called LOCC.

A basic example of LOCC: quantum teleportation







**Entangled in a very complicated way** 

$$(|\Psi\rangle_{AB}\langle\Psi|)^{\otimes M} \Rightarrow (|\text{Bell}\rangle\langle\text{Bell}|)^{\otimes N}$$

Well-known fact in QI:

$$S(\rho_A) = \lim_{M \to \infty} \frac{N}{M}$$

$$\rho_A \equiv \text{Tr}_B[|\Psi\rangle_{AB}\langle\Psi|]$$

### **Distillation from Post-selection**

In class D, we can write  $S\left( au_A^{\psi|arphi}
ight)$ 

$$|\psi\rangle = \cos\theta_1 |00\rangle + \sin\theta_1 |11\rangle$$

$$|\varphi\rangle = \cos\theta_2 |00\rangle + \sin\theta_2 |11\rangle$$



$$\tau_A^{\psi|\varphi} = \frac{\cos\theta_1 \cos\theta_2 |0\rangle\langle 0| + \sin\theta_1 \sin\theta_2 |1\rangle\langle 1|}{\cos(\theta_1 - \theta_2)}$$

$$S\left(\tau_{A}^{\psi|\varphi}\right) = \frac{\cos\theta_{1}\cos\theta_{2}}{\cos(\theta_{1}-\theta_{2})} \cdot \log\frac{\cos\theta_{1}\cos\theta_{2}}{\cos(\theta_{1}-\theta_{2})} - \frac{\sin\theta_{1}\sin\theta_{2}}{\sin(\theta_{1}-\theta_{2})} \cdot \log\frac{\sin\theta_{1}\sin\theta_{2}}{\sin(\theta_{1}-\theta_{2})}$$

$$(|\psi\rangle)^{\otimes M} = (\cos\theta_1|00\rangle + \sin\theta_1|11\rangle)^{\otimes M}$$
  
=  $\sum_{k=0}^{M} (\cos\theta_1)^{M-k} (\sin\theta_1)^k \sum_{a=1}^{M} |P(k), a\rangle |P(k), a\rangle$ 

$$k = 0$$
:  $|P(0), 1\rangle = |00 \cdots 0\rangle$ 

$$k=1$$
:  $|P(1),1\rangle = |10\cdots 0\rangle, |P(1),2\rangle = |01\cdots 0\rangle, \cdots$ 



Projection to maximally entangled states

with Log[MCk] entropy:

 $MC_k=M!/(M-k)!k!$ 

$$\Pi_k = \sum_{a=1}^{\mathsf{MC}_k} |P(k), a\rangle\langle P(k), a|$$

probability: 
$$p_k = \langle \varphi | \Pi_k | \psi \rangle / \langle \varphi | \psi \rangle = \frac{(c_1 c_2)^{M-k} (s_1 s_2)^k}{(c_1 c_2 + s_1 s_2)^M} \cdot \mathbf{MCk}$$



# of Distillable Bell pairs:  $N = \sum_{k=0}^{M} p_k$  Log[MCk]

$$pprox M \cdot S\left( au_A^{\psi|arphi}
ight)$$
!

### (3-3) Monotonicity in 2 Qubit systems

We can prove the following monotonicity under unitary transformation:

**<u>Claim</u>** Consider two states related by local unitary trf.

$$|\psi\rangle = (U_A \otimes V_B)|\varphi\rangle.$$

If  $\tau_A^{\psi|\varphi}$  has non-negative eigenvalues (i.e. class B=C), then

$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) \ge S^{(n)}(\operatorname{Tr}_B[|\psi\rangle\langle\psi|]) = S^{(n)}(\operatorname{Tr}_B[|\varphi\rangle\langle\varphi|]).$$

Note: However, this claim is limited to 2 qubit systems.

## **Decreasing Pseudo Entropy Examples**

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0000\rangle + |0110\rangle)$$

$$|\varphi\rangle = \frac{1}{\sqrt{2}}(|0000\rangle + |1001\rangle)$$

$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = 0$$

$$S^{(n)}\left(\mathrm{Tr}_B[|\psi\rangle\langle\psi|]\right) = S^{(n)}(\mathrm{Tr}_B[|\varphi\rangle\langle\varphi|]) = \log 2.$$

#### **Ex2** Thermofield States in CFTs

$$|\psi_{i}\rangle = \frac{1}{\sqrt{Z(\beta_{1})}} \sum_{n} e^{-\frac{\beta_{i}}{2}E_{n}} |n\rangle |n\rangle \qquad (i = 1,2)$$

$$S\left(\frac{\beta_{1} + \beta_{2}}{2}\right) \leq \frac{1}{2} [S(\beta_{1}) + S(\beta_{2})]$$

$$S\left(\tau_{A}^{\psi_{1}|\psi_{2}}\right) \leq \frac{1}{2} [S(\operatorname{Tr}_{B}[|\psi_{1}\rangle\langle\psi_{1}|]) + S(\operatorname{Tr}_{B}[|\psi_{2}\rangle\langle\psi_{2}|])].$$

## 4 Holographic Pseudo Entropy

#### (4-1) Holographic Pseudo Entropy and General Properties

### **Holographic Pseudo Entropy (HPE) Formula**

$$S\left(\tau_A^{\psi|\varphi}\right) = \operatorname{Min}_{\Gamma_A}\left[\frac{A(\Gamma_A)}{4G_N}\right] \ge 0$$

#### **Basic Properties of HPE**

(i) If 
$$\rho_A$$
 is pure,  $S\left(\tau_A^{\psi|\varphi}\right) = 0$ .

(ii) If  $\psi$  or  $\varphi$  is not entangled,  $S\left(\tau_A^{\psi|\varphi}\right) = 0$ .

→This follows from AdS/BCFT [TT 2011]

(iii) 
$$S\left(\tau_A^{\psi|\varphi}\right) = S\left(\tau_B^{\psi|\varphi}\right)$$
. "SA=SB"

$$(iv)$$
  $S\left(\tau_A^{\psi|\varphi}\right) + S\left(\tau_B^{\psi|\varphi}\right) \ge S\left(\tau_{AB}^{\psi|\varphi}\right)$ . "Subadditivity"



- However, it is not clear whether the strong subadditivity holds for the holographic pseudo entropy even for a single classical geometry. (cf. Proof of SSA in Lorentzian AdS [Wall 2012])
- Since holographic computations in general leads to

$$\operatorname{Tr}[(\tau_A^{\psi|\varphi})^2] \neq \operatorname{Tr}[\tau_A^{\psi|\varphi} \cdot (\tau_A^{\psi|\varphi})^{\dagger}]$$

we find that  $\tau_A^{\psi|\varphi}$  in holography belongs to class C.

• So far we focus on a single classical geometry. In general, we can consider a quantum superposition of several classical gravity states  $|\Psi_i\rangle = \sum_{k=1}^M \alpha_{ik} \, |\psi_{ik}\rangle$ , where we find the linearity

$$S(\mathcal{T}_A^{\Psi_i|\Psi_j}) \simeq \frac{\langle \Psi_j|\frac{\hat{\mathcal{A}}}{4G_N}|\Psi_i\rangle}{\langle \Psi_j|\Psi_i\rangle} = \frac{1}{\sum_k \alpha_{jk}^* \alpha_{ik}} \sum_k \alpha_{jk}^* \alpha_{ik} \frac{\operatorname{Area}(\gamma_A^{\psi_{jk}|\psi_{ik}})}{4G_N},$$

⇒We can find examples in this class where SSA is violated.

### (4-2) Simple Example: Janus AdS3/CFT2

Consider a gravity dual of 2d CFT perturbed by the exactly marginal operator O(x) such that

ne exactly marginal operator 
$$O(x)$$
 such that  $\tau < 0$ :  $\phi_- \int d^2 x \, O(x)$ ,  $\tau > 0$ :  $\phi_+ \int d^2 x \, O(x)$ .  $\phi_+ = |\psi\rangle$ 

#### AdS3 gravity coupled to a massless scalar

$$I = \frac{1}{16\pi G_N} \int d^3x \sqrt{g} (R - \partial_a \phi \partial^a \phi + 2),$$

Janus Solution [Bak-Gutperle-Hirano 2007]

$$ds^2 = d\rho^2 + f(\rho) \frac{dx^2 + dy^2}{y^2},$$

$$\phi = \phi_0 + \frac{1}{\sqrt{2}} \log \left[ \frac{1 + \sqrt{1 - 2\gamma^2} + \sqrt{2}\gamma \tanh \rho}{1 + \sqrt{1 - 2\gamma^2} - \sqrt{2}\tanh \rho} \right],$$

$$f(\rho) = \frac{1}{2} \left( 1 + \sqrt{1 - 2\gamma^2} \cosh 2\rho \right).$$



#### **Holographic Pseudo Entropy**

We take A=[0,l]. The minimal surface is given by

$$\tau = 0$$
,  $x^2 + y^2 = l^2$ .

Thus the holographic pseud entropy reads

$$S\left(\tau_A^{\psi_1|\psi_2}\right) = \frac{c}{3} \cdot \sqrt{\frac{1 + \sqrt{1 - 2\gamma^2}}{2}} \cdot \log\frac{l}{\delta}.$$
small, we obtain
$$\left(g_{xx} = \epsilon^{-2} \to \delta = \sqrt{\frac{1 + \sqrt{1 - 2\gamma^2}}{2}} \cdot \epsilon\right)$$

When y is small, we obtain

$$S\left(\tau_A^{\psi_1|\psi_2}\right) \approx \frac{c}{3} \cdot \left(1 - \frac{\gamma^2}{4}\right) \cdot \log \frac{l}{\epsilon} + \frac{c}{12}\gamma^2.$$

Agreeing with the CFT perturbation (universal in any 2d CFTs):

$$\Delta S_A^{(n)} = \frac{J^2}{1-n} \left[ \int dx^2 \int dy^2 \langle O(x)O(y) \rangle_{\Sigma_n} - n \int dx^2 \int dy^2 \langle O(x)O(y) \rangle_{\Sigma_1} \right].$$

# **5** Pseudo Entropy for Locally Excited States (5-1) Pseudo Renyi Entropy in Free CFT

Consider the following 2 locally excited states:

$$|\psi\rangle = N_1 \cdot O(x_1, \tau_1)|0\rangle, \quad |\varphi\rangle = N_2 \cdot O(x_2, \tau_2)|0\rangle$$

We would like to calculate their pseudo Renyi entropy.

We take the replica of complex plane  $w = x + i\tau$ .  $\Rightarrow \Sigma_n$ 

$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \frac{1}{1-n} \log \operatorname{Tr}\left[\left(\tau_A^{\psi|\varphi}\right)^n\right].$$

We compute the difference:

$$\Delta S_A^{(n)} = S^{(n)} \left( \tau_A^{\psi|\varphi} \right) - S^{(n)} (\operatorname{Tr}_B|0\rangle\langle 0|).$$



For simplicity, we will focus on 2<sup>nd</sup> Renyi pseudo entropy in the 2d massless free scalar CFT.

[EE in the same setup: Nozaki-Numasawa-TT, He-Numasawa-Watanabe-TT 2014]

$$\Delta S_A^{(2)} = -\log \frac{\langle O(w_1)O^{\dagger}(w_2)O(w_3)O^{\dagger}(w_4) \rangle_{\Sigma_1}}{\langle O(w_1)O^{\dagger}(w_2) \rangle_{\Sigma_1}^2}$$

We choose 
$$O(x,\tau) = e^{i\phi(x,\tau)/2} + e^{-i\phi(x,\tau)/2}$$
 (~Bell pair).

After we perform the conformal map



Pseudo Entropy is reduced when  $\partial A$  gets closer to the excitation.

⇒ This is due to the decreasing property under entanglement swap.





#### (5-2) Holographic CFT Calculations

We can calculate the pseudo entropy for the same setup in holographic CFTs:



(in the same way as in free scalar.)





## **6** Mixed State Generalization

Can we define pseudo entropy when the total system AB is mixed?

Assume 
$$\tau_{AB}^{\psi|\varphi}$$
 is given.

One possibility is to extend the reflected entropy. [Dutta-Faulkner 2019,

$$X_{AB} = \sum_{i,j} X_{ij} |i\rangle \langle j|$$

Kusuki-Tamaoka 2019]

$$\Rightarrow |X\rangle_{AB\tilde{A}\tilde{B}} = \sum_{i,j} X_{ij} |i\rangle_{AB\tilde{A}\tilde{B}} |j^*\rangle_{AB\tilde{A}\tilde{B}}$$

 $\Rightarrow |X\rangle_{AB\tilde{A}\tilde{B}} = \sum_{i,j} X_{ij} |i\rangle_{AB\tilde{A}\tilde{B}} |j^*\rangle_{AB\tilde{A}\tilde{B}}$  Define pseudo reflected entropy by  $S_R(\tau_{AB}^{\psi|\varphi}) = S\left(\mathrm{Tr}_{B\tilde{B}}\left[\frac{|\tau_{AB}^{\psi|\varphi}\rangle\langle(\tau_{AB}^{\psi|\varphi})^{\dagger}|}{\langle(\tau_{AB}^{\psi|\varphi})^{\dagger}|\tau_{AB}^{\psi|\varphi}\rangle}\right]\right)$ .

This coincides with the twice of entanglement wedge cross section:

$$S_R( au_{AB}^{\psi|arphi})=2\cdotrac{A(\Sigma_{AB})}{4G_N}$$

[cf. EW=EoP: Umemoto-TT 2017

EW=Odd entropy: Tamaoka 2018



## **7** Conclusions

#### Main claim of this talk

Pseudo Entropy = Area of Minimal surface in Euclidean asymptotically AdS with time-dependence

- Pseudo Entropy is in general complex valued.
  - ⇒ Why is holographic pseudo entropy non-negative ?
    [Euclidean path-integrals are positive valued !]
- Pseudo Entropy for `non-exotic states' measures the amount of quantum entanglement in the intermediate states.
   [How about general states? What is the meaning of complex values?]
- Pseudo entropy tends to decrease in CFT computations due to entanglement swapping. However, we find also a positive contribution only for holographic CFTs, as opposed to free scalar CFT.

Thank you very much!