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Hydrodynamics is an established field with a venerable 
history and many applications. 

However, today I will not talk about applications. 

Rather, I would like to highlight some foundational 
questions that came to light in the last few years. 



What is hydrodynamics?

Set of equations that tell you how stuff flows. “Stuff” can be 
water, air, a cold atomic cloud, hot primodial matter in early 
Universe, electron fluid in a solid, etc. 

As a student, you open a book with “hydrodynamics” or 
“fluid dynamics” in the title. You often see derivations, 
approximations, and applications all mixed together.  

If, as a student, you are also learning about vector calculus 
and partial differential eq-s at the same time, it can be hard 
to see the big picture.



But the big picture of hydrodynamics 
is in fact quite simple



Conserved quantities

Fundamentally, hydrodynamics is a classical theory of 
things that can not disappear, i.e. are conserved.

density of some conserved quantity a flux of the same conserved quantity a

a = energy, momentum, number of particles,…

@

@t
⇢a = �r · ja



Constitutive relations

One eq-n                for both 𝜌 and j. Hydro assumption: 
assume j = j[𝜌], then have eq-n for 𝜌 only, can solve!

More generally, take some useful quantities 𝛾, (tempera-
ture, velocity,…), express                                    , then get 
eq-s for 𝛾a only, can solve!

Example: a = energy, 𝛾 = T = temperature, then: 
     𝜌𝜖 = 𝜖(T),  constitutive relation j𝜖 = -𝜅 𝜵T, 
     T=T0+𝛿T, get diffusion equation for 𝛿T :

⇢a = ⇢a(�), ja = ja(�)

@

@t
�T = �Dr2�T

D = /✏0(T0)

@t⇢ = �r·j



Summary of hydrodynamics

Conservarion laws: @

@t
⇢a = �r · ja

Constitutive relations (𝛾 = temperature, fluid velocity,…) :

ja = ja(�,r�,r2�, . . . )

⇢a = ⇢a(�,r�,r2�, . . . ),

The procedure is the same, whether the fundamental 
constituents are classical or quantum, relativistic or not, 
normal fluid or superfluid, magnetic fields present or not, 
fluid is chiral or not.



1. Do the equations make physical sense? 
2. Can we improve the equations to capture more physics? 
3. What kind of physics is beyond our equations?

Every theory in physics is only approximately “correct”, 
limited by its domain of applicability. 

Whenever we write down any equations that attempt to 
describe physical phenomena, we have to answer:

What will follow are three stories, one for each question.

Questions to ask about every theory



First story: 

Do hydrodynamic equations even make sense?



Say, you are a student in subatomic physics or astro-
physics, and you want to learn about relativistic Navier-
Stokes eq-s: quark-gluon plasma, neutron star mergers

Relativistic things

Open “Fluid Mechanics” by Landau and Lifshitz: 
some hydrodynamic equations

Open “Gravitation and Cosmology” by Weinberg*: 
some hydrodynamic equations

And… these equations look very different!

*Formulation of hydrodynamics due to Eckart (1940)

First story



The equations look different, so what?

Both Landau-Lifshitz’ and Eckart’s equations predict that: 

  a) thermal equilibrium does not exist 

  b) things propagate faster than light
Hiscock, Lindblom, 1984
Hiscock, Lindblom, 1987

Let’s shut up and calculate. As a simple example, solve for 
linear perturbations of the thermal equilibrium state.

First story

https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.35.3723


What exactly is the problem?

Perturbations e-iωt+ik·x, solve hydro equations: ω=ω(k) 

Gapless modes: ω(k→0)=0, b/c of conserved charges. 
These correspond to normal hydrodynamics (sound etc). 

But the equations also predict gapped modes ω(k→0)≠0, 
moreover with Im(ω)>0. These are unphysical modes. 

These “fake” modes are outside of the validity regime of 
the low-energy hydro approximation. These are UV modes. 

But if you want to actually solve the hydro equations in 
practice, these unphysical modes ruin predictability: 
cutoff-scale physics messes up the infrared behavior.

First story



How is the problem fixed?

So the classic-textbook hydrodynamics is not what you 
solve in practice e.g. to study the quark-gluon plasma. 

Most popular fix is the Israel-Stewart theory: the hydro 
equations are coupled to extra UV degrees of freedom, 
which in turn kill the unphysical UV modes. 

These extra degrees of freedom are the dynamical stresses 
and heat fluxes, in addition to the dynamical T, uα, μ. 

The extra degrees of freedom of the Israel-Stewart theory 
play the role of a UV regulator. Note that in the non-
relativistic Navier-Stokes eq-s, no extra d.o.f. are needed.

First story



Can one find a regulator of hydrodynamics that does not 
involve introducing extra UV degrees of freedom?  

E.g. in field theory, the Pauli-Villars regularization introdu-
ces extra UV degrees of freedom, but dimreg does not. 

Other regulators?

Claim:  

There is a sensible relativistic hydrodynamics whose only 
variables are T, uα, μ, and no extra UV d.o.f. You need to 
choose a suitable out-of-equilibrium definition of T, uα, μ.

PK, arXiv:1907.08191, Hoult, PK, arXiv:2004.04102
Bemfica, Disconzi, Noronha, arXiv:1708.06255, arXiv:1907.12695 

First story

https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/2004.04102
https://arxiv.org/abs/1708.06255
https://arxiv.org/abs/1907.12695


First story

Let’s first talk about physics



https://xkcd.com/2292/

First story

Example: Temperature



Example: Temperature
Temperature is something that is only unambiguously 
defined in equilibrium. By definition, T is the quantity 
that is measured by a thermometer.

In identical equilibrium states, 
two different (but properly 
calibrated) thermometers will 
show the same temperature.

First story



Example: Temperature

But in identical non-equilibrium 
states, the same two 
thermometers will show 
different temperatures!

Temperature is something that is only unambiguously 
defined in equilibrium. By definition, T is the quantity 
that is measured by a thermometer.

First story



So there is arbitrariness in what one means by “fluid tempe-
rature”: one’s choice of thermometer is a convention.  

Same arbitrariness in what one means by “fluid velocity”: 
one’s choice of velocimeter is a convention. 

Landau-Lifshitz's version of Navier-Stokes uses one conven-
tion, Eckart's version of Navier-Stokes uses another.  

Note: there is no such thing as “the” Navier-Stokes eq-s 
until you specify your arbitrarily chosen convention.

Non-equilibrium conventions
First story



Important:

Different conventions give rise to different, mathematically 
inequivalent, Navier-Stokes equations. These conventions 
have real consequences. 

This is because the Navier-Stokes eq-s only give a crude 
approximation of a real fluid. The difference between the 
conventions is hidden in the crudeness of this approxi-
mation*. 

Landau-Lifshitz and Eckart adopt different conventions for 
Navier-Stokes, but both are bad, and both lead to non-
sensical predictions.

*Using an analogy with quantum field theory, the choices of Landau-Lifshitz and Eckart 
are analogous to adopting UV regulators which violate unitarity.

First story



First story

What’s wrong with the classics?

Both Landau-Lifshitz and Eckart define T by:

Exact non-equilibrium energy density  
=  

𝜖(T) given by the equation of state

This means: as the local energy density changes, the 
thermometer adjusts its temperature instantaneously.  

Such thermometers violate relativity, and lead to super-
luminal propagation in relativistic fluid dynamics. 



First story

Now let’s be slightly more formal



What we do in Effective Field Theory

S = ∫ d4x (a(∂μφ)2 + bφ2 + cφ4)

1) Identify the low-energy variables 

2) Write down all the terms allowed by the symmetry, 

3) Do this up to a given dimension, e.g.:

4) Constrain the coefficients a,b,c so that the physics 
    is sensible, e.g.        for stability of the vacuumc < 0

First story



Do the same in hydro

1)   Identify the low-energy variables: T, u𝛼, 𝜇  

2)   Write down all possible terms in the constitutive 
      relations consistent with the symmetry 

3)   Do this up to a given order (say, 1-st order) in the  
      derivative expansion 

4)   Constrain the coefficients so that the physics is  
      sensible, e.g. demand stability of equilibrium 

First story



First story

Example: diffusion

Conservation law                          , need J0 = J0(μ), Ji = Ji(μ)@tJ
0 + @iJ

i = 0

J
i = ��@

i
µ+O(@2) J

0 = �µ+ ⌫µ̇+O(@2)

If ignore the  term: diffusion eq-n 

If keep the  term: both  and , hyperbolic eq-n 

The term  can be eliminated by a “field redefinition” of  
and truncating the derivative expansion. So it’s not physical 
for the purpose of correlation functions. But it changes the 
structure of the PDE for μ(t,x). 

Coef-t  can be interpreted as specifying your -meter

·μ

·μ ∂2
t μ ∂2

i μ

ν ·μ μ

ν μ



Claim: 

The above example of diffusion can be generalized 
to full non-linear relativistic hydrodynamics, and it 
actually works. There is no need to introduce extra UV 
degrees of freedom.

First story

PK, arXiv:1907.08191, Hoult, PK, arXiv:2004.04102
Bemfica, Disconzi, Noronha, arXiv:1708.06255, arXiv:1907.12695 

https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/2004.04102
https://arxiv.org/abs/1708.06255
https://arxiv.org/abs/1907.12695


First story

arXiv:2104.00804



First story

Question: 

Sensible relativistic hydrodynamics seems to require 
that its eq-s contain non-hydrodynamic parameters. 
Does hydrodynamics actually have predictive power 
for non-linear evolution?*

*Can the low-energy predictions be made independent of the UV regulator, à la RG?



Second story: 

Are there limits to improving the hydrodynamic equations?



ℓ =  typical microscopic distance scale

A first look at the limitations of hydrodynamics

T, v, 𝜌,…

distance

Hydrodynamics probably OK for L≫ℓ, small derivatives

L = distance scale of hydro solutions

Second story



A first look at the limitations of hydrodynamics

distance

Hydrodynamics probably not OK for L~ℓ, large derivatives

T, v, 𝜌,… L = distance scale of hydro solutions

ℓ =  typical microscopic distance scale

Second story



Conservarion laws: @

@t
⇢a = �r · ja

Constitutive relations (𝛾 = temperature, fluid velocity,…) :

⇢a = ⇢(0)(�) + ⇢(1)(r�) + ⇢(2)(r2�, (r�)2) + . . .

ja = j(0)(�) + j(1)(r�) + j(2)(r2�, (r�)2) + . . .

Second story

Hydrodynamics as an expansion in derivatives



Can we keep improving forever? Let’s say we generate 
an infinite series in the gradients. 

Q: Does this series converge, or does it diverge? 

If converges: Hydrodynamics can be systematically 
improved to include more transport phenomena. 😀 

If diverges: Hydrodynamics is not supposed to work… 
then why does it? Is hydrodynamics a fluke? 😕 

Second story



Do the series 𝜔(k) = ak + bk2 + ck3 + dk4 + …  
converge or diverge in hydrodynamics?

For a plane wave, ei 
k·x-i𝜔t, derivatives are            , so the 

hydrodynamic expansion is the expansion in powers of k.  

Example: sound wave 𝜔sound(k) = ±vsk − i𝛤k2+…  

@

@x
= ik

Not clear how to answer in general, let’s look at examples.

What exactly is the expansion?
Second story



There are fluids which can be studied analytically using 
holography. These fluids are similar to the quark-gluon 
plasma produced in nuclear collisions. 

In the simplest solvable examples* we find that 𝜔sound(k) is 
an analytic function of k, convergent for |k|<kc, with

kc =
p
2(2⇡)

kBT

~c

* 𝒩=4 supersymmetric Yang-Mills theory in 3+1 dimensions and its cousins.

The convergence is important. Gives one hope that hydro-
dynamics is improvable.

Analytic examples
Second story

Grozdanov, PK, Starinets, Tadić, arXiv:1904.01018 

https://arxiv.org/abs/1904.01018


Function is perfectly smooth for 
all −∞<|x|<∞. But the small-x 
Taylor expansion only conver-
ges for |x|<1. To understand 
why, take x complex.

1

1 + x2

So… why is there a critical value |k|=kc in 𝜔(k)?

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Similarly, 𝜔(k) is a smooth function at real k. To understand 
why it only converges for |k|<kc, we must take k complex.

x

Second story

Example from basic math: function f(x) = 1/(1+x2)



Complex ω and k
Second story

In classical physics, dispersion relations ω=ω(k) come 
about by solving F(ω,k2)=0, where F is determined by the 
equations (hydrodynamics, Maxwell’s eq-s in matter, etc).

Example: diffusion equation                           gives 
F(ω,k2) = -iω - Dk2 = 0. 

Example: sound waves in a viscous fluid give 
F(ω,k2) = ω2 - vs2 k2 + 2iΓωk2 = 0. 

Take ω real, then F(ω,k2) = 0 gives k(ω), in general complex. 
Imaginary part of k ⇒ damping length/penetration depth

Take k real, then F(ω,k2) = 0 gives ω(k), in general complex. 
Imaginary part of ω ⇒ relaxation time

𝛿T~ei k·x-i𝜔t 
@t �T +Dr2�T = 0



But what if both ω and k are complex?

Second story



Second story

Oscillation modes of a fluid, real k

* Poles of the exact retarded Green’s function of the energy density.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

q ⌘ ~c k
2⇡kBT

Solutions to F(ω,k2)=0* in 
the plane of complex ω

PK, Starinets, arXiv:hep-th/0506184 

https://arxiv.org/abs/hep-th/0506184


Second story

Oscillation modes of a fluid, real k

* Poles of the exact retarded Green’s function of the energy density.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

Sound waves, 𝜔(k) = ±vsk − i𝛤k2+…  
Macroscopic, classical, approach the 
origin as k→0.

q ⌘ ~c k
2⇡kBT

Solutions to F(ω,k2)=0* in 
the plane of complex ω

PK, Starinets, arXiv:hep-th/0506184 

https://arxiv.org/abs/hep-th/0506184


Second story

Oscillation modes of a fluid, real k

* Poles of the exact retarded Green’s function of the energy density.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

microscopic oscillation modes, 
no classical interpretation, stay 
away from the origin as k→0.

q ⌘ ~c k
2⇡kBT

Solutions to F(ω,k2)=0* in 
the plane of complex ω

PK, Starinets, arXiv:hep-th/0506184 

https://arxiv.org/abs/hep-th/0506184


Second story

Oscillation modes of a fluid, complex k

q ⌘ ~c k
2⇡kBT

Now take k to be complex,               , and vary 𝜃 from 0→2𝜋.|q2| = 1ei✓

Sound modes (        and        ) swap places, but remain sound modes 
when 𝜃 becomes 2𝜋.

blue gold



Second story

Oscillation modes of a fluid, complex k

q ⌘ ~c k
2⇡kBT

Now take k to be complex,                   , and vary 𝜃 from 0→2𝜋.|q2| = 1.99 ei✓

Sound modes (        and        ) swap places, but remain sound modes 
when 𝜃 becomes 2𝜋.

blue gold



Second story

Oscillation modes of a fluid, complex k

q ⌘ ~c k
2⇡kBT

Now take k to be complex,                   , and vary 𝜃 from 0→2𝜋.

Sound mode (       ) becomes one of the non-classical modes 
when 𝜃 becomes 2𝜋!

gold

|q2| = 2.01 ei✓



Trajectories of the modes at |𝖖2|=1.99 and |𝖖2|=2.01 

Second story



At |𝖖2|=2, modes collide, and the topology of the trajec-
tories changes. 

This is level-crossing in macroscopic dissipative systems, 
when a classical (hydrodynamic) excitation becomes a 
non-classical excitation. 

This determines the convergence of the hydro expansion, 
and gives the critical wavelength for sound λc=2π/kc,

�c =
1p
2

~c
kBT

Second story

Grozdanov, PK, Starinets, Tadić, arXiv:1904.01018 

https://arxiv.org/abs/1904.01018


Bottomline:

In many solvable examples, classical macroscopic 
excitations and non-classical microscopic excitations 
are merely different branches of the same multi-valued 
complex function. 

Comment: Complex momentum is also related to 
quantum chaos through out-of-time-ordered correlation 
functions

Second story

Grozdanov, Schalm, Scopelliti, arXiv:1710.00921 
Maldacena, Shenker, Stanford, arXiv:1503.01409 

Blake, Lee, Liu, arXiv:1801.00010 

… many more papers
Blake, Liu, arXiv:2102.11294 

https://arxiv.org/abs/1710.00921
https://arxiv.org/abs/1503.01409
https://arxiv.org/abs/1801.00010
https://arxiv.org/abs/2102.11294


Final story: 

Why everything I said so far is wrong



Let us look at very simple solutions of classical 
hydrodynamics: how the near-equilibrium physical 
system reacts to infinitesimal external sources.

Third story



Classical hydro gives predictions for retarded functions of 
conserved densities and fluxes in equilibrium. E.g.:

Gt,t
ret(!,k) =

D�k2

i! �Dk2

D = diffusion constant, 
χ=∂n/∂μ susceptibility

p = pressure, 
η = shear viscosity

These do not depend on which version of hydro one is 
using, and are universal predictions of classical hydro for 
low-energy observables. Allow to compute η, D, etc.

G
xy,xy
ret (!,k=0) = p� i!⌘ +O(!2)

Response functions

PK, arXiv:1205.5040 

Third story

response of the current to external gauge field 
response of the stress tensor to external metric

https://arxiv.org/abs/1205.5040


Are these predictions of classical hydro actually correct?  

After all, classical hydro (i.e. hydro=PDEs) is but a toy 
model of fluids, and nature may or may not care for our 
toy models.

Third story



A second look at the limitations of hydrodynamics

T, v, 𝜌,…

distance

Macroscopic stuff is made out of microscopic stuff. 

In a quantum vacuum, virtual particles are constantly pro-
duced and absorbed due to quantum fluctuations. Similar-
ly, in a macro-state, virtual sound waves are constantly 
produced and absorbed due to statistical fluctuations. 

These sound waves will back-react on the macroscopic 
physics because hydro is non-linear and waves interact.

Third story



Claim

Even if you are interested in macroscopic long-time, long-
distance response near static equilibrium, classical hydro 
eq-s which ignore the back-reaction can lead to 
predictions which are qualitatively wrong.

Alder, Wainwright, Phys. Rev. A 1, 18 (1970) 

The rest of my talk will be comments on this claim.

Third story

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.1.18


First story

Let’s first talk about physics



Example: viscosity

x

y
Momentum transfer 
between layers of fluid, 

Txy = η ∂yvx + O(∂2)

In a gas:  η = ρ vth ℓmfp

Related to correlations of stress:

hT xy
T

xyiret. = p� i!⌘ +O(!2)

Third story



Example: viscosity

Momentum can also be transferred 
by collective excitations. 

Gas of sound waves:
x

y

Contribution 
to viscosity:

in D=3

IR divergent in D=2

⇤T 2

⌘/s

`mfp ⇠ 1
⌘

✏+pk
2

Z ⇤

dDk
T

⌘
✏+pk

2

Third story



• This is the physics of thermal 
fluctuations. It is invisible if 
hydrodynamics is viewed 
just as a collection of partial 
differential equations. 

• If you think η/s can be 
arbitrarily small, think again. 

• Classical hydrodynamics 
may be irrelevant to physics 
in 2+1 dimensions.

x

y

Example: viscosity
Third story



Now let’s be slightly more formal

Third story



Add noises:   

⟨…⟩ = average over the noise with some weight, i.e. 

   

Snoise[τ,j] is Gaussian (quadratic in τ,j) for long-wavelength 
(small-k) fluctuations, by the central limit theorem. 

Width of the Gaussian is determined by demanding that 
the equilibrium 2-point correlation functions satisfy the 
fluctuation-dissipation theorem 

  

Tμν = Tμν
class[β, α] + τμν , Jλ = Jλ

class[β, α] + jλ

⟨…⟩ = ∫ Dτ Dj e−Snoise[τ,j]

Gsymm(ω, k) =
2T
ω

Im Gret(ω, k)

Stochastic hydrodynamics
Third story



T ij = · · ·+ (✏+p)vivj + · · ·+ ⌧ ij

linear leading non-linear, 
no derivatives term higher order

〈Txy Txy〉= 2Tη  + (𝜖+p) (𝜖+p)

  〈v v〉

  〈v v〉

x

y

x

y

Stochastic hydrodynamics

noise

Third story



hTxyTxyiR = p+O(⇤3
T )� i!

✓
⌘ +

17T 2⇤

120⇡2⌘/s

◆
+O

✓
!
3/2

(⌘/s)3/2

◆
+O(!2)

Stress correlations in 3+1 dimensions

0-th order classical 1-st order classical 2-nd order classical

correction to p correction to η cutoff-independent

• This is “one-loop” fluctuation correction to ⟨Txy Txy⟩ret. 
Actual physical viscosity includes all such corrections. 

• As expected, small η/s implies large corrections to η/s. 
Fluctuations are mandatory for small-viscosity physics. 

• Fluctuations are more important than 2-nd order hydro. 
IR contributions determined by thermodynamics and η/s.

PK, Moore, Romatschke, 1104.1586
PK, Yaffe, hep-th/0303010

Third story

https://arxiv.org/abs/1104.1586
https://arxiv.org/abs/hep-th/0303010


hTxyTxyiR = p+O(⇤3
T )� i!

✓
⌘ +

17T 2⇤

120⇡2⌘/s

◆
+O

✓
!
3/2

(⌘/s)3/2

◆
+O(!2)

Stress correlations in 3+1 dimensions

0-th order classical 1-st order classical 2-nd order classical

correction to p correction to η cutoff-independent

• In real time, ω3/2 gives 1/t3/2 decay of correlations, more 
important than first-order hydro (long-time tails). 

• In 2+1 dimensions, ω3/2 → ω ln(ω). Kubo formula for 
viscosity does not exist. 

• Large-N limit does not commute with the hydrodynamic 
limit, hence ω3/2 not visible in classical holography.

PK, Moore, Romatschke, 1104.1586
PK, Yaffe, hep-th/0303010

Third story

https://arxiv.org/abs/1104.1586
https://arxiv.org/abs/hep-th/0303010


Tµ⌫
cl = Tµ⌫

(0) + Tµ⌫
(1) + Tµ⌫

(2) + . . .

Gxy,xy(!) = O(1) +O(!) +O(!3/2) +O(!2) + . . .

Thermal fluctuations 
are more important 
than classical higher-
derivative hydro:

S =

Z
d4x


1

16⇡G
R+ c1R

2 + c2R
µ⌫Rµ⌫ + . . .

�

V (r) = �Gm1m2

r


1 +O

✓
Gm

r

◆
+O

✓
G~
r2

◆
+O(e�m0r)

�

m0 ⇠ (ciG)�1/2 Classical: Stelle 1978 
Quantum: Bjerrum-Bohr, Donoghue, Holstein, 2002

Analogy with quantum gravity

Quantum fluctuations 
are more important 
than classical higher-
derivative gravity:

Third story

http://dx.doi.org/10.1007/BF00760427
http://arxiv.org/abs/hep-th/0211072


Using classical hydrodynamics (i.e. hydro=PDEs) to 
evaluate the response to ω→0, k→0 sources is unreliable, 

Short-time statistical fluctuations give rise to infrared late-
time correlations, 

The deviations from classical hydrodynamics are more 
pronounced at small viscosity, 

Stochastic hydrodynamics predicts that these infrared 
correlations are universal, determined only by thermo-
dynamics and transport coef-s (viscosity, conductivity etc).

Bottomline
Third story



But let’s dig deeper

Third story



Snoise is only Gaussian as k→0. What if we want the 
derivative expansion, beyond the leading k→0 limit?  

Width of the Gaussian was fixed by FDT for 2-point 
functions. But FDTs exist for all n-point functions. How 
do you impose those? 

Classical hydro can only compute retarded functions. 
Non-retarded functions are invisible to classical hydro. 

But higher-point non-retarded func-s can not be related 
to retarded func-s through FDTs, hence contain new 
low-energy info. How do you access that info?

Beyond the naive stochastic hydro

Heinz, Wang, hep-th/9809016 

Third story

https://arxiv.org/abs/hep-th/9809016


We are used to computing correlation f-s in field theory: 

• Identify the low-energy degrees of freedom Ψ 
• Identify the symmetries G 
• Write a local action S[Ψ,A] invariant under G 
• Get correlation functions by varying 

with respect to A. 

Effective field theory

eiW [A] =

Z
D eiS[ ,A]

Can we do the same for near-equilibrium states? In such 
a EFT, classical hydro will be the Euler-Lagrange e.o.m. 
of the action, stochastic hydro will emerge as a leading-
order truncation.

Third story



Building blocks of hydro EFT

Want locality, gauge- and difffeo-invariance, etc. 

Want the Euler-Lagrange equations of motion to be the 
conservation laws ∂μTμν=0, ∂λJλ=0. Different from the stan-
dard mechanics where EL e.o.m. imply conservation laws. 

Want to access real-time correlation functions, hence 
formulate EFT using Schwinger-Keldysh fields (2 copies). 

For equilibrium, want to impose Kubo-Martin-Schwinger 
constraints as a symmetry.

Crossley, Glorioso, Liu, arXiv:1511.03646 
Haehl, Loganayagam, Rangamani, arXiv:1511.07809 

Jensen, Pinzani-Fokeeva,Yarom, arXiv:1701.07436 

Glorioso, Liu, arXiv:1805.09331 

Martin, Siggia, Rose, Phys. Rev. A 8, 423 (1973) 
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https://arxiv.org/abs/1511.07809
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https://arxiv.org/abs/1805.09331
https://doi.org/10.1103/PhysRevA.8.423


Example: conserved current
=external gauge field, 𝜑=dynamical field, .  

 

This W[A] is gauge-invariant, and e.o.m. for 𝜑 is ∂μJμ=0. 

Schwinger-Keldysh: need two copies . 
Let , , same for . Want 

   
hence S = O(a) + O(a2) + O(a3) + … 

Shift symmetry:  determines SSB or not 

KMS:   ,  = T or PT

Aμ Bμ ≡ Aμ + ∂μφ

eiW[A] = ∫ Dφ eiS[B]

B1,2
μ ≡ A1,2

μ + ∂μφ1,2

φr = (φ1 + φ2)/2 φa = (φ1 − φ2) Ar,a
μ

W[Ar
μ, Aa

μ = 0] = 0

φr → φr + λ(x)

Br → ΘBr , Ba → ΘBa + (i/T0)Θ∂tBr Θ

•

•

•

•
Crossley, Glorioso, Liu, arXiv:1511.03646 
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Diffusion in stochastic hydro (1)

Current  satisfies   

Noise is Gaussian:    

Enforce eom:   

Noise average  generates   

Get effective action 

Jt = n(μ), Jk = − σ(μ)∂kμ + jk ∂λJλ = 0

⟨ji(x)jk(x′�)⟩ = Cikδ(x − x′�)

δ[∂λJλ] = ∫ Dφa ei ∫ φa ∂λJλ

⟨…⟩ = ∫ Dj e− 1
2 ∫ jiC−1

ik jk… Cik∂iφa∂kφa

S[μ, φa] = ∫ dt ddx [iφa (∂tn(μ) − ∂k(σ(μ)∂kμ))+ 1
2 Cik∂iφa∂kφa]

O(a), diffusion equation O(a2), “kinetic” term

Third story



Diffusion in stochastic hydro (2)
Effective action for diffusion: 

S[μ, φa] = ∫ dt ddx [iφa (∂tn(μ) − ∂k(σ(μ)∂kμ))+ 1
2 Cik∂iφa∂kφa]

Say, . FDT for 2-point 
functions relates  to  of classical hydro. 

 contributes to 4-point non-retarded function, which is 
not related to the retarded function by FDT.  

Classical hydro only knows about retarded functions, hence 
classical hydro knows nothing about . 

 is a stochastic transport coefficient. It can contribute to 
observable retarded functions through loops.

Cik = C(μ) δik + θ(μ)[δik(∂jμ)2 − ∂iμ∂kμ] + …

C(μ) = 2Tσ(μ) σ(μ)

θ(μ)

θ(μ)

θ(μ)

Third story



Identify , effective action for diffusion: 

   

μ ≡ Br t = Ar t + ∂tφr

S1 = ∫ dt ddx [n(μ)Ba t + iT0σ(μ)Ba i (Bi
a + (i/T0)∂tBi

r)]

Beyond simple diffusion (recall Bμ=Aμ+∂μ𝜑) 

  

  

S2 = ∫ dt ddx θ1(μ)Ba iBa j [∂tBi
r ∂tB

j
r − δij ∂tBr k ∂tBk

r ]
+∫ dt ddx θ2(μ) Ba iBi

a (Ba j + (i/T0)∂tBr j) (Bj
a + (i/T0)∂tB

j
r)

Diffusion in EFT

Jain, PK, arXiv:2009.01356 

Crossley, Glorioso, Liu 
arXiv:1511.03646 

Third story
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KMS invariant
changes under KMS into  
stuff orthogonal to […]

Diffusion in EFT

Jain, PK, arXiv:2009.01356 

Crossley, Glorioso, Liu 
arXiv:1511.03646 
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Identify , effective action for diffusion: 

   

μ ≡ Br t = Ar t + ∂tφr

S1 = ∫ dt ddx [n(μ)Ba t + iT0σ(μ)Ba i (Bi
a + (i/T0)∂tBi

r)]

Beyond simple diffusion: 

  

  

S2 = ∫ dt ddx θ1(μ)Ba iBa j [∂tBi
r ∂tB

j
r − δij ∂tBr k ∂tBk

r ]
+∫ dt ddx θ2(μ) Ba iBi

a (Ba j + (i/T0)∂tBr j) (Bj
a + (i/T0)∂tB

j
r)

O(a2), Gaussian noise, but not related 
to diffusion coefficient by FDT

O(a2)+O(a3)+O(a4), non-Gaussian noise

Diffusion in EFT

Jain, PK, arXiv:2009.01356 

Crossley, Glorioso, Liu 
arXiv:1511.03646 
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Diffusion in EFT

Identify , effective action for diffusion: 

   

μ ≡ Br t = Ar t + ∂tφr

S1 = ∫ dt ddx [n(μ)Ba t + iT0σ(μ)Ba i (Bi
a + (i/T0)∂tBi

r)]

Beyond simple diffusion: 

  

  

S2 = ∫ dt ddx θ1(μ)Ba iBa j [∂tBi
r ∂tB

j
r − δij ∂tBr k ∂tBk

r ]
+∫ dt ddx θ2(μ) Ba iBi

a (Ba j + (i/T0)∂tBr j) (Bj
a + (i/T0)∂tB

j
r)

Leading-order in derivatives 

Derivative-suppressed compared to S1 

Jain, PK, arXiv:2009.01356 

Crossley, Glorioso, Liu 
arXiv:1511.03646 

Third story

https://arxiv.org/abs/2009.01356
https://arxiv.org/abs/1511.03646


Propagators and vertices
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Supplementary Material

Linearised fluctuations in diffusion EFT

In this appendix we give details of loop calculations in
diffusion EFT. Analysis for full hydrodynamics proceeds
in a similar manner.

Linearised action.—To compute various correlation
functions, we need to expand the effective action order-
by-order in self interactions. It is convenient to work
with the density n as a fundamental degree of freedom
instead of µ. We can expand the Lagrangian (4a) up to
forth order in the fields δn = n − n(µ0) and ϕa, in the
absence of background fields, to obtain

Lfree
1 = −ϕa

(

∂tδn−D∂2δn
)

+ iT0σ∂
iϕa∂iϕa,

L3pt
1 =

1

2
λδn2∂2ϕa + iχT0λ̃δn∂

iϕa∂iϕa,

L4pt
1 =

1

3
λ4δn

3∂2ϕa + iχT0λ̃4δn
2∂iϕa∂iϕa. (A1)

Here χ = ∂n/∂µ is the susceptibility and D = σ/χ is the
diffusion constant, along with

λ =
1

χ

∂D

∂µ
, λ4 =

1

2χ

∂

∂µ

(
1

χ

∂D

∂µ

)

,

λ̃ =
1

χ2

∂σ

∂µ
, λ̃4 =

1

2χ2

∂

∂µ

(
1

χ

∂σ

∂µ

)

. (A2)

In a typical diffusive model, ω ∼ k2. Taking D,χ, T0 ∼ 1,
and noting that L ∼ kdω ∼ kd+2, we can infer that
ϕa, δn ∼ kd/2. Therefore, higher order interactions in
δn and ϕa are successively more irrelevant in k and can
be consistently dropped within the derivative expansion.
This form of the diffusive action was recently derived
in [13]. The coefficients λ4 and λ̃4 are denoted as λ′

and λ̃′ in [13]; we reserve primes to denote derivatives
with respect to µ. For the stochastic Lagrangian (4b),
we get the first non-trivial contribution as

L4pt
2 = i

ϑ1
χ2

(∂in∂iϕa)
2 − i

ϑ1 + ϑ2
χ2

(∂in∂in)(∂
jϕa∂jϕa)

− 2T0ϑ2
χ

(∂in∂iϕa)(∂
jϕa∂jϕa) + iT 2

0ϑ2(∂
iϕa∂iϕa)

2. (A3)

Lfree
1 in (A1) is the free Lagrangian and leads to the

tree propagators

⟨δn(p)ϕa(−p)⟩0 =
1

F (p)
=

p

⟨ϕa(p)δn(−p)⟩0 =
−1

F (p)∗
=

p

⟨δn(p)δn(−p)⟩0 =
2T0χDk2

|F (p)|2 =
p

=
iT0χ

F (p)
− iT0χ

F (p)∗
, (A4)

where p = (ω, k) and F (p) = ω+ iDk2. We denote δn by
solid and ϕa by wavy lines. The remaining terms in (A1)
and (A3) lead to various interaction vertices

p1

p2

p3 p1

p2

p3

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4
(A5)

Stochastic vertices from (A3) are denoted in bold. The
respective Feynman rules can be read off from directly
from (A1) and (A3). Energy-momentum conservation at
each vertex is understood.

One final piece of information that we need is the cou-
pling to sources. As we shall only be interested in correla-
tion functions of density, we only keep the scalar sources
Ar,a t, and truncate to forth order in Ar,a t, δn,ϕa,

L2pt
1s = Aatδn+Artχ∂tϕa +AatArtχ

L3pt
1s = Art

(
χ′

χ
δn ∂tϕa −

σ′

χ
∂iδn∂iϕa + iT0σ

′∂iϕa∂iϕa

)

+AatArt
χ′

χ
δn+

1

2
A2

rtχ
′∂tϕa +

1

2
AatA

2
rtχ

′

L4pt
1s = Art

(

1

2χ

(
χ′

χ

)′

δn2∂tϕa −
σ′′

χ2
δn ∂iδn ∂iϕa

)

+Art
iT0σ′′

χ
δn∂iϕa∂iϕa +AatArt

1

2χ

(
χ′

χ

)′

δn2

+
1

2
A2

rt

(
χ′′

χ
δn∂tϕa −

σ′′

χ
∂iδn∂iϕa + iT0σ

′′∂iϕa∂iϕa

)

+
χ′′

2χ
AatA

2
rtδn+

χ′′

6
(Aat + ∂tϕa)A

3
rt. (A6)

We do not get any contribution from L2. The first two
terms in L2pt

1s are the usual linear couplings between fun-
damental fields and sources, while the remaining non-
linear couplings can be represented by the vertices

p1

p2

p3 p1

p2

p3 p1

p2

p3 p1

p2

p3

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p p p1

p2

p3

p1

p2

p3

p4
(A7)

We have denoted Art by dotted and Aat by dashed lines.
Vertices in the last line only couple to sources and lead
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In a typical diffusive model, ω ∼ k2. Taking D,χ, T0 ∼ 1,
and noting that L ∼ kdω ∼ kd+2, we can infer that
ϕa, δn ∼ kd/2. Therefore, higher order interactions in
δn and ϕa are successively more irrelevant in k and can
be consistently dropped within the derivative expansion.
This form of the diffusive action was recently derived
in [13]. The coefficients λ4 and λ̃4 are denoted as λ′

and λ̃′ in [13]; we reserve primes to denote derivatives
with respect to µ. For the stochastic Lagrangian (4b),
we get the first non-trivial contribution as
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χ2

(∂in∂iϕa)
2 − i

ϑ1 + ϑ2
χ2

(∂in∂in)(∂
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χ

(∂in∂iϕa)(∂
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0ϑ2(∂
iϕa∂iϕa)

2. (A3)

Lfree
1 in (A1) is the free Lagrangian and leads to the

tree propagators

⟨δn(p)ϕa(−p)⟩0 =
1

F (p)
=
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⟨ϕa(p)δn(−p)⟩0 =
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=
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F (p)∗
, (A4)

where p = (ω, k) and F (p) = ω+ iDk2. We denote δn by
solid and ϕa by wavy lines. The remaining terms in (A1)
and (A3) lead to various interaction vertices
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Stochastic vertices from (A3) are denoted in bold. The
respective Feynman rules can be read off from directly
from (A1) and (A3). Energy-momentum conservation at
each vertex is understood.

One final piece of information that we need is the cou-
pling to sources. As we shall only be interested in correla-
tion functions of density, we only keep the scalar sources
Ar,a t, and truncate to forth order in Ar,a t, δn,ϕa,
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)

+Art
iT0σ′′

χ
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We do not get any contribution from L2. The first two
terms in L2pt

1s are the usual linear couplings between fun-
damental fields and sources, while the remaining non-
linear couplings can be represented by the vertices

p1

p2

p3 p1

p2

p3 p1

p2

p3 p1

p2

p3

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p p p1

p2

p3

p1

p2

p3

p4
(A7)

We have denoted Art by dotted and Aat by dashed lines.
Vertices in the last line only couple to sources and lead
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Supplementary Material

Linearised fluctuations in diffusion EFT

In this appendix we give details of loop calculations in
diffusion EFT. Analysis for full hydrodynamics proceeds
in a similar manner.

Linearised action.—To compute various correlation
functions, we need to expand the effective action order-
by-order in self interactions. It is convenient to work
with the density n as a fundamental degree of freedom
instead of µ. We can expand the Lagrangian (4a) up to
forth order in the fields δn = n − n(µ0) and ϕa, in the
absence of background fields, to obtain
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Here χ = ∂n/∂µ is the susceptibility and D = σ/χ is the
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In a typical diffusive model, ω ∼ k2. Taking D,χ, T0 ∼ 1,
and noting that L ∼ kdω ∼ kd+2, we can infer that
ϕa, δn ∼ kd/2. Therefore, higher order interactions in
δn and ϕa are successively more irrelevant in k and can
be consistently dropped within the derivative expansion.
This form of the diffusive action was recently derived
in [13]. The coefficients λ4 and λ̃4 are denoted as λ′

and λ̃′ in [13]; we reserve primes to denote derivatives
with respect to µ. For the stochastic Lagrangian (4b),
we get the first non-trivial contribution as
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solid and ϕa by wavy lines. The remaining terms in (A1)
and (A3) lead to various interaction vertices
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Stochastic vertices from (A3) are denoted in bold. The
respective Feynman rules can be read off from directly
from (A1) and (A3). Energy-momentum conservation at
each vertex is understood.

One final piece of information that we need is the cou-
pling to sources. As we shall only be interested in correla-
tion functions of density, we only keep the scalar sources
Ar,a t, and truncate to forth order in Ar,a t, δn,ϕa,
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We do not get any contribution from L2. The first two
terms in L2pt

1s are the usual linear couplings between fun-
damental fields and sources, while the remaining non-
linear couplings can be represented by the vertices
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We have denoted Art by dotted and Aat by dashed lines.
Vertices in the last line only couple to sources and lead
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Linearised fluctuations in diffusion EFT

In this appendix we give details of loop calculations in
diffusion EFT. Analysis for full hydrodynamics proceeds
in a similar manner.

Linearised action.—To compute various correlation
functions, we need to expand the effective action order-
by-order in self interactions. It is convenient to work
with the density n as a fundamental degree of freedom
instead of µ. We can expand the Lagrangian (4a) up to
forth order in the fields δn = n − n(µ0) and ϕa, in the
absence of background fields, to obtain
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In a typical diffusive model, ω ∼ k2. Taking D,χ, T0 ∼ 1,
and noting that L ∼ kdω ∼ kd+2, we can infer that
ϕa, δn ∼ kd/2. Therefore, higher order interactions in
δn and ϕa are successively more irrelevant in k and can
be consistently dropped within the derivative expansion.
This form of the diffusive action was recently derived
in [13]. The coefficients λ4 and λ̃4 are denoted as λ′

and λ̃′ in [13]; we reserve primes to denote derivatives
with respect to µ. For the stochastic Lagrangian (4b),
we get the first non-trivial contribution as
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where p = (ω, k) and F (p) = ω+ iDk2. We denote δn by
solid and ϕa by wavy lines. The remaining terms in (A1)
and (A3) lead to various interaction vertices
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Stochastic vertices from (A3) are denoted in bold. The
respective Feynman rules can be read off from directly
from (A1) and (A3). Energy-momentum conservation at
each vertex is understood.

One final piece of information that we need is the cou-
pling to sources. As we shall only be interested in correla-
tion functions of density, we only keep the scalar sources
Ar,a t, and truncate to forth order in Ar,a t, δn,ϕa,
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1s are the usual linear couplings between fun-
damental fields and sources, while the remaining non-
linear couplings can be represented by the vertices
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We have denoted Art by dotted and Aat by dashed lines.
Vertices in the last line only couple to sources and lead
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to contact terms in the correlation functions. The asso-
ciated Feynmann rules can be obtained from (A6). We
will not need the four point interactions in (A7) in the
following calculation, but we have enlisted them anyway
for completeness.

We can now utilise (1) to compute various correlation
functions order-by-order in loops. We are working with
the conventions of [10] for the definition of correlation
functions. These are related to the conventions of [8]
as GWH

α... = i/2 (−1)na(−2i)nrGα... and those of [17] as
GK

α... = (−1)naGα.... We note that the free propagators
⟨δn(p)ϕa(−p)⟩0 and ⟨δn(p)ϕa(−p)⟩0 in [13] have incor-
rect overall signs compared to our (A4). To account
for this, their one-loop results should be modified with
λ→ −λ and λ′ → −λ′; these are reviewed below.

Note that the “ra” type propagator ⟨δn(p)ϕa(−p)⟩0 in
(A4) is purely retarded while the “ar” type propagator
⟨ϕa(p)δn(−p)⟩0 is purely advanced, which is a generic
feature of these EFTs. This allows us to ignore any di-
agrams that contain a loop made entirely of “ra” or en-
tirely of “ar” propagators, as they trivially drop out upon
performing the frequency integral with a KMS consistent
renormalisation scheme [20]. Another fact to note is that
the “rr” propagator ⟨δn(p)δn(−p)⟩0 can be decomposed
into a retarded and advanced piece as seen in (A4), which
is essentially the statement of FDT [8]. This allows us to
drop any diagrams with a single “rr” propagator closed
in a loop, as the loop integral splits into a purely retarded
and a purely advanced piece and trivially drops out. We
shall not enlist such diagrams in our discussion below.

One-loop 2-point function.—Let us start the discussion
with one-loop corrections to the retarded 2-point func-
tion. At this order there are no possible diagrams in-
volving a stochastic vertex. However, it is still helpful
to revisit the contribution coming from hydrodynamic
diagrams to set up some ground work (see [13]). Let
us parametrise the loop corrections to ⟨δn(p)ϕa(−p)⟩0 in
(A4) as

⟨δn(p)ϕa(−p)⟩ ≡ 1

F (p) + Σ(p)
. (A8)

Σ(p) can be understood as a momentum-dependent cor-
rection to the diffusion constant. We have two diagrams
that can possibly contribute to this process

p

p′

p− p′

p p

p′

p− p′

p
(A9)

It is straightforward to compute these and obtain the

one-loop correction

Σ1(p) = iλT0k
2

∫
d4p′

(2π)4
1

F (p′)
(
χλ̃ k′ · (k − k′)

F (p− p′)
− 2iλσ (k − k′)2k′2

|F (p− p′)|2

)

= iλχT0k
2

∫
d4p′

(2π)4
λ̃ k′ · k + (λ− λ̃)k′2

F (p′)F (p− p′)

=
λχT0k2

32πD2

(

λ̃(ω + iDk2)− λω
)
√

k2 − 2iω

D
. (A10)

In obtaining the second equality, we have expanded the
second term in the brackets into a retarded and advanced
piece. The term purely retarded in p′ drops out of the
integral. The integration has been be performed with a
hard momentum cutoff and cutoff-dependent terms have
been ignored; see (A34).

We can also compute the respective contribution to
the retarded two-point correlation function Gra. Using
(1) and (A6) we can parametrise it as

Gra(p) =
−iδ2W

δAat(p)δArt(−p)

= −ωχ⟨δn(p)ϕa(−p)⟩+ . . .

≡ ik2 (σ + δσ(p))

F (p) + Σ(p)
≡ ik2σ

F (p) + Γ(p)
. (A11)

Here δσ(p) is seen as correction to conductivity in the
language of [13], while Γ(p) is the physically measurable
correction to the two-point function. The . . . in the sec-
ond line represents contributions involving the source cou-
plings from (A7), given by diagrams

p p

p

p′

p− p′

p p

p′

p− p′

p

(A12)

The first diagram contributes a contact term, while the
remaining two diagrams follows along (A10) leading to

(. . .) = χ+
iλk2

F (p)

∫
d4p′

(2π)4
1

F (p′)

(
−T0σ′k′ · (k − k′)

F (p− p′)

+
2T0D(k − k′)2(χ′ω′ − iσ′k′ · (k − k′))

|F (p− p′)|2

)

= χ− iλχ2T0k2

F (p)

∫
d4p′

(2π)4
(λ − λ̃)k′2

F (p′)F (p− p′)
. (A13)

In total, we find the correction to the correlation function

Γ1(p) = −λχT0

D

∫
d4p′

(2π)4
ωλ̃ k′ · k − iDk2(λ− λ̃)k′2

F (p′)F (p− p′)

=
−λ2χT0

32πD2
ωk2

√

k2 − 2iω

D
. (A14)

  ω + iDk2 → ω + iDk2 + #ωk2 k2 −
2iω
D
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contribute. The non-vanishing diagrams are broadly of
three kinds: firstly, we have diagrams involving a 4-point
hydrodynamic interaction

p

p′

p′′

p− p′ − p′′

p p

p′

p′′

p− p′ − p′′

p
(A23)

The only difference between the two diagrams is the
stochastic vertex and the p′ propagator. In fact, one
can check that due to KMS relations between the two
vertices and the two propagators, the two contributions
exactly cancel. Next we have diagrams involving two
3-point hydrodynamic interactions, where the stochastic
4-point vertex has an external leg

p

p′
p′ − p′′

p′′

p− p′

p p

p′
p′ − p′′

p′′

p− p′

p

p

p′
p′ − p′′

p′′

p− p′

p (A24)

These diagrams also only differ from each other in the
stochastic vertex involved and the propagators arriving at
it, and mutually cancel due to KMS properties. Finally
we have diagrams involving two 3-point hydrodynamic
vertices but no external leg on the stochastic vertex

p

p′

p− p′

p′′

p− p′′

p

p

p′

p− p′

p′′

p− p′′

p

(A25)

These diagrams involve different hydrodynamic vertices,
which each come with an independent coefficient, and
hence their contribution to the propagator does not can-
cel. In fact we have already computed parts of these dia-
grams. The left half including the stochastic vertex is just
the 3-point diagram (A18). Taking it into account, these

diagrams are just the one-loop diagrams in (A9) with λ in
the left three-point vertex replaced by δλ before perform-
ing the integral. Hence, we find the stochastic correction
to the propagator using (A10) as

Σst
2 (p) = iT0χk

2

∫
d4p′

(2π)4
δλst

1 (p; p
′, p− p′)

λ̃ k′ · k + (λ− λ̃)k′2

∆(p′)∆(p− p′)

=
T0λk2

1024π2D3χ

(

(λ− λ̃)ω − iλ̃Dk2
)(

k2 − 2iω

D

)

(

1

6
ϑ1k

4 −
(
2

3
ϑ1 + ϑ2

)(

k2 − iω

D

)2
)

. (A26)

Similarly, the stochastic correction to the retarded
function Gra involves background coupling diagrams

p

p′

p− p′

p′′

p− p′′

p

p

p′

p− p′

p′′

p− p′′

p

(A27)

Their contribution, again, is just given by substituting λ
in the left vertex in (A12) with δλ. We can, therefore,
find stochastic correction to the retarded correlation func-
tion using (A14) as

Γst
2 (p) =

−χT0

D

∫
d4p′

(2π)4
δλst

1 (p; p
′, p− p′)

ωλ̃ k′ · k − iDk2(λ− λ̃)k′2

F (p′)F (p− p′)

=
T0λ2ωk2

1024π2D3χ

(

k2 − 2iω

D

)

(

1

6
ϑ1k

4 −
(
2

3
ϑ1 + ϑ2

)(

k2 − iω

D

)2
)

. (A28)

One can also find the associated δσ using (A11) to be

δσst
2 (p) = − T0λλ̃k2

1024π2D2

(

k2 − 2iω

D

)

(

1

6
ϑ1k

4 −
(
2

3
ϑ1 + ϑ2

)(

k2 − iω

D

)2
)

. (A29)

We see that the two-point function gets an analytic cor-
rection due to stochastic vertices. Schematically, the two
loops individually have a square-root non-analyticity, but

  ω + iDk2 → ω + iDk2 + #ωk2 (k2 −
2iω
D ) k4

Jain, PK, arXiv:2009.01356 

Correction determined by thermo-
dynamics and diffusion coefficient 

Correction determined by stochastic 
transport coef-s invisible to classical 
hydrodynamics. 1-loop correction to 
3-point function non-alalytic in ω,k.

Third story

https://arxiv.org/abs/1811.12540
https://arxiv.org/abs/2009.01356


Summary of EFT

Two types of fields: “classical” ( ) and “stochastic” ( ). 

 These are the non-linearities of classical hydro, 
fixed by the classical constitutive reltaions 

   Some of these are fixed by FDT in terms of 
the classical transport coef-s (viscosity etc) 

     Some of these are invisible to classical  
  hydrodynamics 

    Invisible to classical hydrodynamics  

φr φa

S ⊃ φa F(φr)

S ⊃ (φa)2 G(φr)

S ⊃ (φa)2 G(φr)

S ⊃ (φa)n>2 H(φr)

Third story
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S ⊃ φa F(φr)

S ⊃ (φa)2 G(φr)
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S ⊃ (φa)n>2 H(φr)

new interactions, “stochastic transport coefs” Jain, PK, arXiv:2009.01356 

Summary of EFT
Third story

https://arxiv.org/abs/2009.01356


Bottomline:
Stochastic transport coef-s are invisible to classical hydro, 
but contribute to measurable correlation f-s through loops.  

Stochastic transport coef-s give rise to infrared effects, 
derivative-suppressed in 3+1 compared to viscosity, etc. 
These are different effects from the usual long-time tails. 

Stochastic transport coef-s can only be matched to the UV 
of the theory through non-retarded functions, unlike η,D,etc. 

Thus knowing the macroscopic classical effective theory (to 
all orders in the derivative expansion) is not enough to 
correctly describe macroscopic infrared correlations. 
Different from “standard” QFT. 



Encouragement for students

As a student, one often tends to think that all interesting 
questions in physics have already been answered many 
years ago by the great.  

Hydrodynamics is an ancient field by modern standards, 
and people are still trying to figure out some very basic 
questions. 

If, as a student, you work in a field that is less than 200 
years old, do not lose hope: there surely are many fun-
damental things left to discover.



Thanks for listening!


