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QFT+EFT motivation




e Consider 2-2 scattering of identical massive scalars.

e Tn perturbative QFT we use Feynman diagrams. These
manifest crossing symmetry.

e A non-perturbative representation of the amplitude
follows from fixed-t dispersion relation. This loses
crossing symmetry, which needs to be imposed as a
constraint.



e Where are the Feynman diagrams then from the
dispersion relation point of view?

e There is an analogous question one can ask in conformal
field theory—this was our motivation to look into this
question: Polyakov in 1974 proposed a crossing symmetric
bootstrap. This looked like......
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Gopakumar, Kaviraj, Sen, AS PRL '16. Gopakumar, AS '18,........



e How do we constrain Effective Field Theories? What
role does the inaccessible high energies (unknown) play?

e What are the correct mathematical ingredients? Are
there known mathematical theorems which can help us?



e So imagine you were an EF T specialist and had access to
2-2 scattering.

e Schematically you have low energy information of the
form
(S|, Sy, S3) = Z W, X°y1, X =815+ 553+ 85535, V=555

subject o s + 5, + 53, =0



e Typically you have information about the first few
Wilson coefficients at low energies.

e Can these take on arbitrary values? Knowing these are
there anything useful we can say about the higher order
ones which we don't know anything about?

Arkani-hamed, Huang, Huang: Caron-huot, Mazac, Rastelli, Simmons-Duffin, van-Duong; Tolley, Wang, Zhovu;

Bern, Kosmopoulous, Zhiboedow........
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2103.12108

W, , q=0 q=1 q=2 q=3 q=4 q=5
p=0 | -5.22252 -0.0209238 | 0.000401094 | -0.0000116118 | 3.9934x 107 | -1.5104x 10~*
p=1 0.0663542 -0.0023309 0.0000983248 | -4.4442x 107° | 2.0832x 1077 -

=2 | 0.00344623 -0.00027954 0.00001862 |-1.1521x 107° - -
p=3 | 0.000267396 | -0.0000348355 | 3.1948x 107" | -2.5174x 1077 - -
p=4 | 0.0000245812 | -4.4442x 1075 | 5.2081x 107 - - -
p=5 | 2.4827x 107° | -5.7605% 107 i i ] )

M(d)(sla 32) -

Table 2: W, for 1-loop ¢" amplitude

(1 —s)0(1—52)"(8) +82+1)
s182 (81 +82) (81 + 1) (=81 — 820+ 1) (52 + 1)

1

5182 (81 + $2)

Wee | a=0 q=1 l q=2 q=3 q=4 q=5
p=0 | 2.40411 | -2.88988 | 2.98387 | -2.99786 | 2.99973 | -2.99997
2.07386 | -4.98578 | 7.99419 | -10.9987 | 13.9998 | -17.

p=2 | 2.0167 |-6.99881 | 14.9984 | -25.9995 | 39.9999 | -57.
3 [ 2.00402 | -9.00023 | 23.9996 | -49.9998 | 89.9999 | -147.
p=4 | 2.00099 | -11.0002 | 34.9999 | -84.9999 | 175. | -322.
2.00025 | -13.0001 | 48. -133. 308. -630.

Table 1: W, , for tree level type Il superstring theory amplitude

(B.1)



Weg| a=0 [  q=I q=2 =3 | q=4 | q=b
p=0 | -1.90562 | 5.02671 | -0.249527 | 0.0118008 | -0.000555517 | 0.0000262344
p=1| 572161 | 0.395863 | -0.0520982 | 0.00402939 | -0.000264317 | -
=2 | 0.642298 | 0.0217519 | -0.00787377 | 0.000904172 - -
=3 | 0.0796397 | -0.000836409 | -0.000995454 | 0.000166504 . -
p=4 | 0.0101505 | -0.000579411 | -0.000103708 | - . -
p=5 | 0.0013093 | -0.000136893 - - . -

Table 3:

W, , for pion scattering from S-matrix bootstrap with s, = 0.35
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e Based on 2012.04877 (PRL, 21) with Ahmadullah Zahed
and 2101.09017 (PRL, 21) with Rajesh Gopakumar and
Ahmadullah Zahed, 2103.12108 with Parthiv Haldar and

Ahmadullah Zahed and work in progress with Prashanth
Raman.
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PHYSICAL REVIEW D VOLUME 6, NUMBER 10 15 NOVEMBER 1972

Rigorous Parametric Dispersion Representation with Three-Channel Symmetry*

G. Auberson and N. N. Khuri
Rockefellevy University, New York, New York 10021
(Received 30 June 1972)

Starting with an analyticity domain in the two Mandelstam variables which is contained in A r'ela'l‘ively
the domain obtained by Martin, we derive a parametric dispersion representation for scat-
tering amplitudes in the equal-mass case. For pion-pion scattering this representation is a unknown paper‘ fr‘om
rigorous consequence of the axioms of local field theory; it displays in a symmetric and
explicit way the contributions of all three channels, and it has only “physical” absorptive 1972'

parts. This representation is useful for deriving sum rules involving only absorptive parts
and relating all three channels. Some of these sum rules are given in this paper, the most
important of which form a set of independent physical relations that lead to necessary and
sufficient conditions ensuring full crossing symmetry.

RIGOROUS PARAMETRIC DISPERSION REPRESENTATION... 2965

| O

Note added in proof. One should note that Eq. (4.13) is tremendously simplified in the fully symmetric
case, m°7°— 7°7°. In that case one obtains

-~ 1 [ ds' ) o+ —) - = o The most useful/
Pos L =aprs [ L AT 5 L) HGSS, T, :
8/3 encouraging formula

where H(s';s, £, ) =[s(s" = 8) "' +1(s' = 1) +u(s’ ~w) 7], and {,(s";5, ¢, w) =4,(s"; @) with @=5Lu(s{ + u+suy’ was in a NOTE
and {,(s’, a) given in Eq. (5.20). This representation holds for ary point (s, f) for which 7=1,(s"; s, t,u) + +
lies in the Martin-Lehmann ellipses F(s’) for A(s’, 1) given in Eq. (A2). The similarity of this representa- ADDED!

tion to the Cini-Fubini approximation® is striking. This representation follows most directly from Eq.
(5.2) by transforming from the (z, a) variables to the s, {, # variables.,

ACKNOWLEDGMENTS

We are indebted to F. J. Dyson and G. Wanders for useful comments. See also M(lhOLIX, ROY, Wanders 1974.
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Crossing symmetric dispersion relation

I [T ds; R
VL o(S1,8) =ag+—| —A (S{;s( ) (s{,a)) X H (s{;sl,sz, S

U ) 2u Si -

’%

H (51551, 89, 83) = : I

(8551 32:3) [m-so (51 =52 <si—Ss>]
y o 43 1/2

s§”<si»a>=‘31[1_(;i—a> ] |

515233 ay = M(s, = 0,5, = 0)
S139 —+ 5153 —+ 37373

SI+S2+S3=O //t=4m2 ad =

4 4 4

NB:S1=s—§m ,§ =1 ——m ,s3=u——m2
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Expand

—518(81 + $) A (s, 5,) =

Answer

C(1=s)T(1=5)T(s;+s+1)

In terms of poles in

53

F(Sl+I)F(—Sl—sz+1)r(s2+1)

(1)

1

o0
—S1S2(S1 + Sz)%(sl, Sz)(CFOSSlng) — 1 + Z
k=0 L

1 1
Kk +1)! (k—s1+1 Ck—s+1

( (kg 1 ke ))F(%(W

X

4a

—a+k+1

3
Ck—s;+ 1 k+1>

S158) &

= 7917 %

Pk [ 1+3>> _

r(% (k(\/_aj‘;m 1—1) +\/_a+k+1 1+1>)r<%<—\/_a+k+1 +1—k<\/

o =

519253

S139 —+ SlS3 —+ 52S3
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Numerical checks

~$152(S1+82)Mai($1,52), S2=75
" 20 &
! | 1
e - %
4 1.5_‘ QQ
;/ \
P $ ' e %
¢ ' 2
Tr Tr 0.5_‘ “‘ “
2 T4 B
-5 0 3} :
—»- Crossing 2-channel - Exact

B Crossing m 2-channel 7 Overlap 10% & Contour a=1

Similar expansion exists for the 2d Ising Mellin Amplitude. Also similar
expansion exists for the open string amplitude with only s,t symmetry (w P.
Raman).
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S t Exact kmax=100 K rax=400

i & 1.32322 1.32361 1.32325

o —3 —0.000619309 —0.00061931 —0.000619309
T4 2| -8 — 222 10.200577 — 0.0884721i | 0.200577 — 0.088472i | 0.200577 — 0.0884721:
343l 1yt | —0.242057 + 2.28081% | —0.247887 + 2.281944 | —0.242315 + 2.28022i

0.769274 + 0.6389197

0.769435 + 0.639057

0.769279 + 0.638931%

 Good match for complex values

18




Notice something nontrivial. If we consider just a fixed k.
Expand around a=0.
You will get negative powers of x.

But LHS has no such powers. This means that once we sum
over K, these negative powers will cancel. Keep this in
mind.

Lesson: To have a crossing symmetric expansion, it seems
we have to introduce “spurious”, "non-local” singularities

to the basis elements. LOCALITY CONSTRAINTS/NULL
CONSTRAINTS

19



A heuristic derivation

of the crossing
symmetric dispersion

e Auberson, Khuri 1972; AS, Zahed '20.



The key steps

e We can parametrize the solution using a new variable 7

(2 — Zk)3
27— 1

S, =a—da

e Here z; are the cube roots of unity. Satisfying
Z1+ﬂQf+23::O

21



The key idea

e Tdea now is to write a dispersion relation in z for fixed a.

e Conveniently one can show

27“323 Make a mental note
—V = 515,53 = of the forms of these. These
(73 — 1)? are what are called Koebe functions
9 3 in the context of univalent functions.
27a°z

—X = 5,5, + 5,53 + 5153 =
152 T 583 T 5153 22— 1)

e So that an expansion in powers of X,y is an expansion in powers

of a,ZB.

22



B

Case-|

1.5

-1.5

|
1.5

L 515953 o 58(s) +8))
S1Sy + §153 + S283 5185 + 57+ 53
Low energy

‘ High energy

S = a,|$],|s3] > o0 when z — z, etc



The key idea

1 / ZB — 1 /
— @ dz EY %(Z ,Cl) — ’%(Sl — O,S2 = O)
Jc, < (Z — Z)

& 3 3
l - 1 5 — 1 M(s, = O,S = ()
Y d7’ M7, a) = M(z,a) (5, 2 =0)

c PE-2) z3 z3

IS
I
a,

....'.1-5l_ll““
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The key steps

e Imposing s; + 5, + 53 = 0 the equation

515233

o =
3137 -+ S1S3 -+ S2S3

e Becomes a quadratic equation giving s, in terms of ;.
Call these Szi(Sl, a)

1/2
() oS | (1T 3a
S8, a) = 1
2 (1 ) 2 |: +<S1—CZ) :|

25
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Structure of "Dyson” and "Feynman” blocks

1 * do .
G559 = MO0+~ 0 +20) | H(@:5)a, (o)L E ) Dyson block expansion
= 2Tu o —“Regge bounded”
! " do 0/51.50)  Ouls553)  Opls3. ) ' Feynman
A(sy,8,) = A(0,0) + — Z (22 + 2a) 7 4/(0) ) _1 e _2 e _3 — + poly, block expansion
Ty '3 o(o — 7)5 974 0=% 0= 1l —not “Regge bounded”

+
>< eg. poly, =cx+ cyy

2u
* Qf(Sl’ Sz) — Sl(Sl — ?)KC;G)(COS 9)

28



"Dyson” block expansion

Expansion of the massless pole subtracted dilation amplitude in terms of crossing symmetric
partial waves (locality constraints implicit).

Fractional
deviation
Sl — 03
0.0012 -
0.0010 - _
i fmax o 69 k
0.0008 |
- Sl — 01
0.0006
0.0004 | -
I 0.4}
0.0002 .
\ 0.2

S2

~15  -1.0 -0.5 0.0 0.5 1.0 15 \ ;
0.1+~

-04 -0.2
0.1

021
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"Feynman" block expansion

Expansion of the massless pole subtracted dilation amplitude in terms of crossing symmetric
partial waves (locality constraints imposed—operationally throw away negative powers of x,
partialwave*kernel wise).

Fractional
deviation
0.0008+
0.0006 ! Z =6, k

30



Importance of contact terms

S, S5 Exact Feynman Without contact terms Dyson
% i 2.45013 2.45012 2.44898 2.45012
L 1+ — 0.886092 +16.2404 1 8.886074 + 16.2397 1 8.834015 + 10.2278 1 8.886395 +106.24 1

8.327184 + 0.214067 1

8.332949 +0.217049 1

8.796025 + 8.6663346 1

0.32976 + ©0.219688 1

8.205184 +©.179331 1

8.211681 + ©.187269 1

©.775999 + 8.8556316 1

8.201598 + 6.183881 1

8.312277 +0.112769 1

8.315664 + 8.116603 1

0.802566 + 8.6667358 1

0.313287 +©0.116089 1

31




Fractional
deviation

0.0012}

Feynman

0.0010}

0.0008 | AR

'.', | “-, ;: [ Singularity removed block/
\ esis s Feynman block seems to do
A S | alal better.

X 0.0004 | il

0.0002) /AT T\
ey O
-0.5
1 S1=0.1 n S1=0.3 ] S1=0.7

32



Proposed nomenclature

QFT CFT
Partial wave with singularity —Dyson block Conformal partial wave with singularity — Polyakov block
Partial wave with singularities removed —Feynman block CPW with singularities removed —Witten block
QFT CFT

33




GFT

2103.12108 with P. Haldar and A. Zahed; but mainly work in progress with P. Raman

34


https://arxiv.org/abs/2103.12108

e Ts dispersion (closing of contour, dropping of arcs)
enough to give bounds?

e No. What gives two-sided bounds is crossing symmetry
and locality. On the math side we have additional analytic
properties like univalence, typically realness etc on
either a disc, punctured disc or annulus.

e 2103.12108 with P. Haldar and A. Zahed; but mainly work in progress with P. Raman

35


https://arxiv.org/abs/2103.12108

Power of univalence: a simple example

gz)=¢8z) = 7, =2 Definition

Example in a disk

f2)=z+az*, |z| <1

f(z) =f(z) = (zy —2)(1 +az; +az) =0

|1 +az;+az,|>|1—|allz + 2] Reverse triangle

Triangle

la| < = BOUND!!

36



A bit of math history

Univalent flz) =z+ Z az", |z|] <1
n=>2

Bieberbach 1916 conjectured |a,| < n
Real version proved by Rogosinski,... 1931
Most general version proved by Louis de Branges in 1985

Interesting subclasses, more relevant to give stronger
bounds

e 2103.12108 with P. Haldar and A. Zahed; but mainly work in progress with P. Raman
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https://arxiv.org/abs/2103.12108

"Convex sum of typically real univalent

functions is typically real”
~

Imf(zx)Imz>0

Kernel N 27612(361 — 2S1) Z Mobius transformation of
H(aa 315 Z) — 3 — Koebe function—
59 1 +yZ+2 univalent with real
coefficients.

Univalent functions with
When absorptive part>0, (s1,5,) ~ | absorptive part X Kerne real coefficients are also
el typically Real**
we have a convex sum yp y

** Convex sum of univalent functions are not necessarily univalent BUT convex sum of typically real functions are
typically real! With P. Raman, to appear

Geometric function theory—Bieberbach, Rogosinski, Wigner, Nehari, Schwarz, Komatu,

Goodman, papers dating over a 100 years or so.
38
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—-2<72

27a2(a(a%02 +W )+ W ) <
aWOl —+ %10 B

2

40

_0.5!

0.5

0.0

m 1.7778 w 1.7444 = 1.7111
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-0 15: With P. Raman, to appear
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Future is bright
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