Bit threads, Einstein's equations and bulk locality

Juan F. Pedraza

It from Qubit

Simons Collaboration on Quantum Fields, Gravity and Information

June 18, 2021

Based on:

C. Agón, J. de Boer, & J.P. [1811.08879] C. Agón, E. Cáceres, & J.P. [2007.07907] C. Agón & J.P. [2105.08063] J.P., A. Svesko, A. Russo & Z. Weller-Davies [2105.12735, 2106.XXXXX]

Outline

Organization of the talk:

- Motivations/advantages of bit threads
- Constructive realizations of bit threads & properties [1811.08879]
- Einstein's equations and bulk reconstruction [2007.07907]
- **•** Generalizations:
	- \blacktriangleright 1/N corrections [2105.08063]
	- \blacktriangleright Lorentzian threads [2105.12735, 2106.XXXXX]

Holographic entanglement entropy

Ryu-Takayanagi (RT):

$$
S(A) = \min_{m \sim A} \frac{\text{area}(m(A))}{4 G_N}
$$

$$
S(A) = -\text{Tr}\hat{\rho}_A \ln \hat{\rho}_A
$$

$$
\hat{\rho}_A = \text{Tr}_{A^c} \hat{\rho}
$$

- **•** Geometry emerges from entanglement
- Dynamics of entanglement ⇐⇒ Dynamics of geometry
- Properties of $S(A) \iff$ states with holographic duals

Where are the quantum bits?

Some conceptual puzzles

[Headrick & Freedman]

- Minimal surfaces are discontinuous
- QI meanings of quantities such as $S(A)$, $I(A:B)$ are obscure as well as their properties
- In particular SSA and MMI appear in the same footing

Bit thread re-formulation of RT

Consider a v^μ such that $|v| \leq 1/4 \textit{G}_{\textit{N}}$ and $\nabla_\mu v^\mu = 0$

$$
S(A) := \max_{v} \int_{A} \sqrt{h} \, n^{\mu} \nu_{\mu} = \min_{m \sim A} \frac{\text{area}(m(A))}{4 G_N}
$$

BH horizon

Equivalence follows from MFMC theorem / convex optimization [Freedman & Headrick; Headrick & Hubeny]

 \bullet Integral lines of v, a.k.a. threads, codify local pattern of entanglement

- \bullet m(A) is unique while v is highly non-unique! \sim different microstates
- Oftentimes is convenient to think of threads as having finite thickness $(4G_N)$

Solution to conceptual puzzles

- Entropy \sim area due to 1d nature of threads
- Threads and/or V^μ can be continuous
- Properties of entropy are aligned with their QI meanings
- SA and SSA comes from nesting
- MMI comes from "multicommodity"

Bulk reconstruction via RT

- RT surfaces probe bulk metric and can be used to reconstruct it.
- Hole-ography makes this concrete [Balasubramanian,Chowdhury,Czech,de Boer,Heller; Myers,Rao,Sugishita; Czech,Dong,Sully; Czech,Lamprou,McCandlish,Sully; Headrick,Myers,Wien; etc]
- \bullet Differential entropy E computes areas:

$$
E = \oint d\lambda \frac{\partial S_A(\theta_-(\lambda)\theta_+(\bar{\lambda}))}{\partial \bar{\lambda}}\bigg|_{\bar{\lambda}=\lambda}
$$

• Surfaces can be shrunk to a point. Distance between points can be computed, and ultimately $g_{\mu\nu}$ [Czech,Lamprou].

Bulk reconstruction via RT II

• Caveat 1: Shadows $=$ regions not reached by RT surfaces.

- Caveat 2: Requires an infinite set of RT surfaces.
- BTs for one region probe the full bulk, including shadows.
- Q1: Given a vector field v (or perhaps a set of v's) is $g_{\mu\nu}$ fully determined? If so, how can we recover the metric? (not obvious, opposite problem is multivalued).
- Q2: What kind of thread configurations can we construct without the knowledge of the bulk metric? Is this even possible?

Max flow as a convex program

Common Techniques:

Convex Relaxation, Lagrange Duality, · · ·

- **Proved MaxFlow-MinCut as well as a Lorentzian version MinFlow-MaxCut** [Headrick,Hubeny]
- Discover and Prove the Multi-comodity of Max multiflows: Leading to the prove of MMI (Monogamy of Mutual Information) [Cui, Hayden, He, Headrick,Stoica,Walter]
- Derive an analogue of the Bit-threads, for higher curvature theories of gravity [Headrick,Harpen,Rolph].
- Metric minimization for String Field Theory [Headrick,Zwiebach]
- Derive a Bit Thread like description of membrane theory for the dynamics of holographic entanglement [Agon,Mezei]

An alternative approach /complementary

Construct and study explicit instantiations of Bit-threads

- New properties \rightarrow Higher party entropic inequalities [Bao, et al.]
- Role of special constructions in studies of dynamics, bulk emergence etc..

Results:

- Two different constructions (integral curves and level set)
- **•** Illustration of MMI
- **•** Linearized Einstein's equations from Bit Threads
- Bulk reconstruction from Bit Threads

Integral curves method

Algorithm

- **1** Given a connected region A with known $m(A)$
- 2 Proposed a set of integral curves: $V|_{m(A)} = n^{\mu}$ (Non-intersecting)

3 Compute $|V|$,

$$
|V(x_m, \lambda)| = \frac{\sqrt{h(x_m, \lambda_m)}}{\sqrt{h(x_m, \lambda)}}
$$

4 Check that $|V| \leq 1$ everywhere

Examples for pure AdS_{d+1} :

Strips (Effective Geodesics 2D)

Examples for pure AdS_{d+1} :

$$
V^{a} = \left(\frac{2Rz}{\sqrt{(R^{2} + r^{2} + z^{2})^{2} - 4R^{2}r^{2}}}\right)^{d} \left(\frac{rz}{R}, \frac{R^{2} - r^{2} + z^{2}}{2R}\right).
$$

$$
|V| = \left(\frac{2Rz}{\sqrt{(R^{2} + r^{2} + z^{2})^{2} - 4R^{2}r^{2}}}\right)^{d-1}
$$

Level set method

- **1** They must contain the minimal surface γ_A as one of its members.
- ² They must be continuous and not self-intersecting.
- ³ They must not include closed bulk surfaces.
- **4** They must be homologous to A^* .

$$
\begin{aligned}\n\mathsf{v}_a &= \Upsilon(\varphi, g)\partial_a\varphi \,, \qquad \Upsilon^2(\varphi, g)g^{ab}\partial_a\varphi\partial_b\varphi \Big|_{\gamma_A} = 1 \,, \\
\nabla \cdot \mathsf{v} &= 0 \quad \rightarrow \quad (\nabla \varphi) \cdot (\nabla \Upsilon) + (\nabla^2 \varphi)\Upsilon = 0 \,. \n\end{aligned}
$$

Properties of max flows

Nesting

There exist flows that simultaneously maximize the flux through a nested set of regions

Max multi flow/Max thread configuration

There exist a thread configuration such that for any partition of the boundary manifold: $\partial \mathcal{M} = \cup_{i=1}^n A_i$, the number of threads connecting each individual region is maxima.

These properties can be used to prove SA, SSA and MMI

Properties of max flows

Nesting

There exist flows that simultaneously maximize the flux through a nested set of regions

• Green region is an example of maximally packed flows

Properties of max flows

Max multi flow/Max thread configuration

There exist a thread configuration such that for any partition of the boundary manifold: $\partial \mathcal{M} = \cup_{i=1}^n A_i$, the number of threads connecting each individual region is maxima.

Properties of entanglement

 $S(A) = \max N_{A\bar{A}}$

Subadditivity: $I(A, B) \equiv S(A) + S(B) - S(AB) > 0$

• For $n = 3$, regions A, B, C using $S(AB) = S(C)$

 $S(A) = N_{AB} + N_{AC}$, $S(B) = N_{BA} + N_{BC}$, $S(C) = N_{AC} + N_{BC}$ $I(A, B) = 2N_{A,B} > 0$

Monogamy of MI: $I(A: BC) > I(A: B) + I(A: C)$

• For $n = 4$ regions A, B, C, D using $S(ABC) = S(D)$ $S(AB)$ > N_{AC} + N_{AD} + N_{BC} + N_{BD}

 $S(AB) + S(BC) + S(AC) \geq S(A) + S(B) + S(C) + S(D)$

Dynamical situations

Hubeny-Rangamani-Takayanagi [HRT, 07]

 $area(m(A))$ $4G_N$

[Headrick, Hubeny]

• Covariant formulation

 $S(A) = \min_{m^*} \text{ext}_{m \sim A}$

Dynamical situations

Hubeny-Rangamani-Takayanagi [HRT, 07]

[Headrick, Hubeny]

• Covariant formulation

Dynamical situations

Hubeny-Rangamani-Takayanagi [HRT, 07]

[Headrick, Hubeny]

• Covariant formulation

Perturbations in AdS

In Fefferman Graham coordinates

$$
ds^2 = \frac{1}{z^2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2 \right) + \delta g_{\mu\nu} (x^{\sigma}, z) dx^{\mu} dx^{\nu}
$$

$$
\delta g_{\mu\nu} (x^{\sigma}, z) \equiv z^{d-2} H_{\mu\nu} (x^{\sigma}, z), \text{ and } \delta \langle T_{\mu\nu} (x^{\sigma}) \rangle = \frac{d}{16\pi G} H_{\mu\nu} (x^{\sigma}, 0).
$$

Q: given $\delta g_{\mu\nu}$ how can we get $v = v_0 + \delta v$? Can we invert it? Previous methods can be adapted to study perturbations of pure AdS via $\mathsf{v}^\lambda = \mathsf{v} + \lambda \delta \mathsf{v}$, where v is a max flow of $g_{\mu\nu}$ and v^λ a max flow of $g^\lambda_{\mu\nu} = g_{\mu\nu} + \lambda \delta g_{\mu\nu}$

- **•** They correctly reproduce the first law on entanglement and hence encode Einstein's equations. However, both construction are highly non-local (cannot be inverted to recover $\delta g_{\mu\nu}$).
- **Q:** can we get $v = v_0 + \delta v$ without $\delta g_{\mu\nu}$? (e.g. exploiting bulk locality?)

In the language of differential forms

$$
S_A = \frac{1}{4 G_N} \max_{\mathbf{w} \in \mathbf{W}} \int_A \mathbf{w} \, .
$$

where W is the set closed $(d - 1)$ forms which obeys the norm bound

$$
\frac{1}{(d-1)!}g^{a_1b_1}\cdots g^{a_{d-1}b_{d-1}}w_{a_1\ldots a_{d-1}}w_{b_1\ldots b_{d-1}}\leq 1
$$

The map

$$
v^{a} = g^{ab}(\star w)_{b}, \quad (\star w)_{b} \equiv \frac{1}{(d-1)!} \sqrt{g} \, w^{a_{1}...a_{d-1}} \varepsilon_{a_{1}...a_{d-1}b}.
$$

$$
dw = (\nabla_{a} v^{a}) \varepsilon, \quad w|_{\Gamma} = (n_{a} v^{a}) \tilde{\varepsilon}
$$

Juan F. Pedraza (UCL & Brandeis U.) [Bit threads and bulk locality](#page-0-0) June 18, 2021 23 / 33

Linear perturbations

We assume $g_{ab}^\lambda = g_{ab} + \lambda \delta g_{ab}$, then $\bm{w}_\lambda = \bm{w} + \lambda \delta \bm{w}$

$$
d (w + \lambda \delta w) = 0 \rightarrow d (\delta w) = 0
$$

$$
(w + \lambda \delta w)|_{\gamma_A} = (\tilde{\epsilon} + \lambda \delta \tilde{\epsilon}) \rightarrow \delta w|_{\gamma_A} = \delta \tilde{\epsilon}
$$

Notice $\gamma_{\cal A}^{\lambda}=\gamma_{\cal A}.$ Norm bound constraint adopts the form:

$$
\langle {\boldsymbol w}, {\boldsymbol w} \rangle_{\mathcal{g}} + \lambda \left[2 \langle {\boldsymbol w}, \delta {\boldsymbol w} \rangle_{\mathcal{g}} + \langle {\boldsymbol w}, {\boldsymbol w} \rangle_{\delta \mathcal{g}} \right] \leq 1 \,,
$$

where:

$$
\langle \boldsymbol{w}, \boldsymbol{\tilde{w}} \rangle_{g} = \frac{1}{(d-1)!} g^{a_1 b_1} \cdots g^{a_{d-1} b_{d-1}} w_{a_1 \ldots a_{d-1}} \tilde{w}_{b_1 \ldots b_{d-1}}
$$

$$
\langle \boldsymbol{w}, \boldsymbol{\tilde{w}} \rangle_{\delta g} = \frac{1}{(d-1)!} \delta (g^{a_1 b_1} \ldots g^{a_{d-1} b_{d-1}})_{w_{a_1 \ldots a_{d-1}} \tilde{w}_{b_1 \ldots b_{d-1}}}
$$

[Casini,Huerta,Myers]

Boundary conformal Killing vector (action of modular flow)

$$
\xi_A = -\frac{2\pi}{R} (t - t_0) [(x^i - x_0^i) \partial_i]
$$

$$
+ \frac{\pi}{R} [R^2 - (t - t_0)^2 - (\vec{x} - \vec{x}_0)^2] \partial_t
$$

Bulk Killing vector

$$
\xi = \frac{2\pi}{R} (t_0 - t) [z\partial_z + (x^i - x_0^i)\partial_i]
$$

$$
+ \frac{\pi}{R} [R^2 - z^2 - (t - t_0)^2 - (\vec{x} - \vec{x}_0)^2] \partial_t
$$

Iyer-Wald formalism and Einstein's Equations [Faulkner,Guica,Hartman,Myers,Van Raamsdonk]

Associated to the killing vector ξ^A there is a conserved $(d-1)$ form $\boldsymbol{\chi}$

$$
\chi = -\frac{1}{16\pi G_N} \left[\delta (\nabla^A \xi^B \epsilon_{AB}) + \xi^B \epsilon_{AB} (\nabla_c \delta g^{AC} + \nabla^A \delta g^C) \right] ,
$$

where $\epsilon_{AB} = \frac{1}{(d-1)!} \epsilon_{ABC_3\cdots C_{d+1}} d x^{C_3} \wedge \cdots \wedge d x^{C_{d+1}},$

which satisfies:

$$
\int_{\gamma_A} \chi = \delta S_A\,,\qquad \int_A \chi = \delta \langle H_A \rangle\,,\qquad d\chi = -2\xi^a \delta E^g_{ab}\,\epsilon^b\,,
$$

Taking $\tilde\chi\equiv\chi|_\Sigma^{}$ and integrating $d\tilde\chi$

$$
\int_{\Sigma_A} d\tilde{\chi} = \int_{\gamma_A} \tilde{\chi} - \int_A \tilde{\chi} \iff -2 \int_{\Sigma_A} \xi^t \delta E_{tt}^g \epsilon^t = \delta S_A - \delta \langle H_A \rangle
$$

Canonical Bit Thread from Iyer-Wald

$$
\tilde{\chi}=\frac{1}{4G_N}\delta\mathbf{w}.
$$

$$
\delta \mathbf{w}|_{\gamma A} = \delta \tilde{\epsilon} \qquad d(\delta \mathbf{w}) = 0 \iff Linearized - EEqs
$$

Norm constraint?

If
$$
\mathbf{w} = \text{geodesic}, \rightarrow \langle \mathbf{w}_{\lambda}, \mathbf{w}_{\lambda} \rangle_{g_{\lambda}} \leq 1 + \mathcal{O}(\lambda^2)
$$

$$
\delta \mathbf{w}|_A = \frac{4\pi G_N}{R} \left(R^2 - |\vec{x} - \vec{x}_0|^2 \right) \langle T_{00} \rangle \,\bar{\boldsymbol{\epsilon}}
$$

Metric Reconstruction

- \bullet Note: δw can be obtained in M from boundary condition at ∂M together with the closedness condition [Wald]
- We also assume $g^{\text{AdS}}_{\mu\nu}$ (fixed by symmetries).
- Canonical tread construction provides a way to locally reconstruct bulk metrics for perturbative excited states!
- **•** Two ways of metric reconstruction: (i) starting from a family of δw 's associated to different regions or (ii) starting from only **one** (or a few) δw .
- \bullet (i) Gives a set of algebraic equations that can be inverted (ii) Gives a first-order differential equation that can be inverted.

$$
(\star \delta \mathbf{w})_a = \mathcal{F}_a^{bc} \, \delta g_{bc} \quad \rightarrow \quad \delta g_{ab} = [\mathcal{F}^{-1}]^c_{ab} (\star \delta \mathbf{w})_c \, .
$$

- For $d = 2$, $d = 3$ a single δw suffices to solve for δg_{bc} .
- For $d > 4$ a finite number is needed.

$$
\delta g_{bc} = \left[\mathcal{F}_{(i)}^{-1} \right]_{bc}^{a} (\star \delta \mathbf{w}^{(i)})_{a}
$$

Metric Reconstruction (*ii*) $d = 2, 3$

• We assume $\delta \mathbf{w}$ is only known for one (R, \vec{x}_0) . For example one finds for the trace $(z_{*}^{2} \equiv R^{2} - |\vec{x} - \vec{x_{0}}|^{2})$

$$
H^i_{\;i}(z,\vec{x})=4R(z_*^2-z^2)\int_{i\epsilon}^{1+i\epsilon}d\lambda\,\frac{\lambda^{d-1}\delta w_z(\lambda z,\vec{x})}{[z_*^2-(\lambda z)^2]^2}\,,
$$

and similarly for other components H_{ii} .

- For $d \geq 4$, can we solve the inversion with "a few" $\delta \mathbf{w}$
- Can also obtain the time components of the perturbation H_{tt} and H_{ti} , specializing to boosted Σ 's
- At next (non-linear) orders we expect the same methodology should work, but inverting a higher order operator instead —following [Faulkner,Haehl,Hijano,Parrikar,Rabideau,Van Raamsdonk]

Generalizations: $1. 1/N$ corrections

Recently, we derive a quantum corrected prescription for bit threads [Agon,JP]

$$
S_A = \frac{1}{4G_N} \max_{v \in \mathcal{F}} \int_A v, \qquad \mathcal{F} \equiv \{v \mid \nabla \cdot v = -4G_N s(x), \, |v| \le 1\},
$$

$$
\int_{\Sigma_A} s(x) = S_{bulk}[\Sigma_A].
$$

- Equivalent to FLM, or rather, to QES at order $\mathcal{O}(G_N^0)$
- Derived via convex optimization and strong duality
- **•** Interpretation of quantum corrections as distillation of bulk state

Generalizations: I. $1/N$ corrections

• Iver-Wald works but dictionaries are modified:

$$
\delta S^{\rm grav}_A = \int_{\gamma_A} \delta \textbf{\textit{w}} + \int_{\Sigma_A} \xi^\mu \langle T^{\rm bulk}_{\mu\nu}(\textbf{\textit{x}}) \rangle \epsilon^\nu \nonumber \\ \delta E^{\rm grav}_A = \int_A \delta \textbf{\textit{w}}
$$

with

$$
d(\delta \mathbf{w}) = -4 G_N s(x) = -4 G_N \xi^{\mu} \langle T_{\mu\nu}^{\text{bulk}}(x) \rangle \epsilon^{\nu}
$$

• Semiclassical Einstein's equations arise by consistency!

$$
\delta S_A^{\text{grav}} - \delta E_A^{\text{grav}} = \int_{\gamma_A} \delta \mathbf{w} - \int_A \delta \mathbf{w} + \int_{\Sigma_A} \xi^t \langle \mathcal{T}_{00}^{\text{bulk}}(x) \rangle \epsilon^t = 0
$$

$$
-2\int_{\Sigma_A}\!\xi^t\left(\delta E_{00}-\frac{1}{2}\langle\,T^{\text{bulk}}_{00}(x)\rangle\right)\boldsymbol{\epsilon}^t=0
$$

• Bulk reconstruction remains unexplored! Wald's theorem of uniqueness does not apply straightforwardly.

Juan F. Pedraza (UCL & Brandeis U.) [Bit threads and bulk locality](#page-0-0) June 18, 2021 31 / 33

Generalizations: II. Lorentzian threads

The Lorentzian MinFlow-MaxCut theorem [Headrick,Hubeny] was recently used in the context of CV duality [JP,Svesko,Russo,Weller-Davies]

$$
\mathcal{C}(A) = \frac{1}{G_N \ell} \max_{\Sigma \sim A} \mathsf{Vol}(\Sigma(A)) = \min_{v \in \mathcal{F}} \int_A v \,, \ \ \mathcal{F} \equiv \left\{ v \, | \, \nabla \cdot v = 0 \,, \, |v| \geq \frac{1}{G_N \ell} \right\}
$$

- Uncovered new properties/inequalities derived from nesting
- Tightly connected with Lorentzian AdS/CFT and state preparation
- Makes evident the role of the reference state (unclear in CV and CA)
- Interpreted in terms of 'gatelines' preparing an optimal tensor network

Juan F. Pedraza (UCL & Brandeis U.) [Bit threads and bulk locality](#page-0-0) June 18, 2021 32 / 33

Generalizations: II. Lorentzian threads

- **Bulk symplectic form** ω_{bulk} [Belin, Lewkowycz, Sarosi] gives a canonical flow for linear perturbations over arbitrary states!
- \bullet $d\omega_{\text{bulk}} = 0$ for on-shell perturbations, so the linearized Einsten's equations can be derived covariantly from complexity!
- Lorentzian threads can probe the black hole interior, and the region near the singularity! Metric reconstruction possible?
- Gives an intuitive picture of how time emerges in quantum gravity!

Generalizations: II. Lorentzian threads

- **Bulk symplectic form** ω_{bulk} [Belin, Lewkowycz, Sarosi] gives a canonical flow for linear perturbations over arbitrary states!
- \bullet $d\omega_{\text{bulk}} = 0$ for on-shell perturbations, so the linearized Einsten's equations can be derived covariantly from complexity!
- Lorentzian threads can probe the black hole interior, and the region near the singularity! Metric reconstruction possible?
- Gives an intuitive picture of how time emerges in quantum gravity!

Questions?