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L
Maxwell theory and EM duality

From Jackson, we know
i1l On the Question of Magnetic Mon

2020 now i
At the prt’rsent time (1998) there is Nno experime i r the existence
CLASSICAL of magnetic charges or monopoles. But chiefly because of an early, brilliant the-
ELECTROSENAMICS oretical argument of Dirac,” the search for monopoles is renewed whenever a

"THIRD EDITION

new energy region 1s opened up in high-energy physics or a new source of matter,

such as rocks from the moon, becomes available. Dirac’s argument, outlined
below, is that the mere existence of one magnetic monopole in the universe would
offc?r an explanatl.on of the discrete nature of electric charge. Since the quanti-
za.tlon qf charge is one of the most profound mysteries of the physical world,
Dirac’s idea has great appeal. The history of the theoretical ideas and experi-
mental searches up to 1990 are described in the resource letter of Goldhaber and
Trower.* Some other references appear at the end of the chapter.

There are some necessary preliminaries before examining Dirac’s argument.
One question that arises is whether it is possible to tell that particles have mag-
netic as well as electric charge. Let us suppose that there exist magnetic charge
and current densities, p,, and J,,., in addition to the electric densities, p, and J..
The Maxwell equations would then be

D
V.D=p, VxH=967+J,
# (6.150)
a
V.B=p, -VXE=Z"+1,




L
Maxwell theory and EM duality

Zo = \/ o/ €o (in SI units) or 1 (in Gaussian units)

and

: e form of the contip,.:
iti umed (0 satisfy the 300 uations that thtlnu
The magnetic densities arc ass H #pp ese eq ; ee
THRRTIS equation as the electric dCHSl(tjle(:sl;rrent would have observab}e e e;:.tro:znagne
i an : 1 ormation*.
RSO A e ﬁl:i?arrg‘;lowever, the following duality trans nx:
il oy consequences-Consider, , —
B, ot = cosé + B'siné
jous ayimncheas E = E’ cos ¢ + ZoH' sin &, ZOI; = fOZ)D' sin & + B’ cos ¢
ZH = —E'sin¢ + ZoH' cos &

(6.15

For a real (pseudoscalar) angle & such a transformation leaves qlﬁldratlc fo
such as E po (E-D + B-H), and the components of the Maxwell stress tens

i way,
T, invariant. If the sources are transformed in the same way

Zop. = Zyp. cos & + p,y, Sin €, ZJ, = ZoJ. cosé + ¥, sin

g p 6.152
pm = —Zopl sin & + p,, cOs &, J,=—2ZyJ.sin§ + J,, cosé

then it is straightforward algebra to show that the generalized Maxwell equat;
(6.150) are invariant, that is, the equations for the primed fields (E’, D', B’ H’
are the same as (6.150) with the primed sources present.

The invariance of the equations of electrodynamics under duality transfor
mations shows that it is a matter of convention to speak of a particle possessing
an electric charge, but not magnetic charge. The only meaningful question is




L
Maxwell theory and EM duality

» Classical Maxwell theory: SO(2) duality symmetry
(It can be extended to a larger symm, e.g. SL(2, R) [Gaillard-Zumino (81])

- Quantum mechanically, we know the electric and magnetic

charges must obey the Dirac quantization condition
q m
gm = 2nmnh, n € Z ® ®

or more generally, the Dirac-Zwanziger-Schwinger
quantization condition

gimo — Qa2 = 271-”]17 ne7 (%:11) (Q'z;mz)

dyons



Maxwell theory and EM duality

A heuristic derivation (not Dirac’s original argument in 1931) :
[Jackson, Ch. 6.12]

angular momentum -1 (B BN
of the EM field: em =z [ EX(ExH)dw
KK
P _4 i F__m rl
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Maxwell theory and EM duality

A heuristic derivation (not Dirac’s original argument in 1931) :

[Jackson, Ch. 6.12]

angular momentum -1 (B BN
of the EM field: em =z [ EX(ExH)dw
q ﬁ m
® ——®
_gm It
" 4r R
P _4 i F__m rl
dmeg 13 A7t 1o 773
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Maxwell theory and EM duality

A heuristic derivation (not Dirac’s original argument in 1931) :
[Jackson, Ch. 6.12]

angular momentum o 1 5 (B x Hd3z
of the EM field: 2 Jps ( )
(q1,m1) ﬁ (g2,m2)
® >@
7o (91m2 B leQ) R
o 41 47 / R
. 7 w7
FE = q H =




L
Maxwell theory and EM duality

A heuristic derivation (not Dirac’s original argument in 1931) :
[Jackson, Ch. 6.12]

angular momentum -1 5 (B x Hd3z
of the EM field: 2 Jps ( )
(q1,m1) ﬁ (g2,m2)
® >@
7o (91m2 B leQ) R
o 41 47 / R

1
But QM tellsus  (Lem)p = §nh, ne?Z



L
Maxwell theory and EM duality

The quantum EM duality must preserve the charge quan. cond.

qima — gomq = det ((h 12 ) = 2mnh, n €€ Z
mq Mo

and thus 1s represented by an SL(2, Z) group, namely
(o) = (0 0) ()
— a b
m c d) \m <C d) € SL(2,7)
E a b E ie. a,b,c,d € Z
o _><c d) i ad —bc =1



L
Maxwell theory and EM duality

The quantum EM duality must preserve the charge quan. cond.

qima — gomq = det ((h 12 ) = 2mnh, n €€ Z
mq Mo

and thus is represented by an SL(2, Z) group, namely

g . ( 0 1) standard EM duality (S-duality)
generators —10

T - (1 1) Witten effect (2 shift of top. 6—term)
\0 1



More on Maxwell theory

In ordinary Maxwell theory, there is no relation btw charges (g, m) and
spin/statistics. We could have both neutral boson and fermion as the
“origin” of the charge lattice

magnetic charge

Open circles: primitive vectors, * °© ° % ° ©° ®
representing single-particle

n | | O n O | |
states (SL(2, Z) invariant)
(0] O (¢) Q o O (0]
L i O © O i >
electric charge
(0] o (0] o O o o]
| | (@) | O | |
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More on Maxwell theory
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More on Maxwell theory

In ordinary Maxwell theory, there is no relation btw charges (g, m) and
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“origin” of the charge lattice

magnetic charge

Open circles: primitive vectors, * °© ° % ° ©° ® C -1 0
representing single-particle '
states (SL(2, Z) invariant)

O o (¢] Q o o o
S S ( 0 1)
- . © ﬁ " - elect>ric charge T 1 O

(g=0, m=-1) and (¢g=1, m=0) *
span the charge lattice o o o




More on Maxwell theory

In ordinary Maxwell theory, there is no relation btw charges (g, m) and
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More on Maxwell theory

Now let’s image a world where neutral particles are bosons. Then the
charge lattice can be associated w/ various “charge-spin relations”,
resulting extra four versions of Maxwell theory.

Maxwell' , Maxwellll 1 Maxwelll ... MaxwellV ,
bbb W o8 g Poob oy oboh g ; g
ST O R b [

b b b b b b b _b kb b & b, b £

R R R R

bbby obbol Pvob b obou o ;
(1,0):b (1,0): b (1,0): (1,0): f
(0, 1):b 0,1): f 0, 1): b 0, 1): f
(1, 1): £ (1,1):b (1,1): b (1,1): f



More on Maxwell theory

Now let’s image a world where neutral particles are bosons. Then the

charge lattice can be associated w/ various “charge-spin relations”,
resulting extra four versions of Maxwell theory.

Maxwell' ; Maxwelll 1........ Maxwell™ ... Maxwell' ,
= all-fermion |electrodynamics
[ ] o o n [} o [ ] n o o L ] o o n [ ] o o " o o [ ] o o [ ]
b B & boh g Pt b g bbb AT S T S f
£ b L b ¢ ob§ b5 bbb ofob Bt b8 bbb §
b b b b b b b bt bB BB R, f b f b f b f f
£ 5 £ 8 b g LA O bbb % bbb OO S
Btoboyobobog Pk ob BB %R ST S S O S S
(1,0): b S T (1,0): b < (1,0): f L (1,0): f
0, 1): b 0,1):f <ummp (0,1):b (0, 1): f
G (LD f (1,1'):b (1,1):b ‘ (1,1'):f ]

permuted by SL(2, Z)

SL(2, Z) invariant



All-fermion electrodynamics

- It seems natural to have these modified Maxwell theories

- However, MaxwelllV= all-ferm ED is anomalous (while the other
three are not), in the sense that it cannot exist in purely 4d if

microscopic DOF are only bosons [Wang-Potter-Senthil (13); Kravec-
McGreevy-Swingle (14); Thorngren (14); Wang-Wen-Witten (18)]

Such a theory (in the absence of neutral fermions)
»does not have a bosonic regulator (e.g. 4d U(1) lattice gauge theory)
»does not have a well-defined part. func. on some spacetime (e.g.CP?)

»1s the IR theory of some anomalous UV theory (e.g. ferm of isospin 4r 4+ 3/2
w/ a refined SU(2) anomaly)

»must live on the boundary of a 5d bulk (w/ part. func. (—1)f My 2108)



Symmetries of Maxwell theory

Symmetries of Maxwell theory might also be anomalous, and we’d
like to know which symm 1s anomaly-free and thus can be gauged.

» One example is to consider Maxwell theory w/ extra dynamical
gauge fields, e.g. Alice electrodynamics [Schwarz (82)]

a “Alice string/loop” with the
“Cheshire charge” [Wilczek et al (90)]

Alice EM
U(1) x Zy = O(2)

C
“local” charge conjugation
long C
Xo q,m vone, —q,—m

Fig from [Bucher-Lo-Preskill (92)]



Symmetries of Maxwell theory

Symmetries of Maxwell theory might also be anomalous, and we’d
like to know which symm 1s anomaly-free and thus can be gauged.

» Another example is to consider the Janus configuration [Bak et al.
(92); Giaotto-Witten (08)] where the spacetime has a duality twist

E(x+ L,y,2) = B(x,y, 2)
B(x+ L,y,z) = —E(z,y, 2)

[Ganor et al (08,10, 12, 14)]

Janus from wiki: God of beginnings,
gates, transitions, time, duality,
doorways, passages, and ending



Anomaly of symmetries

- More precisely, we want to know the * Hooft anomaly of a
given symm, which obstructs the gauging of the symm.

- Such an anomaly manifests in a controlled manner and can be
understood by anomaly inflow argument.

» Modern view: An n-dim anomalous theory 1s (most naturally) realized as a
boundary mode of a (n+1)-dim symmetry protected topological (SPT)
phase or invertible field theory (IFT) in (n+1)d

A Hooft) Anomaly

Y
Hilbert losed manifold) is 1-di
ilbert space (on any closed manifold) is 1-dim on boundary theo

Bulk SPT phase

IFT w/ symm




Anomaly of symmetries

7 ¥ Fact

anomaly in n» dim < part. func. of (n+1)d bulk IFT on closed manifolds




Outline

- Anomalies: self-dual fields vs. chiral fermions
I.
2.
3.



Before discussing 4d Maxwell theory and its corresp 5d bulk
theory, let’s look at a simpler but related example:

2d chiral boson and 3d Chern-Simons theory



Outline

- Anomalies: self-dual fields vs. chiral fermions

1. 2d
2.
3.



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

U(1); CS theory
Boundary theory of 3d U(1), CS theoey

= 2d (self-dual) chiral boson

self-dual chiral bOsgn

The (grav) anomaly of the chiral boson 1s characterized by part. func.
of the U(1), CS a closed spin 3-manifold M;:

Zyyes(Mz) = [ / [D Al iop.iviae™ | A2 E/ 27”] % [Z i [ (A/2m)(F/2m)

A:flat
one-loop determinant classical saddle points



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zyyes(M3) = [ / [D Al opriviae™ | A/2E/ 2W>} % [Z i [ (A/2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

. . contributed by only
) [ Witten (89); Monmelr—Moore (18)] et top. nontrivial flat A
5 Arg Zyayes(Ms) = — g Msignature T Arf(q)

eta invariant of  Arf invariant of quadratic

the signature op refinement of the torsion
(xd + dx) pairing on H? (M;, Z)

3 (S,



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zyyes(M3) = [ / [D Al opriviae™ | A/2E/ 2W>} % [Z i [ (A/2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

o Arg Zuyaycs(Ms) = — 2 Nsignawre + AE(g)
[ Atiyah-Patodi-Singer (75); Brumfiel-Morgan (73)]
= —1 Ly — U(X4)> + (—30(Xa))
Xy4; 0X4=Ms3 ||
pi/3 (p1 = —g=trR?)



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zymyes(M3) = [ / [D Al opriviae™ | A/2E/ 2W>} [Z i [ (A)2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

% Arg ZU(I)CS(M3) = —%nsignature T Arf(Q)
(/ Ly — U(X4)> + (—g0(X4))
X4; 0Xa=Ms3s ||

-p1/24

0|



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zymyes(M3) = [ / [D Al opriviae™ | A/2E/ 2W>} [Z i [ (A)2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

% Arg ZU(I)CS(M3) = —%nsignature T Arf(Q)

(/X XM Ly - 0(X4)> + (—to(Xy))

— / A = T)Dirac — % Al“g Zferm(M3)
X4‘ 8X4—M3

0|



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zyyes(M3) = [ / [D Al opriviae™ | A/2E/ Qﬂ % [Z i [ (A/2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

% Arg ZU(l)CS(M3> = % Arg Zfermion(MS)

» This means 2d chiral boson (0-form gauge field) and 2d chiral fermion have
the same anomaly (perturb grav anomaly); it is as expected since the two
theories are actually identical in 2d (traditional sense of “bosonization™).



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zyyes(M3) = [ / [D Al opriviae™ | A/2E/ Qﬂ % [Z i [ (A/2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

% Arg ZU(l)CS(M3) = % Arg Zfermion(MS)

» Nevertheless, the analysis here can be generalized to higher dimensions,
where one can still relate the anomalies of p-form gauge fields to those of
fermions, even though they are different theories!



Anomaly of 2d chiral boson in terms of 3d U(1)
Chern-Simons theory

Zyyes(M3) = [ / [D Al opriviae™ | A/2E/ Qﬂ % [Z i [ (A/2m)(F/2m)
A:flat

The phase of Z is given by [Hsieh-Tachikawa-Yonekura (19, 20)]

% Arg ZU(I)CS(M3> = % Arg Zfermion(M3)

» Nevertheless, the analysis here can be generalized to higher dimensions,
where one can still relate the anomalies of p-form gauge fields to those of
fermions, even though they are different theories!

(A formal treatment of generic p-form gauge theories is by using differential
cohomology [Cheeger-Simons (85); Hopkins-Singer (02); Cérdova et al. (19);
Hsieh-Tachikawa-Yonekura (20); etc.])



Outline

- Anomalies: self-dual fields vs. chiral fermions

1. 2d
2. 4d
3.



Anomaly of Maxwell theory in terms of 5d top BdC
theory

The 5d bulk theory corresp to Maxwell theory is a TQFT w/ two 2-
form gauge fields: [Verlinde (95); Kravec-McGreevy-Swingle (13]

mi [[(B/2m)d(C/27) — (C/27)d(B/27)]

Maxwell
theory

» At the level of differential form, this 5d theory has an
SL(2, Z) symm on (B, C), corresp to duality symm of
the Maxwell theory.

»However, to make the action sensible when top nontrivial B, C are
considered, we require the action to be a quadratic refinement of

(diff-cohomology) paring of B, C, 1.e. 2mwig(B, C), which might break
the SL(2, Z) symm in general.



Anomaly of Maxwell theory in terms of 5d top BdC
theory

« The choice of quadratic refinement g(B, C) 1s not unique, and in
general we have

B dC dB X Y dC

B = | —— — —_—
q(X’Y)( ’C) 21 271 + 21 21 + 21 27

* For X=Y=0, gy, ) (B, C) 1s SL(2, Z) invariant only on spin-manifolds.
Its boundary theory is the ordinary Maxwell theory. [Witten (98); Gomi (04)]

* q(x. v)(B, C) can be made SL(2, Z) invariant on any 5d manifold if we
take X/2m = Y/2m = w, (2nd Stiefel-Whitney class of M;). In this case
the corresp boundary theory is all-fermion ED.



Anomaly of Maxwell theory in terms of 5d top BdC
theory

+ The phase of the part func 1s [Hsieh-Tachikawa-Yonekura (19, 20)]
% Arg ZBdC(M5) = _insignature + Arf(Q)

- Before coupling this system to any (duality) symm background, let’s

see what the phase can tell us. In this situation, 5 H2(Ms.R/Z) — H3(Ms.Z)

Tlsignature — 0 and Arf(Q(X,Y)) = /(X/QW)[i’(Y/Z'JT)

X,Y (€ H*(Ms,U(1))) are flat
- Taking X/2m = Y/2m = w, (i.e. all-fermion ED), we get

Zpdc(Ms) = |ZBdc(M5)|(fmfw2w?:

1

Y
=1 =11 (a Z, grav anomaly)



Anomaly of Maxwell theory in terms of 5d top BdC
theory

- Now we consider the case when a nontrivial SL(2, Z) background is
present. Note that there are multiple choices of the symm structure,
depending on the value of charge-conjugation square C? (=5%)



Anomaly of Maxwell theory in terms of 5d top BdC
theory

- Now we consider the case when a nontrivial SL(2, Z) background is
present. Note that there are multiple choices of the symm structure,
depending on the value of charge-conjugation square C? (=5%)

- Let’s focus on the case C?> = (—1)%, the ferm number parity. The
corresp symm structure 1s

spin- Mp(2,Z) := (spin x Mp(2,7))/Zs
where the metaplectic group Mp(2, 7Z) is the double cover of SL(2, Z)

Mp(2,7) := (S, T | S* = (T'8)°, S%=1)



Anomaly of Maxwell theory in terms of 5d top BdC
theory

- Canonical examples are 5d lens spaces S°/Z,, k =2, 3, 4, 6, where
going around the generator of n,(S°/Z,) = Z, comes with the duality
action by an element of order k£ in SL(2, Z)



Anomaly of Maxwell theory in terms of 5d top BdC
theory

- Canonical examples are 5d lens spaces S°/Z,, k =2, 3, 4, 6, where
going around the generator of n,(S°/Z,) = Z, comes with the duality
action by an element of order k£ in SL(2, Z)

- Observation: on (some) S°/Z, s, we have the following fact

% AI‘g ZBdC(M5) — _%nsignature + Al"f(q) — 5677fermion mod 1

S°/Zo S°/Zs S°/Zs S°/Zs
. 0 _1 _1 __ 14
T)signature 9 2 9
H*(Ms,(Z7),) | (Z2)*  Zs  Z2 I
Arf(q) +5 -3 Fy 0
s=ArgZ | +3 -2 47+
, 1 1 5 5
T)fermion 16 9 32 T 144




Anomaly of Maxwell theory in terms of 5d top BdC
theory

- Well, it might just be a coincidence
But we would really like to know whether such an identity holds for
any 5-manifold w/ a spin-Mp(2, Z) structure

»The answer is YES, once we know these S°/Z, s are, under (co)bom’zsm
generators of any 5d spin-Mp(2, Z) manifold!

bordism: [X]| = [Y]ifOW =X UY

Part. func. Z of an IFT, e.g. Zg4c and

Z(X) = Z(8°)73)™Z (S )7.4)" - - -
e(—2TiNerm), 1S @ (co)bordism invariant (X) (5°/23)" Z(5° | Z4)



Anomaly of Maxwell theory in terms of 5d top BdC
theory

- Well, it might just be a coincidence
But we would really like to know whether such an identity holds for
any 5-manifold w/ a spin-Mp(2, Z) structure

»The answer is YES, once we know these S°/Z, s are, under (co)bordism,
generators of any 5d spin-Mp(2, Z) manifold!

Math fact: all spin-Mp(2, Z) 5-mflds are classified by an abelian group

Q;pin-MP@’ Z) _ %9 P 2132 D Zﬁ

generators:  S°/Zz  S°/Zs  [(S°/Z4) 4 9(S°/Z4))



Anomaly of Maxwell theory in terms of 5d top BdC
theory

Therefore,

o= Arg Zpac(Ms) = 56 X 5= Arg Zpermion(Ms) mod 1

is true on any 5-manifold w/ a spin-Mp(2, Z) structure

Namely, the anomaly of EM duality of the Maxwell theory is 56 times
that of a 4d chiral fermion

It 1s still abstract (and somehow mysterious), however. Where does this
number 56 come from?

» We provide an answer using the property of some 6d SCFT, known
as the E-string theory [Ganor-Hanany (96); Seiberg-Witten (96)]



Outline

- Anomalies: self-dual fields vs. chiral fermions
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2. 4d
3. 6d



Anomaly of Maxwell theory in terms of 6d SCF

The E-string theory has two branches of vacua, the tensor branch and
the Higgs branch

»On the Higgs branch the Eg symm 1s Higgsed to E-, which acts on 28
fermions via its 56 dim fundamental rep

»When one moves to the tensor branch, the Eg symm 1s restored and a
self-dual tensor field appears

Tensor branch <—— E-string —> Higgs branch

U U
5+1d  Self-dual tensor 28 fermions

% AI‘g ZCdC(M7) — _%nsignature + Arf(Q) — 2877Dirac
— 28 X % Arg Zferm<M7>

[Hsieh-Tachikawa-Yonekura (20)]



Anomaly of Maxwell theory in terms of 6d SCF

By compactifying this system on 77, one finds that one Maxwell field is
continuously connected to 56 chiral fermions, showing that they should
have the same anomaly. The EM duality is formulated as the SL(2, Z)
acting on this 772

Tensor branch <—— E-string —> Higgs branch

U U
5+1d  Self-dual tensor 28 fermions
T v v
continuous
3+1d Maxwell €------------------ > 56 fermions

deformation



- So far I have discussed the anomaly of SL(2, Z) duality of one
version of Maxwell theory (i.e. all-fermion electrodynamics).

- It 1s interesting to find out anomalies of any subgroups of SL(2,
Z) in other versions of Maxwell theory.



Here I listed the result w/o details:

Symm str None | charge conj. Z§ |S-duality Z3 |ST-symm. Z35 7 |full EM duality SL(2, Z)

spinXG -[ Maxwell® 0 0 0 Zig Zig
SO Maxwell 0 ZLio Z4 - ;
(G=none) | Maxwell’! 0 Lo - - -
& Maxwell’"" | 0 Z - - -

spin-G' L Maxwell’V | Z, Zs Z4 Zo Zs36

spinxG { Weyl, G x Z | 0 0 74 Zo Zis6

spin-G/ {  Weyl, GI 0 Zi6 232 ZLg 21283
“-”: no symm “0”: no anomaly “Z;”’: mod-k anomaly

Anomalies of 4d Weyl ferm under the same symm was determined in [Hsieh (18)],
and we have the following result in general (on either spinX G or spin-G/ mflds)

% Al’g ZBdC(M5) = 56 X % AI‘g Zfermion(M5) mod 1




Outline

* Summary



Summary

We consider various versions of 4d Maxwell theory and their duality
symmetries, and compute the corresp ’t Hooft anomalies

»In particular, we found

Anomaly of duality symm of Maxwell = 56 times that of a chiral fermion

» The interpretation is twofold: one is by the Sd bulk SPT
(top. BdC theory) phase characterizing the anomaly, and
the other 1s by the properties of a 6d SCFT (E-string theory)

»Our result reproduces, as a special case, the known anomaly of the all-
fermion electrodynamics discovered in the last few years



Thank you for your attention!



