Quantum Modularity from 3-Manifolds

Miranda C. N. Cheng

University of Amsterdam

3-Manifold Inv. $\widehat{Z}_a(M_3; \tau)$

Quantum Modular Form (QMF)

Main Motivations:

- QMF
 natural structure beyond modular forms;
- $\widehat{Z}_a(M_3; \tau)$ q-invariants for (closed) 3-manifolds;
- $\widehat{Z}_a(M_3; \tau)$ =susy index 3d SQFT, 3d-3d, and M-theory.
- $\widehat{Z}_a(M_3; \tau) \sim \chi_R^{\mathcal{V}}(\tau)$ Novel types of vertex algebras and representations.

Based on:

- 3d Modularity, 1809.10148
- w. S. Chun, F. Ferrari, S. Gukov, S. Harrison.
- 3d Modularity and log VOA, 200X.XXXXX
- w. S. Chun, B. Feigin, F. Ferrari, S. Gukov, S. Harrison.

- Three-Manifold Quantum Invariants and Mock Theta Functions, 1912.07997
- w. F. Ferrari, G. Sgroi.
- Three Manifolds and Indefinite Theta Functions, 200X
 w. G. Sgroi.

Outline:

- I. Background
- II. A (True) False Theorem
- III. A Mock-False Conjecture
- IV. Going Deeper
- V. Questions for Future

I. Background

3-Manifold Inv. $\widehat{Z}_a(M_3; q)$

Quantum Modular Form (QMF)

I.1 Quantum Modular Forms (QMF): the Upper-Half Plane H

Symmetry:
$$\tau \mapsto \gamma \tau := \frac{a\tau + b}{c\tau + d}$$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}) \supset SL_2(\mathbb{Z})$$

 \mathbb{H} has natural boundary $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$, the *cusps* of $SL_2(\mathbb{Z})$ which acts transitively.

Consider a holomorphic fn f on \mathbb{H} , G a discrete subgroup of $SL_2(\mathbb{Z})$.

Def (modular transf. of weight w): $f|_w\gamma(\tau):=f(\gamma\tau)(c\tau+d)^{-w}$ Def (modular form of weight w for G): $f|_w\gamma(\tau)=f(\tau) \ \forall \gamma \in G$

Many generalisations: *non-trivial G-characters, vector-valued, non-holomorphic etc.*

Consider a holomorphic fn f on \mathbb{H} , G a discrete subgroup of $SL_2(\mathbb{Z})$.

Def (modular transf. of weight w): $f|_w\gamma(\tau) := f(\gamma\tau)(c\tau+d)^{-w}$ Def (modular form of weight w for G): $f|_w\gamma(\tau) = f(\tau) \ \forall \gamma \in G$

Example: Lattice θ -functions

$$ullet$$
 $\Lambda=\mathbb{Z},\; heta(au)=\sum_{n\in\mathbb{Z}}q^{n^2/2}$, wt $1/2$

•
$$\Lambda = \sqrt{2m}\mathbb{Z}$$
, $\Lambda^*/\Lambda \cong \mathbb{Z}/2m$,

$$\theta_{m,r}^{0}(au) = \sum_{k \equiv r \ (2m)} q^{rac{k^2}{4m}}, \ ext{wt} \ 1/2$$

$$\theta_{m,r}^{1}(\tau) = \sum_{k \equiv r \ (2m)} kq^{\frac{k^2}{4m}}, \text{ wt } 3/2$$

Consider a holomorphic fn f on \mathbb{H} , G a discrete subgroup of $SL_2(\mathbb{Z})$.

Def (modular transf. of weight w): $f|_w\gamma(\tau) := f(\gamma\tau)(c\tau+d)^{-w}$ Def (modular form of weight w for G): $f|_w\gamma(\tau) = f(\tau) \ \forall \gamma \in G$

Example: Lattice θ -functions

$$ullet$$
 $\Lambda=\mathbb{Z},\; heta(au)=\sum_{n\in\mathbb{Z}}q^{n^2/2}$, wt $1/2$

•
$$\Lambda = \sqrt{2m}\mathbb{Z}$$
, $\Lambda^*/\Lambda \cong \mathbb{Z}/2m$,

$$\theta_{m,r}^{0}(au) = \sum_{k \equiv r \ (2m)} q^{rac{k^2}{4m}}, \ ext{wt } 1/2$$

$$\theta_{m,r}^{1}(\tau) = \sum_{k \equiv r \ (2m)} kq^{\frac{k^2}{4m}}, \text{ wt } 3/2$$

I.1 Quantum Modular Forms (QMF): Radial Limit

Consider a holomorphic fn f on \mathbb{H} .

Taking the *radial limit*:

$$f\left(\frac{p}{q}\right) := \lim_{t \to 0^+} f\left(\frac{p}{q} + it\right)$$

defines a function on \mathbb{Q} .

Remark: Later we will see:

q-series invariant $\rightarrow \rightarrow \rightarrow$ Chern-Simons (WRT) invariant

$$q \rightarrow e^{2\pi i \frac{1}{k}}$$

Consider a modular form f.

Taking the radial limit:

$$f\left(\frac{p}{q}\right) := \lim_{t \to 0^+} f\left(\frac{p}{q} + it\right)$$

defines a function on Q, satisfying

$$f(x) - f|_{w}\gamma(x) = 0$$

for all $x \in \mathbb{Q} \setminus \{\gamma^{-1}(\infty)\}$.

$$\tau \to \alpha \in \mathbb{Q}$$

I.1 Quantum Modular Forms (QMF): A First Definition

How to generalise
$$f(x) - f|_w \gamma(x) = 0$$
 ?

Here neither of the properties which are required of classical modular forms—analyticity and Γ -covariance—are reasonable things to require: the former because $\mathbb{P}^1(\mathbb{Q})$, viewed as the set of cusps of the action on Γ on \mathfrak{H} , is naturally equipped only with the discrete topology, not with its induced topology as a subset of $\mathbb{P}^1(\mathbb{R})$, so that any requirement of continuity or analyticity is vacuous; and the latter because Γ acts on $\mathbb{P}^1(\mathbb{Q})$ transitively or with only finitely many orbits, so that any requirement of Γ -covariance of a function on this set would lead to a trivial definition. So we do not demand either continuity/analyticity or modularity, but require instead that the failure of one precisely offsets the failure of the other. In other words, our quantum modular form should be a function $f: \mathbb{Q} \to \mathbb{C}$ for which the function $h_{\gamma}: \mathbb{Q} \setminus \{\gamma^{-1}(\infty)\} \to \mathbb{C}$ defined by

$$(2) h_{\gamma}(x) = f(x) - (f|_{k}\gamma)(x)$$

has some property of continuity or analyticity (now with respect to the real topology) for every element $\gamma \in \Gamma$. This is purposely a little vague, since examples coming from different sources have somewhat different properties, and we want to consider all of them as being quantum modular forms.

[Don Zagier 2010]

I.1 Quantum Modular Forms (QMF): Strong QMF

A <u>strong quantum modular form</u>—and most of our examples will belong to this category—is an object with a stronger (and more interesting) structure: it associates to each element of \mathbb{Q} a formal power series over \mathbb{C} , rather than just a complex number, with a correspondingly stronger requirement on its behavior under the action of Γ . To describe this, we write the power series in $\mathbb{C}[[\varepsilon]]$ associated to $x \in \mathbb{Q}$ as $f(x+i\varepsilon)$ rather than, say, $f_x(\varepsilon)$, so that f is now defined in the union of (disjoint!) formal infinitesimal neighborhoods of all points $x \in \mathbb{Q} \subset \mathbb{C}$. Since the function h_{γ} in (2) was required to be real-analytic on the complement of a finite subset S_{γ} of $\mathbb{P}^1(\mathbb{R})$, it extends holomorphically to a neighborhood of $\mathbb{P}^1(\mathbb{R}) \setminus S_{\gamma}$ in $\mathbb{P}^1(\mathbb{C})$, and in particular has a power series expansion (convergent in some disk of positive radius) around each point $x \in \mathbb{Q}$. Our stronger requirement is now that the equation

(3)
$$f(z) - (f|_k \gamma)(z) = h_{\gamma}(z) \qquad (\gamma \in \Gamma, \quad z \to x \in \mathbb{Q})$$

holds as an identity between countable collections of formal power series.

the power series $f(0+it) \sim$ semi-classical $\frac{1}{k}$ -expansion of WRT \sim Ohtsuki series of 3-manifolds

I.1 Quantum Modular Forms (QMF): Examples

Examples: False Theta Functions, Mock Modular Forms,...

Applications: Kashaev invariants, log CFT characters, $\widehat{Z}_a(q)$, ...

I.1 Quantum Modular Forms (QMF) ⊃ False and Mock

Consider a modular form g of weight w.

Def (Eichler integrals):*

$$ilde{g}(au) := \int_{ au}^{i\infty} g(au')(au' - au)^{w-2} d au' \qquad \qquad ext{(holomorphic)}$$
 $g^*(au) := \int_{ au}^{i\infty} g(au')(au' + au)^{w-2} d au' \qquad \qquad ext{(non-holomorphic)}$

Rk: $\tilde{g} - \tilde{g}|_{2-w}\gamma$ and $g^* - g^*|_{2-w}\gamma$ are period integrals \rightarrow quantum modularity.

$$(\tilde{g}|_{2-w}\gamma)(\tau) = (c\tau + d)^{-2+w} \int_{\tau}^{\gamma^{-1}\infty} g(\gamma\tau')(\gamma\tau' - \gamma\tau)^{w-2} d(\gamma\tau')$$

$$= \int_{\tau}^{\gamma^{-1}\infty} g(\tau')(\tau' - \tau)^{w-2} d\tau'$$

$$\Rightarrow (\tilde{g} - \tilde{g}|_{2-w}\gamma)(\tau) = \int_{\gamma^{-1}\infty}^{\infty} g(\tau')(\tau' - \tau)^{w-2} d\tau'$$

* some irrelavant constant factors ignored.

I.1 Quantum Modular Forms (QMF) ⊃ False and Mock

Consider a modular form g of weight w.

Def (Eichler integrals):*

$$ilde{g}(au) := \int_{ au}^{i\infty} g(au')(au' - au)^{w-2} d au' \qquad \qquad ext{(holomorphic)}$$
 $g^*(au) := \int_{-ar{ au}}^{i\infty} g(au')(au' + au)^{w-2} d au' \qquad \qquad ext{(non-holomorphic)}$

Example: False θ -function

$$\theta_{m,r}^{1}(\tau) = \sum_{k \equiv r \ (2m)} kq^{\frac{k^{2}}{4m}}, \text{ wt } 3/2$$

$$\widetilde{\theta_{m,r}^{1}}(\tau) = \sum_{\substack{k \in \mathbb{Z} \\ k \equiv r(2m)}} \operatorname{sgn}(k) q^{k^{2}/4m}$$
false

I.1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a holomorphic fn f on \mathbb{H} .

Def (mock modular forms, mmf) [Zwegers '02]:

f is a **mmf** of weight w if there exists a modular form $g = \operatorname{shad}(f)$ (the **shadow**) of weight 2 - w such that $\hat{f} := f - g^*$ satisfies $\hat{f} = \hat{f}|_w \gamma \quad \forall \ \gamma \in G$.

Rk: $\hat{f} = \hat{f}|_{w}\gamma \Rightarrow f - f|_{w}\gamma = g^* - g^*|_{w}\gamma \rightarrow \text{quantum modularity.}$

I.1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a holomorphic fn f on \mathbb{H} .

Def (mock modular forms, mmf) [Zwegers '02]:

f is a **mmf** of weight w if there exists a modular form $g = \operatorname{shad}(f)$ (the **shadow**) of weight 2 - w such that $\hat{f} := f - g^*$ satisfies $\hat{f} = \hat{f}|_w \gamma \quad \forall \ \gamma \in G$.

Example: modular forms

Example : Ramanujan's Mock θ Functions

$$F_0(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{\prod_{k=1}^n (1 - q^{n+k})} = 1 + q + q^3 + q^4 + O(q^5)$$

$$shad(F_0)(\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \theta_{42,i}^1(\tau)$$

I.1 Quantum Modular Forms (QMF): Examples

Questions?

I. Background

3-Manifold Inv. $\widehat{Z}_a(M_3; \tau)$

Quantum Modular Form (QMF)

main ref. [Gukov-Pei-Putrov-Vafa '17]

$\widehat{Z}_a(M_3; \tau)$: Mathematical Definition

 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .

weighted graph $\Gamma := (V, E, a), a : V \to \mathbb{Z}$.

$\widehat{Z}_a(M_3; \tau)$: Mathematical Definition

 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .

$$M = \begin{pmatrix} a_1 & 0 & 1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 & 0 & 0 \\ 1 & 1 & a_3 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_4 & 1 & 1 \\ 0 & 0 & 0 & 1 & a_5 & 0 \\ 0 & 0 & 0 & 1 & 0 & a_6 \end{pmatrix}$$

$Z_a(M_3; \tau)$: Mathematical Definition

 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .

$$M = \begin{pmatrix} 0 & a_2 & 0 & 0 & 0 & 0 \\ 1 & 1 & a_3 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_4 & 1 & 1 \\ 0 & 0 & 0 & 1 & a_5 & 0 \\ 0 & 0 & 0 & 1 & 0 & a_6 \end{pmatrix}$$

obtained with surgery along L

$$H_1(M_{3,\Gamma};\mathbb{Z})\cong \mathbb{Z}^{|V|}/M\mathbb{Z}^{|V|}$$
 (Coker M)

$\widehat{Z}_a(M_3; \tau)$: Mathematical Definition

 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .

$\widehat{Z}_a(M_3; \tau)$: Mathematical Definition

Def: For a weighted graph Γ with a neg.-def. M, and for a given $a \in Cork(M)$, define the theta function

$$\Theta_a^M(au;\mathbf{z}) := \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{-\ell^T M^{-1}\ell} \, \mathbf{z}^\ell.$$

$$\widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\sim [\mathbf{z}^0] \left(\prod_{v \in V} \left(z_v - \frac{1}{z_v} \right)^{2 - \deg(v)} \, \Theta_a^M(\tau; \mathbf{z}) \right)$$

<u>Def:</u> For a weighted graph Γ with a neg.-def. M, and for a given $a \in \text{Cork}(M)$, define the theta function

$$\widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\sim [\mathbf{z}^0] \left(\prod_{v \in V} \left(z_v - \frac{1}{z_v} \right)^{2 - \deg(v)} \Theta_a^M(\tau; \mathbf{z}) \right)$$

Remarks:

- 1. a set of q-invariants;
- 2. $a \in Cork(M) \cong H_1(M_3, \mathbb{Z}) \cong \{inequiv. SU(2) \text{ Ab. flat connections}\}^*;$
- 3. neg.-def. $M^{**} \Leftrightarrow \text{pos.-def.}$ lattice $\Leftrightarrow \Theta$ and hence \widehat{Z}_a converges when $\tau \in \mathbb{H}$;
- 4. $q^c \widehat{Z}_a(\tau) \in \mathbb{Z}[[q]]$ for a $c \in \mathbb{Q}$ dependening only on M_3 .
- * up to Weyl group \mathbb{Z}_2 action

^{**} this condition can be relaxed : M^{-1} only needs to be neg.-def. in the subspace spanned by the vertices with at least 3 edges

$\widehat{Z}_a(M_3; \tau)$: Mathematical Definition

-2 -3 -3

$$M_{3,\Gamma} = \Sigma(2,3,7) = \{x^2 + y^3 + z^7 = 0\} \cap S^5$$

$$q^{-\frac{83}{168}}\,\hat{Z}_0(\Sigma(2,3,7),\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right)\,\widetilde{\theta^1_{42,i}}(\tau) = \widetilde{shad}(F_0)(\tau)$$

$$\widehat{Z}_a(M_3; \tau)$$
 and Z_{CS}

 $Z_{\text{CS}}(M_3; k)$; $k \in \mathbb{Z}$ is the (effective) level.

Question: Can we go from \mathbb{Z} to \mathbb{H} : a q-series inv. for 3-man. extending Z_{CS} ?

Idea:
$$q$$
-series $\xrightarrow{\text{radial limit}} Z_{CS}(k)$ (*)
$$q \rightarrow e^{2\pi i/k}$$

$$|q| < 1$$

Remarks: 1. cf. previous work by Habiro. 2. (*) is not sufficient to fix the q-series.

$$\widehat{Z}_a(M_3; \tau)$$
 and Z_{CS}

 $Z_{\text{CS}}(M_3; k)$; $k \in \mathbb{Z}$ is the (effective) level.

Question: Can we go from \mathbb{Z} to \mathbb{H} : a q-series inv. for 3-man. extending Z_{CS} ?

Answer: $\widehat{Z}_a(\tau)$, related to Z_{CS} by $\widehat{Z}_a(\tau) \xrightarrow{\text{radial limit}} Z_{\text{CS}}$

$$Z_{\mathrm{CS}}(M_3;k) = \sum_{a,b \in H_1(M_3,\mathbb{Z})} e^{2\pi i k \cdot \mathbf{lk}(a,a)} \left(\lim_{\tau \to \frac{1}{k}} S_{ab}^{(A)} \, \widehat{Z}_b(\tau) \right)$$

$\widehat{Z}_a(M_3; \tau)$: Physical Picture

6d (2,0) G(=SU(2))-theory on M_3

susy B.C. \mathcal{B}_a

Ab. *G* flat connections

$$\widehat{Z}_a(\tau) := Z_{\mathcal{T}_G[M_3]}(D^2 \times_{\tau} S^1; \mathcal{B}_a)$$

$$= \text{``Half-Index''}$$

$$\text{and } \mathcal{N}=2 \text{ theory condition}$$

$$= \text{top. inv. of } M_3$$

$\widehat{Z}_a(M_3; \tau)$: Physical Picture

3d bulk coupled to a 2d boundary CFT \Rightarrow

Some kind of residual **modularity** is expected if the bulk theory is "somewhat trivial".

$\widehat{Z}_a(M_3; \tau)$: Physical Picture

In the holomorphic twist of the 3d $\mathcal{N}=2$ theory, the local operators on a boundary condition \mathcal{B}_a consistent with the twist has the structure of a vertex algebra $\mathcal{V}_{\partial}[\mathcal{B}_a]$.

[Costello-Dimofte-Gaiotto 2020]

Questions?

3-Manifold Inv. $\widehat{Z}_a(M_3; \tau)$

Quantum Modular Form (QMF)

Applications:

Quantum modularity

- helps to determine the q-invariants;
- leads to new ways of retrieving topological information;
- gives hints about the physical theories.

3-Manifold Inv. $\widehat{Z}_a(M_3; \tau)$

Quantum Modular Form (QMF)

See also important previous and ongoing work on a related topic (Kashaev invariants of knots):

Zagier '10, Garoufalidis-Zagier '13 and to appear, Dimofte-Garoufalidis '15, Hikami-Lovejoy '14,

- I. Background
- II. A (True) False Theorem
- III. A Mock–False Conjecture
- IV. Going Deeper
- V. Questions for Future

First we focus on the most tractable family of examples:

 $\Gamma = 3$ -pronged star

A False Theorem

Theorem: Negative three-stars are false.

[MC-Chun-Ferrari-Gukov-Harrison, Bringmann-Mahlburg-Milas '18]

For any three-pronged star weighted graph Γ of negative type, the functions $\widehat{Z}_a(M_{3,\Gamma};\tau)$ are false theta functions. In particular, there exists an $m=m(\Gamma)\in\mathbb{Z}_{>0}$ such that (up to a finite polynomial)

$$\widehat{Z}_a(au) \in \operatorname{span}_{\mathbb{Z}}\left\{\widetilde{\theta_{m,r}^1}, r \in \mathbb{Z}/2m\right\} \ \ \forall \ a.$$

Rk: See also earlier work by [Lawrence–Zagier '99] and Hikami in the context of CS inv.

Recall: (false) theta functions

$$\theta_{m,r}^{1} = \sum_{k \equiv r \ (2m)} k \ q^{\frac{k^2}{4m}}$$

$$\widetilde{\theta_{m,r}^{1}} = \sum_{k \equiv r \ (2m)} \operatorname{sgn}(k) \ q^{\frac{k^2}{4m}}$$

$$\widehat{Z}_a = \mathsf{QMF}$$

$$\widehat{Z}_{a}(\tau) = \left(\widetilde{\theta_{m,r}^{1}} + \widetilde{\theta_{m,r'}^{1}} + \widetilde{\theta_{m,r''}^{1}} + \dots\right), \ r, r', \dots \in \mathbb{Z}/2m$$

Recall that the false theta functions like $\theta^1_{m,r}$ are quantum modular forms, which means

$$\left(\widehat{Z}_a - \widehat{Z}_a|_{1/2}\gamma\right)(\tau) \qquad (*)$$

when the radially limit is properly taken, has analytic properties.

$$\widehat{Z}_a(au) \xrightarrow{\text{radial limit}} Z_{\text{CS}}$$

$$(*) \Rightarrow$$

$$Z_{CS}(k) \sim \widehat{Z}(\frac{1}{k}) = \widehat{Z}(-k) + \text{pert. series in } \frac{1}{k}$$

sadd. pnt contr. from $SL(2,\mathbb{C})$ flat connections

$\widehat{Z}_a = \text{Log Characters}$

Theorem: Negative three-stars are false.

[MC-Chun-Ferrari-Gukov-Harrison, Bringmann-Mahlburg-Milas '18]

For any three-pronged star weighted graph Γ of negative type, the functions $\widehat{Z}_a(M_{3,\Gamma};\tau)$ are false theta functions. In particular, there exists an $m=m(\Gamma)\in\mathbb{Z}_{>0}$ such that (up to a finite polynomial)

$$\widehat{Z}_a(au) \in \operatorname{span}_{\mathbb{Z}}\left\{\widetilde{\theta^1_{m,r}}, r \in \mathbb{Z}/2m\right\} \ \ \forall \ a.$$

 \sim log VOA character

Log VOAs:

- contain modules not decomposable into irreducibles;
- a nice playground to study the mathematical properties of non-rational vertex algebras.

A Simple Log VOA: the (1, m) Algebra

Given a positive integer m, let $\alpha_{\pm}=\pm\sqrt{2m^{\pm1}}$, $\alpha_0=\alpha_++\alpha_-$ free boson : $\varphi(z)\varphi(w)\sim\log(z-w)$ stress energy tensor : $T=\frac{1}{2}(\partial\varphi)^2+\frac{\alpha_0}{2}\partial^2\varphi$, $c=1-3\alpha_0^2$ screening charges : $Q_-=(e^{\alpha_-\varphi})_0$

triplet (1,m) algebra: $\mathcal{W}(m) := \ker_{\mathcal{V}_L} Q_-$ singlet (1,m) algebra: $\mathcal{M}(m) := \ker_H Q_-$

where $V_L = \text{lattice VOA for } L = \sqrt{2m}\mathbb{Z}, H = \text{Heisenberg algebra}.$

$$H \subset \mathcal{V}$$
 \cup
 \cup
 $\mathcal{M}(m) \subset \mathcal{W}(m)$

A Simple Log VOA: the (1, m) Algebra

The triplet (1, m) algebra $\mathcal{W}(m)$ has 2m irreducible modules. We are especially interested in m of them, with graded character

$$\chi_s^{\mathcal{W}(m)} = \frac{1}{\eta(\tau)} \sum_{n \in \mathbb{Z}} q^{\frac{(2mn+m-s)^2}{4m}} \frac{z^{2n+1} - z^{-2n-1}}{z - z^{-1}}, \ s = 1, \dots, m.$$

$$\frac{\widehat{Z}_{a}(M_{3,\Gamma};\tau)}{\eta(\tau)} \sim \frac{1}{\eta(\tau)} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

\widehat{Z}_a and Log VOA Characters

$$\frac{\widehat{Z}_a(M_{3,\Gamma};\tau)}{\eta(\tau)} \sim \frac{1}{\eta(\tau)} \oint \prod_{v \in V} \frac{dz_v}{2\pi i z_v} \left(z_v - \frac{1}{z_v}\right)^{2-\deg(v)} \Theta_a^M(\tau;\mathbf{z})$$

Integrate over all but the central node z_c

$$= [z_c^0] \left(\chi_s^{\mathcal{W}(m)} + \chi_{s'}^{\mathcal{W}(m)} + \chi_{s''}^{\mathcal{W}(m)} + \dots \right) (\tau, z_c)$$
triple $(1, m)$ alg. characters

$$= \left(\chi_s^{\mathcal{M}(m)} + \chi_{s'}^{\mathcal{M}(m)} + \chi_{s''}^{\mathcal{M}(m)} + \dots\right)(\tau)$$
single $(1, m)$ alg. characters

$$=\frac{1}{\eta(\tau)}\left(\widetilde{\theta_{m,m-s}^1}+\widetilde{\theta_{m,m-s'}^1}+\widetilde{\theta_{m,m-s''}^1}+\ldots\right)(\tau)$$

closely related to the algebra of bdry op.?

Questions?

- I. Background
- II. A (True) False Theorem
- III. A Mock-False Conjecture
- IV. Going Deeper
- V. Questions for Future

A Puzzle

Upon flipping orientation, we have

$$Z_{\rm CS}(-M_3;k) = Z_{\rm CS}(M_3;-k)$$

A Puzzle

Recall
$$\tau \to \frac{1}{k}$$

$$\widehat{Z}_a(\tau) \xrightarrow[\text{summed over } a]{} Z_{\text{CS}}$$

Upon flipping orientation, we have

$$Z_{\mathrm{CS}}(-M_3;k) = Z_{\mathrm{CS}}(M_3;-k)$$

From
$$(k \leftrightarrow -k) \Leftrightarrow (\tau \leftrightarrow -\tau) \Leftrightarrow (q \leftrightarrow q^{-1})$$
, we expect

$$\widehat{Z}_{a}(-M_{3};\tau)=\widehat{Z}_{a}(M_{3};-\tau)$$

But what's this? Can we define $\widehat{Z}_a(M_3;\tau)$ for both $(|q| < 1 \Leftrightarrow \tau \in \mathbb{H})$ and $(|q| > 1 \Leftrightarrow \tau \in \mathbb{H}_-)$?

Going to the Other Side

Troubles with Thetas

$$\widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\Theta_{a}^{M}(\tau;\mathbf{z}) := \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{-\ell^{T}M^{-1}\ell} \mathbf{z}^{\ell}.$$

 $M_3 \leftrightarrow -M_3 \Leftrightarrow q \leftrightarrow q^{-1} \Leftrightarrow$ flipping the lattice signature $M \leftrightarrow -M$ no longer convergent for |q| < 1!

The definition for $\widehat{Z}_a(\tau)$ no longer applies after $M_3 \to -M_3$.

$$\widetilde{shad}(F_0)(\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \widetilde{\theta_{42,i}^1}(\tau) = q^{-\frac{83}{168}} \, \hat{Z}_0(\Sigma(2,3,7),\tau)$$

It admits an expression as q-hypergeometric series

$$= q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{\prod_{k=1}^n (1 - q^{n+k})}$$

$$\widetilde{shad}(F_0)(\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \widetilde{\theta_{42,i}^1}(\tau) = q^{-\frac{83}{168}} \, \hat{Z}_0(\Sigma(2,3,7),\tau)$$

It admits an expression as q-hypergeometric series

$$= q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{\prod_{k=1}^n (1 - q^{n+k})}$$

which moreover converges both inside and outside (but not on) the unit circle:

$$= q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{q^{-n^2}}{\prod_{k=1}^{n} (1 - q^{-(n+k)})}$$
 $|q| < 1$

Recall: Ramanujan's Mock θ Functions

$$F_0(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{\prod_{k=1}^n (1 - q^{n+k})} = 1 + q + q^3 + q^4 + O(q^5)$$

$$shad(F_0)(\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \, \theta_{42,i}^1(\tau)$$

$$q^{-\frac{83}{168}} \, \hat{Z}_0(\Sigma(2,3,7),\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \, \widetilde{\theta_{42,i}^1}(\tau)$$

$$=q^{\frac{1}{168}}\sum_{n=0}^{\infty}\frac{(-1)^nq^{\frac{n(n+1)}{2}}}{\prod_{k=1}^n(1-q^{n+k})}=q^{\frac{1}{168}}\sum_{n=0}^{\infty}\frac{q^{-n^2}}{\prod_{k=1}^n(1-q^{-(n+k)})}$$

cf. Ramanujan's mock theta function

$$F_0(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{\prod_{k=1}^n (1-q^{n+k})} = 1 + q + q^3 + q^4 + O(q^5)$$

The *q*-hypergeometric series defines a function $F : \mathbb{H} \cup \mathbb{H}^- \to \mathbb{C}$, satisfying

$$F(\tau) = egin{cases} \widetilde{shad}(F_0)(au) & ext{when } au \in \mathbb{H} \ F_0(- au) & ext{when } au \in \mathbb{H}^-. \end{cases}$$

Moreover, it gives the same asymptotic expansion as $\tau \to \pm it$ \Rightarrow they lead to the same *quantum modular form*.

Conjecture:

$$\hat{Z}_0(-\Sigma(2,3,7),\tau) = \hat{Z}_0(\Sigma(2,3,7),-\tau)$$

$$= q^{-\frac{1}{2}}F_0(\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+O(q^5))$$

A Mock-False Conjecture

Theorem :* [MC–Duncan '13, Rhoads '18] A Rademacher sum (a regularised sum over $SL_2(\mathbb{Z})$ images) defines a function F in \mathbb{H} and \mathbb{H}^- , satisfying

A Mock-False Conjecture

Theorem :* [MC–Duncan '13, Rhoads '18] A Rademacher sum (a regularised sum over $SL_2(\mathbb{Z})$ images) defines a function F in \mathbb{H} and \mathbb{H}^- , satisfying

A Mock-False Conjecture

The False-Mock Conjecture: [CCFGH'18]

If $q^{-c}\widehat{Z}_a(M_3;\tau)=\widetilde{\theta}(\tau)$ for some $c\in\mathbb{Q}$ is a false theta function, then

$$q^{c}\widehat{Z}_{a}(-M_{3};\tau)=f(\tau)$$

is a mock theta function with $shad(f) = \theta$.

False-Mock Conjecture: A Test Case

Conjecture:

$$\begin{split} \hat{Z}_0(-\Sigma(2,3,7),\tau) &= \hat{Z}_0(\Sigma(2,3,7),-\tau) \\ &= q^{-\frac{1}{2}}F_0(\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+O(q^5)) \end{split}$$

Independent verification: [Gukov-Manolescu '19]

Using $-\Sigma(2,3,7) = S_{-1}^3(\text{figure }8)$ and the surgery formula, one obtains

$$\widehat{Z}_0(-\Sigma(2,3,7),\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+q^5+2q^7+\dots)$$

Nice! But is there a way to obtain the mock answer from a more direct definition?

Defining $\widehat{Z}_a(-M_3)$

$$\widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\Theta_{a}^{M}(\tau;\mathbf{z}) := \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{-\ell^{T}M^{-1}\ell} \mathbf{z}^{\ell}.$$

 $M_3 \leftrightarrow -M_3 \Leftrightarrow q \leftrightarrow q^{-1} \Leftrightarrow$ flipping the lattice signature $M \leftrightarrow -M$ no longer convergent for |q| < 1!

Regularised θ -function: [Zwegers '02]

$$\Theta_a^{-M,\mathbf{reg}}(au;\mathbf{z}) := \sum_{\ell \in a+2M\mathbb{Z}^{|V|}} oldsymbol{
ho}(\ell) \, q^{+(\ell,M^{-1}\ell)} \mathbf{z}^\ell$$

Indefinite Theta Functions

Regularised θ -function:

[Zwegers '02]

$$\Theta_{a}^{-M,\operatorname{reg}}(\tau;\mathbf{z}) := \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} \rho(\ell) \, q^{(\ell,M^{-1}\ell)} \mathbf{z}^{\ell}$$

$$= \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{(\ell,M^{-1}\ell)} \mathbf{z}^{\ell}$$

Defining $\widehat{Z}_a(-M_3)$

Regularised θ -function:

$$\Theta_a^{-M,\operatorname{reg}}(au;\mathbf{z}):=\sum_{\ell\in a+2M\mathbb{Z}^{|V|}} oldsymbol{
ho}(\ell)\,q^{+(\ell,M^{-1}\ell)}\mathbf{z}^\ell$$

$$\widehat{Z}_{a}(-M_{3,\Gamma};q) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{-M,\operatorname{reg}}(\tau;\mathbf{z})$$

[MC-Sgroi, to appear]

[MC-Ferrari-Sgroi '19]

Using the above definition:

$$\widehat{Z}_0(-\Sigma(2,3,7), au) = q^{-\frac{1}{2}}F_0(au) = q^{-\frac{1}{2}}(1+q+q^3+q^4+O(q^5))$$

What we have seen:

- Explicit examples of QMF play the role of 3-manifold inv.;
- Modularity considerations lead to new examples of q-series inv.;
- What is the physical meaning of the regularisation?

Questions?

- I. Background
- II. A (True) False Theorem
- III. A Mock-False Conjecture
- IV. Going Deeper
- V. Questions for Future

The (1, m) Algebra for Lie Algebra \mathfrak{g}

```
Given a positive integer m, let \alpha_{\pm}=\pm\sqrt{2m^{\pm1}}, \alpha_0=\alpha_++\alpha_- free boson : \varphi(z)\varphi(w)\sim\log(z-w) stress energy tensor : T=\frac{1}{2}(\partial\varphi)^2+\frac{\alpha_0}{2}\partial^2\varphi, c=1-3\alpha_0^2 screening charges : Q_-=(e^{\alpha_-\varphi})_0 triplet (1,m) algebra: \mathcal{W}(m):=\ker_{\mathcal{V}_L}Q_- singlet (1,m) algebra: \mathcal{M}(m):=\ker_{\mathcal{H}}Q_-
```

where V_L = lattice VOA for $L = \sqrt{2m\mathbb{Z}}$, H = Heisenberg algebra.

lacksquare corresponding to $\mathfrak{g}=A_1$

The (1, m) Algebra for Lie Algebra $\mathfrak g$

```
Given a positive integer m, let \alpha_{\pm} = \pm \sqrt{2m^{\pm 1}}, \alpha_0 = \alpha_+ + \alpha_-
free boson : \varphi(z)\varphi(w) \sim \log(z-w)
stress energy tensor : T = \frac{1}{2}(\partial \varphi)^2 + \frac{\alpha_0}{2}\partial^2 \varphi, c = 1 - 3\alpha_0^2
screening charges : Q_{-} = (e^{\alpha - \varphi})_{0}
                  triplet (1, m) algebra: \mathcal{W}(m) := \ker_{\mathcal{V}_i} Q_-
                  singlet (1, m) algebra: \mathcal{M}(m) := \ker_H Q_-
where \mathcal{V}_L = \text{lattice VOA for } L = \sqrt{2m\mathbb{Z}}, H = \text{Heisenberg algebra}.
\square corresponding to \mathfrak{g}=A_1
```

More generally, we have

$$r = \operatorname{rank}(\mathfrak{g})$$
 bosons, and $L = \sqrt{m} \Lambda_{\text{root}}$.

$\widehat{Z}_{a}^{G}(au)$ and g-Log VOA Characters

From the M-theory origin of \widehat{Z}_a , it is clear that there is a higher rank generalisation $\widehat{Z}_a^G(\tau)$.

Integrate over all but the central node \vec{z}_c

$$\frac{Z^{\mathbf{G}}_{a}(M_{3,\Gamma};\tau)}{\eta^{\mathbf{r}}(\tau)} = [(\vec{z}_{c})^{0}] \text{(triplet } \mathfrak{g}\text{-Log VOA characters)}$$

= singlet g-Log VOA characters

Another generalisation: (p, p') Log VOA

When $p \neq 1$, the corresponding minimal model is non-trivial.

$$(p,p')$$
 min. model \sim the cohomology of screening op. (p,p') log model \sim the kernel of screening op.

They correspond to 4-pronged stars in the \widehat{Z}_a -VOA correspondence.

More General Quantum Modularity

Def (Depth 1 **QMF)**: $f: \mathbb{Q} \to \mathbb{C}$ s.t. $h_{\gamma} := f - f|_{w}\gamma$ have some properties of analyticity $\forall \gamma \in G$.

Def (Depth N **QMF)**: a function $f \in \mathbb{Q}$ such that $h_{\gamma} := f - f|_{w}\gamma$ is a sum of QMFs of depth less than N (multiplied by some real-analytic functions) $\forall \gamma \in G$.

- $\widehat{Z}_{a}^{A_{2}}(\tau)$ is a QMF of depth 2 when M_{3} is given by a 3-pronged star.
- $\widehat{Z}_a(\tau)$ is a sum of QMFs of different weights when M_3 is given by a 4-pronged star.

[MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.] and see earlier work by Bringmann, Milas, Kaszian ('17-'18).

Questions?

- I. Background
- II. A (True) False Theorem
- III. A Mock-False Conjecture
- IV. Going Deeper
- V. Questions for Future

Future Questions

just the beginning ...

- a mathematical definition for more families of 3-manifolds;
- boundary algebra of $\mathcal{T}[M_3]$;
- mock and false are exceptionally simple, more involved quantum modularity for general M_3 ;
- what does quantum modularity say about physics/topology?

•