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Main Motivations:

o QMF

natural structure beyond modular forms;

o 23(M3; 7‘)

g-invariants for (closed) 3-manifolds;

o Z(/\/Ig; 7) =susy index

3d SQFT, 3d-3d, and M-theory.

o Z(/\/Ig; T) ~ X}{,(T)

Novel types of vertex algebras and representations.



Based on:

e 3d Modularity, 1809.10148
w. S. Chun, F. Ferrari, S. Gukov, S. Harrison.

e 3d Modularity and log VOA, 200X XXXXX
w. S. Chun, B. Feigin, F. Ferrari, S. Gukov, S. Harrison.

o [hree-Manifold Quantum Invariants and Mock Theta Functions,

1912.07997
w. F. Ferrari, G. Sgroi.

e [hree Manifolds and Indefinite Theta Functions, 200X.
w. G. Sgroi.
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|. Background

Quantum
Modular Form

(QMF)




1.1 Quantum Modular Forms (QMF): the Upper-Half Plane H

ar + b
ct+d

L ( b ) € SLo(R) > SL(Z)

Symmetry: 7+ 7T =

H has natural boundary P*(Q) = Q U {oco}, the cusps of SLy(Z) which
acts transitively.



.1 Quantum Modular Forms (QMF): Modular Forms

Consider a holomorphic fn f on H, G a discrete subgroup of
SLy(Z).

Def (modular transf. of weight w): f|,v(7) = f(y7)(cT + d)™"
Def (modular form of weight w for G): f|,y(7) =f(7) Vy € G

Many generalisations: non-trivial G-characters, vector-valued,
non-holomorphic etc.



.1 Quantum Modular Forms (QMF): Modular Forms

Consider a holomorphic fn f on H, G a discrete subgroup of
SLy(Z).

Def (modular transf. of weight w): f|,v(7) :== f(y7)(cT + d)™"
Def (modular form of weight w for G): f|,~(7)=f(7) Vy € G

Example: Lattice #-functions
o AN=27Z,0(7)=>,cz q”2/2 ,wt 1/2

e N=+v2mZ, N*/N=7/2m,
k2
Z qim, wt 1/2
k=r (2m)

()= S kit wt3)2
k=r (2m)




.1 Quantum Modular Forms (QMF): Modular Forms

Consider a holomorphic fn f on H, G a discrete subgroup of

SLy(7Z).

Def (modular transf. of weight w): f|,v(7) :== f(y7)(cT + d)™"
Def (modular form of weight w for G): f|,~(7)=f(7) Vy € G

Example: Lattice #-functions modular
o AN=27Z,0(7)=>,cz q”2/2 ,wt 1/2
e N=+v2mZ, N*/N=7/2m,

k2
Z qim, wt 1/2

k=r (2m)

()= S kit wt3)2
k=r (2m)




I.1 Quantum Modular Forms (QMF): Radial Limit

Consider a holomorphic fn f on H.

Taking the radial limit:

f (p) — lim f (p n it)
q t—0" q

defines a function on Q.

Remark: Later we will see:
g-series invariant ——— Chern-Simons (WRT) invariant

q % e k 5 ‘,‘.

., .
.....
.~ .
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.1 Quantum Modular Forms (QMF): Modular Forms

Consider a modular form f.

Taking the radial limit:

[T root of unity

FE):= tim £(S+it lal<1
q t—0+ q
defines a function on Q, satisfying

f(x) — fluy(x) =0
for all x € Q\{y 1(0)}.




1.1 Quantum Modular Forms (QMF): A First Definition
How to generalise f(x) — fluy(x) =0 7

Here neither of the properties which are

required of classical modular forms—analyticity and I'-covariance—are reasonable
things to require: the former because P'(Q), viewed as the set of cusps of the ac-
tion on I' on $, is naturally equipped only with the discrete topology, not with its
induced topology as a subset of P1(R), so that any requirement of continuity or
analyticity is vacuous; and the latter because I' acts on P}(Q) transitively or with
only finitely many orbits, so that any requirement of I'-covariance of a function on
this set would lead to a trivial definition. So we do not demand either continu-
ity /analyticity or modularity, but require instead that the failure of one precisely
offsets the failure of the other. In other words, our quantum modular form should
be a function f : Q — C for which the function k- : Q ~ {y !(c0)} — C defined by

(2) hy(x) = flx) — (fle) ()

has some property of continuity or analyticity (now with respect to the real topol-
ogy) for every element v € I". This is purposely a little vague, since examples coming
from different sources have somewhat different properties, and we want to consider
all of them as being quantum modular forms.

[Don Zagier 2010]



1.1 Quantum Modular Forms (QMF): Strong QMF

A strong quantum modular form—and most of our examples will belong to
this category—is an object with a stronger (and more interesting) structure: it
associates to each element of () a formal power series over C, rather than just a
complex number, with a correspondingly stronger requirement on its behavior under
the action of I'. To describe this, we write the power series in C[[¢]] associated to
x € Q as f(x + ie) rather than, say, f.(¢), so that f is now defined in the union of
(disjoint!) formal infinitesimal neighborhoods of all points z € Q C C. Since the
function h~ in (2) was required to be real-analytic on the complement of a finite
subset S., of P*(R), it extends holomorphically to a neighborhood of P!(R) \. S, in
P1(C), and in particular has a power series expansion (convergent in some disk of
positive radius) around each point x € Q. Our stronger requirement is now that
the equation

(3) f(z) = (flk7)(2) = hy(2) (vel, z—zeQ)

holds as an identity between countable collections of formal power series.

the power series f(0 + it) ~ semi-classical %—expansion of WRT

~ QOhtsuki series of 3-manifolds



.1 Quantum Modular Forms (QMF): Examples

| modular S

Examples: False Theta Functions, Mock Modular Forms,...

Applications: Kashaev invariants, log CFT characters, Z-,(q),



.1 Quantum Modular Forms (QMF) D False and Mock

Consider a modular form g of weight w.
Def (Eichler integrals):”

g(r) = /’OO g(™) (7' —7)¥ 2d7 (holomorphic)

g*(7) ::/_ g(™) (7 + 7)"2d7 (non-holomorphic)

Rk: & — glo_w7v and g* — g*|2_n~y are period integrals —

quantum modularity.

_]_OO

(&la—w)(7) = (cr + d) 2+ / g(v7)(v7 — v7)2d(7)

T
—1

.
[ e =y

OO

= (@ Elwn)() = [ g 1) 2

r'\l/_loo

* some irrelavant constant factors ignored.



.1 Quantum Modular Forms (QMF) D False and Mock

Consider a modular form g of weight w.
Def (Eichler integrals):”

g(r) = /’OO g(7 (7 —7)" 2d7r (holomorphic)

g (1) = / g(m) (' + 1)V 2d7’ (non-holomorphic)

—T

Example: False 6-function

k2
O (T)= Y kg  wt3/2
k=r (2m)
Ohe(T)= D sgn(k)q</*
kEeZ
RS ) ™ false

* some irrelavant constant factors ignored.




.1 Quantum Modular Forms (QMF) D False and Mock
Consider a holomorphic fn f on H.

Def (mock modular forms, mmf) [Zwegers '02]:

f is a mmf of weight w if there exists a modular form
g = shad(f) (the shadow) of weight 2 — w such that
f := f — g* satisfies f = ;?|ny V~veogG.

Rk: f = ;?|Wf'y = f — flyy = g* — g*|wy — quantum modularity.



.1 Quantum Modular Forms (QMF) D False and Mock

Consider a holomorphic fn f on H.

Def (mock modular forms, mmf) [Zwegers '02]:

f is a mmf of weight w if there exists a modular form
g = shad(f) (the shadow) of weight 2 — w such that
f := f — g* satisfies f = ;?|ny V~veogG.

Example : modular forms

Example : Ramanujan’'s Mock 6 Functions

n2

Z Hk 1(1 — q"tk)
shad(Fo)(t) = ) (2'—1> 032.(7)

i€Z/42
2=1 (42)

=14+qg+q°+q*+ O(q

’)



.1 Quantum Modular Forms (QMF): Examples




Questions?



|. Background

3-Manifold Inv.

A

Za(Mg; T)

main ref. [Gukov-Pei-Putrov-Vafa ‘17]



A

Z,(Ms; 7): Mathematical Definition
Ms: Plumbed 3-manifold, determined by its plumbing graph [.
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A

Z,(Ms; 7): Mathematical Definition

Ms: Plumbed 3-manifold, determined by its plumbing graph [ .

(05 s
® ]
a3 ay
* — @

/ ~

. [
9 (g

a1 as
N\
as
o ag

plumbing graph [ <

adjacency matrix M

a1 0 1 0 0 0)

0 a2 0 0 0 O

1 1 as 1 0 0

0 0 1 d4 1 1

0 0 0 1 a5 O
\0 0 0 1 0 a5

» framed link L



A

Z,(Ms; 7): Mathematical Definition

Ms: Plumbed 3-manifold, determined by its plumbing graph [ .

a1 as
N
as
a9 ag

framed link L

|

plumbed M3
obtained with surgery along L

Hy(Mar; Z) = ZIVI /MZIV] (Coker M)



A

Z,(Ms; 7): Mathematical Definition

Mjs: Plumbed 3-manifold, determined by its plumbing graph I.

closed

plumbed




AN

Z,(Mjs; 7): Mathematical Definition

Def: For a weighted graph ' with a neg.-def. M, and for a given

a € Cork(M), define the theta function

M, . . —TM 1y _p
Q. (1;2) = E q z.
¢e2MZIVI4a




Def: For a weighted graph ' with a neg.-def. M, and for a given
a € Cork(M), define the theta function

Z,(Msri7) = (£) q fﬂ v (5, — L)2rdes) gMi(r )

27TIZV Zy

(] (e~ 27 ()

veV

Remarks:

1. a set of g-invariants;

2. a € Cork(M) = Hi(M3,7Z) = {inequiv. SU(2) Ab. flat connections}*;
3. neg.-def. M*™* & pos.-def. lattice < © and hence Z,. converges when
TeH;

4. qcfa(T) € Zl[[q]] for a ¢ € Q dependening only on Ms.

* up to Weyl group Z» action

** this condition can be relaxed : M1 only needs to be neg.-def. in the subspace spanned by the vertices with at least 3 edges



eg.

A

Z;(Ms; 7): Mathematical Definition

Mar =%(2,3,7)={x*+y3+2z"=0}nS>

—_— e —

q_% 70(X(2,3,7),7) = Z (i) é};(’r) = shad(Fo)(7)

i€7./42
2=1 (42)



Z,(Ms; 7) and Zcs

Zos(Ms; k) ; k € Z is the (effective) level.

Question: Can we go from Z to H:
a g-series inv. for 3-man. extending Zcg?

ldea: g-series radial “'mit> Zcs(k) ()

""""
-------

Remarks: 1. cf. previous work by Habiro. 2. (x) is not sufficient to
fix the g-series.



Z,(Ms; 7) and Zcs

Zos(Ms; k) 5 k € Z is the (effective) level.

Question: Can we go from Z to H:
a g-series inv. for 3-man. extending Zcg?

Answer: Z,('r), related to Zcg by Z,(T radial limit_, Zcs

summed over a

k

Zos(Ms; k) = Z g2k k(a,a) ( Iim1 555/2) Zb(’r))
)

a,bc Hy (M3, Z Tk
2mi/k

gl <1

T —

Py L



a(/\/13, 7): Physical Picture

6d (2,0) G(= SU(2))-theory on M

N

3d N = 2 thy Tg[M;] M; Topology

susy B.C. B, Ab. G flat connections

@ Za(r) : = Zyym)(D? x; S*; Ba)
B. — “Half-Index”

T —
3d A=2
2d A=(0,2) boundary .
theory condition — tOp Inv. Of M3




AN

Z,(Ms; 7): Physical Picture

g Zy(1) 1= Z D? x.SY; B
o a - TG[M3]( Xr 57 B,)
B _ “Half-Index”

3d A=2 | -
2d A'=(0,2) boundary .
theory condition = top. inv. of M3

3d bulk coupled to a 2d boundary CFT =

Some kind of residual modularity is expected if the bulk theory
Is “somewhat trivial”.



AN

Z,(Ms; 7): Physical Picture

g Zy(1) 1= Z D? x.SY; B
o a © TG[M3]( Xr 57 Ba)
B _ “Half-Index”

3d A=2 | -
2d A'=(0,2) boundary .
theory condition = top. inv. of M3

= Try, (5, (ei”RqJ)

In the holomorphic twist of the 3d N/ = 2 theory, the local operators
on a boundary condition B, consistent with the twist has the
structure of a vertex algebra Vj[B,].

|Costello-Dimofte-Gaiotto 2020]



Questions?



3-Manifold nv. | et
Za(M?“ 7—) odular rorm

(QMF)

Applications:

Quantum modularity

e helps to determine the g-invariants;

e leads to new ways of retrieving topological information;

e gives hints about the physical theories.



3-Manifold Inv. Quantum
Aanitola Inv. | Modular Form

Za(MB;T) (QMF)

See also important previous and ongoing work on a related
topic (Kashaev invariants of knots):

Zagier ‘10, Garoufalidis-Zagier ‘13 and to appear, Dimofte-
Garoufalidis "15, Hikami-Lovejoy "14, ....



|. Background

Il. A (True) False Theorem
l1l. A Mock—False Conjecture
V. Going Deeper
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First we focus on the most tractable family of examples:

[ = 3-pronged star
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Theorem : Negative three-stars are false.

A False Theorem

[IMC-Chun-Ferrari-Gukov-Harrison, Bringmann-Mahlburg-Milas ‘18]

For any three-pronged star weighted graph [ of negative type, the
functions Z,(Ms ; 7) are false theta functions. In particular, there
exists an m = m(I") € Z~q such that (up to a finite polynomial)

Z.(’r) € spany {Q}n’r, re Z/Qm} V a.

Rk: See also earlier work by [Lawrence—Zagier ‘99] and Hikami in the context of

CS inv.

‘e
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Z,(7) = (0%,

= QMF

_|_91 _|_91 //_|_ ) r,r,,--'EZ/Qm

Recall that the false theta functions like 0}, , are quantum modular
forms, which means

(Za' - 2a|1/27) (7) (*)

when the radially limit is properly taken, has analytic properties.

' Z;.(T)

radial limit

summed over a

> ZCS

(+) =

Zcs(k) ~ Z( )— Z(—k) + pert. series m%

/ |

sadd. pnt contr. from SL(2,C) flat connections

gives the Ohtsuki series



s

Z, = Log Characters

Theorem : Negative three-stars are false.
[MC-Chun-Ferrari-Gukov-Harrison, Bringmann-Mahlburg-Milas ‘18]

For any three-pronged star weighted graph [ of negative type, the
functions Z,(Ms ; 7) are false theta functions. In particular, there
exists an m = m(I") € Z~ such that (up to a finite polynomial)

Z,(T) € spany, {é;:, r e Z/2m} v a.

~ log VOA character

Log VOAs:
- contain modules not decomposable into irreducibles;

- a nice playground to study the mathematical properties of
non-rational vertex algebras.



A Simple Log VOA: the (1, m) Algebra

Given a positive integer m, let a4+ = +vV2m=*!l, ag = a4 + a_
free boson : p(z)p(w) ~ log(z — w)
stress energy tensor : T = 5(¢)? + Ld%p, c =1 — 303

screening charges : Q_ = (e*~ %),

triplet (1, m) algebra: W(m) := kery, Q_
singlet (1, m) algebra: M(m) := keryQ_

where V; = lattice VOA for L = v2mZ, H = Heisenberg algebra.
H C V
U U

M(m) C W(m)



A Simple Log VOA: the (1, m) Algebra

The triplet (1, m) algebra WYW(m) has 2m irreducible modules.

We are especially interested in m of them, with graded character

2n+1 —2n—1
W(m B (2mn+m 5)2 — Z -
X's T)Z J— ,5—1,...,m.
nexz
Z (M3 [ T) dz, 1 2—deg(v) AM
O, (7,
77( f H 27T’ZV V) a (T Z)



Z, and Log VOA Characters

Z,(Ms.r; T) dz, _ L y2des(v) gmy,
() j{H ) O (1:2)

n(7) 27TIZV z,

Integrate over all but the central node z.

e _ [ZS] (X]S/V(m) 4 XW(m) 4 XW(m) + . ) (T, Zc)

SI Sl!

triple (1, m) alg. characters

= (WM™ 4 xS xS ) ()

s//

single (1, m) alg. characters

1 .-——-—'-x__.-—’ —_—— —_———
( m,m—s T 6’J}n,m—s’ + Q}n,m—s” T ) (T)

n(r)



3—Manif0|d v M CS:IU"’Ith;:m
Za(M?);T) odular rorm

(QMF)

Log VA ---—---}----
Characters

closely related to the algebra of bdry op.?



Questions?
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A Puzzle

Recall 1
T — P

= radial limit
Za(’r ? ZCS

summed over a

Upon flipping orientation, we have
Zcs(—Ms; k) = Zos(Ms; —k)



A Puzzle

Recall 1
T — P

23(7_) radial limit >ZCS

summed over a

Upon flipping orientation, we have
Zcs(—Ms; k) = Zos(Ms; —k)

From (k <+ —k) & (1 < —7) & (g < g 1), we expect

~ o~~~

Zy(—Ms; 1) = Z,(M3; —71)

But what's this? Can we define Z,(Ms; 1) for both (|q|< 1 < 7 € H)
and (|g|>1<7eH_) ?



Going to the Other Side

D g
=" - -
e

—

22222777

\

ﬂ,
\) _______.___..a, _
:: Ll

(\
ﬂ a

False 3—I\/Ianifolds



Troubles with Thetas

~ dZV 1 2—deg(v
Z,(Ma ) = f Il 5o (2 3) “) M (7;2)
@2/1(7_;2) - Z q —TM— 1626.

(e2M7ZIVI+a

v
Mz <> —Ms < q <> g~ 1 < flipping the lattice signature M «» —M

no longer convergent for |g|< 1!

The definition for Z,(’r) no longer applies after M3 — — Ms;.



A Small Miracle

shad(Fo)(r) = Y (2.1> Ok (7) = a1 25(3(2,3,7), 7)

i€7,/42

2-1 (42) -2

It admits an expression as g-hypergeometric series

n(n+1)

P ”
B _SZ 1—q”+") K




A Small Miracle

i€Z/42
i’=1 (42)

It admits an expression as g-hypergeometric series

n(n+1)

— 68

which moreover converges both inside and outside (but not on) the
unit circle:

------
. LN

0 0
o 0

00 2

i

n—=0 ngl(l o q—(n+k))




A Small Miracle

Recall : Ramanujan’s Mock 6 Functions

2

=1+qg+q>+q*+ 0(q°)

an 1 ]__qn—i—k)

shad(Fo)(7) = Z (211> Qiz,;'(T)
i€7,/42

i’=1 (42)



gl <1
223 Y (5) o
i€7,/42 gl > 1
i’=1 (42)
n(n+1) 50 2
1 q

cf. Ramanujan’s mock theta function
2

ZHk 1 (1= g"tk)

=1+q+q°+4¢*+0(q)



A Small Miracle

The g-hypergeometric series defines a function F : HUH™ — C,
satisfying

F(r) = shad(Fo)(7) when 7 € H
Fo(—7) when 7 € H ™.

Moreover, it gives the same asymptotic expansion as 7 — *it
= they lead to the same quantum modular form.

Conjecture:
20(_2(23 33 7)3 T) — 20(2(23 33 7)3 _T)

1

=q 2F(1)=q 2(l+q+q +q"+ 0(q°))

PO =



A Mock-False Conjecture

Theorem :* [MC-Duncan ‘13, Rhoads ‘18] A Rademacher sum (a
regularised sum over SLy(7Z) images) defines a function F in H and
H™, satisfying

7 false - H

F(r) = shad(f)(r) when 7€ H Sha_((l)(f)
f(—T) when 7 € H™. >
\ ;
mock H~

x at weight 1/2.



A Mock-False Conjecture

Theorem :* [MC-Duncan ‘13, Rhoads ‘18] A Rademacher sum (a
regularised sum over SLy(7Z) images) defines a function F in H and
H™, satisfying

7 false - H
F(r) = {Shad(f)('r) when 7 € H sha:((i)(f)
f(—) when 7 € H™. ?
N ;
mock H™

x at weight 1/2.



A Mock-False Conjecture

H

/
shad(f >
\ H_

The False—Mock Conjecture: [CCFGH'18]
If g=¢Z,(Ms;7) = 6(7) for some ¢ € Q is a false theta function, then

q°Zs(—Ms;7) = f(7)

is a mock theta function with shad(f) = 6.

x at weight 1/2.



False—-Mock Conjecture: A Test Case

Conjecture:
20(_2(23 33 7)3 T) — 20(2(2 3: 7) _T)

1

— q_EFO(T) — q_

PO =

(1+qg+q+4q*+0(q))

Independent verification: [Gukov-Manolescu ‘19|

Using —%(2,3,7) = S>,(figure 8) and the surgery formula, one
obtains

—~~

Zo(—2(2,3,7),7)=q 2(1+q+ @ +q* +q°+2¢" +...)

Nice! But is there a way to obtain the mock answer from a more
direct definition?



Defining Z,(—M;)

~ dZV 1 2—deg(v
Z,(Ma ;) = j{ I 5o, (2 3) 5) M (7;2)
OM(r:z) .= Z q_ETM gt
(e2M7ZIVI+a
\4

Mz <> —Ms < q < g1 < flipping the lattice signature M <> —M

no longer convergent for |g|< 1!

Regularised f-function:  [Zwegers ‘02]

(_)a—M,reg(T; z) = Z p(0) q+(€,M_1€)Z€
lea+2MZIVI



Indefinite Theta Functions

Regularised 6-function: [Zwegers ‘02]
@;M,reg(,r; z) = Z () q(f,M—le)ze
(e2MZIVI+a
e o o o )o . Z (e,M—10)_¢
= q z
® ® ® ® ® €€2MZ|V‘:|ZB
eV
® ® ® ®
® ®
[ ] [ ]




Defining Z,(—M;)

Regularised 0-function:

;M ()= Y p(f) gt MO
tea+2MZV|
dz 1 2—deg(v — M .rec
Z,(—Ms 13 q) ng 27”; z, — —) ) oM 5(1:2)
veV v v

[MC-Sgroi, to appear]
[MC-Ferrari-Sgroi '19]

Using the above definition:

Z0(-%(2,3,7),7) = q 2F(r) = q 2(1+ g+ ¢+ ¢* + 0(¢%))




What we have seen:

e Explicit examples of QMF play the role of 3-manifold inv.;
e Modularity considerations lead to new examples of g-series inv. ;

e What is the physical meaning of the regularisation?



Questions?



|. Background

Il. A (True) False Theorem
l1l. A Mock—False Conjecture
IV. Going Deeper

V. Questions for Future



The (1, m) Algebra for Lie Algebra g

Given a positive integer m, let a4 = i\/m, apg = oy + o
free boson : p(z)p(w) ~ log(z — w)
stress energy tensor : T = 5(9¢)? + Ld%p, c =1 — 303
screening charges : Q_ = (e*~%),

triplet (1, m) algebra: W(m) := kery, Q_

singlet (1, m) algebra: M(m) := keryQ-—

where V; = lattice VOA for L = v2mZ, H = Heisenberg algebra.

e > corresponding to g = A;



The (1, m) Algebra for Lie Algebra g

Given a positive integer m, let a4 = i\/m, apg = oy + o
free boson : p(z)p(w) ~ log(z — w)
stress energy tensor : T = 5(9¢)? + Ld%p, c =1 — 303
screening charges : Q_ = (e*~%),

triplet (1, m) algebra: W(m) := kery, Q_

singlet (1, m) algebra: M(m) := keryQ-—

where V; = lattice VOA for L = /2mZ, H = Heisenberg algebra.

e > corresponding to g = A;

More generally, we have
r =rank(g) bosons, and L = /m Aoot.



Z%(7) and g-Log VOA Characters

From the M-theory origin of Z,., it Is clear that there is a higher rank
generalisation Z% (7).

Integrate over all but the central node z.

Y 2G3(M3,r;7_)

= [(Z.)°] (triplet g-Log VOA characters)

= singlet g—Log VOA characters

[MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.]



Another generalisation: (p, p’) Log VOA
When p # 1, the corresponding minimal model is non-trivial.

(p, p’) min. model ~ the cohomology of screening op.
(p, p’) log model  ~ the kernel of screening op.

They correspond to 4-pronged stars in the Z,—VOA correspondence.

.
.

¢ [MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.]



More General Quantum Modularity

Def (Depth 1 QMF): f : Q — Cs.t. hy :=f — f|,y have
some properties of analyticity Vv € G.

Def (Depth N QMF): a function f € Q such that h, :=f — f|,7y
is a sum of QMFs of depth less than N (multiplied by some

real-analytic functions) Vv € G.

° 2;42(7) is a QMF of depth 2 when M3 is given by a 3-pronged star.

e Z,,('r) is a sum of QMFs of different weights when M3 is given by a
4-pronged star.

[IMC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.] and see earlier work by Bringmann,
Milas, Kaszian ('17-'18).



Questions?



|. Background

II. A (True) False Theorem
l1l. A Mock—False Conjecture
IV. Going Deeper

V. Questions for Future



Future Questions

Jjust the beginning ...
e 2 mathematical definition for more families of 3-manifolds;
e boudary algebra of T[Ms];

e mock and false are exceptionally simple, more involved
quantum modularity for general Ms;

e what does quantum modularity say about physics/topology?
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